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Diffraction

• Diffraction vs. interference 
– Diffraction is the interference of waves from many 

sources, usually scattering objects 
– Focus on Bragg diffraction (diffraction on periodic 3D 

lattices) 

• Neutron diffraction ≈ elastic neutron scattering 
– Introduction to neutron scattering (again ...?) 

• Nuclear scattering 
• (Magnetic scattering) 

– Single crystal Neutron Diffraction 
• Structure determination left out 

– Neutron Powder Diffraction 
• Rietveld method 
• Peak shape and microstructure
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Neutron Scattering
• Interactions of slow (thermal) neutrons with 

condensed matter 
• Nuclear scattering
• Magnetic scattering
• Nuclear absorption

• Energy and momentum conservation 
• Diffraction ≈ elastic scattering 
• Inelastic scattering 
• Features of the neutron scattering technique 
• The Master formula
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Nuclear scattering
• Simple scattering experiment 

– Neutrons beam : incident wave vector k0 falls on sample 

– Interaction probability rather small: most neutrons transmitted  
– Few scattered neutrons measured with detector in direction k1 

– incident beam 
• uniform flux Φ (neutrons crossing unit area per unit time) 

– sample  
• N identical atoms in the beam 
– detector  

• solid angle ΔΩ  and efficiency η
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Differential cross sections
The differential cross section is defined by the probability 
to observe a scattered particle in a given quantum state per 
solid angle

 
unit, such as within a given cone of observation, 

if the target is irradiated by a flux of one particle per 
surface unit. It has the dimension of area.
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Scattering: differential cross section
• count rate C in the detector  

– proportional to all quantities 
– constant of proportionality: differential cross section  

– dσ/dΩ = C/(ΦN(ΔΩ)η).  

• differential cross section 
– function of magnitude and directions of k0 and k1  

– property of sample ... 
• ... and (sometimes) neutron spin state 

• types of interaction in condensed matter studies  
– nuclear interaction and ... 
– ... magnetic dipole interaction 
– neglect weaker interactions [C.G. Shull]
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Nuclear scattering: scattering length
• Interaction between slow neutrons and atoms through nuclear force  

– wavelength >> range of nuclear force 
– atoms in the sample are both non-interacting and identical 

• Differential cross section constant:  
• dσ/dΩ ∝ b2.  

• Scattering length b 
–  property of nucleus of scattering atom 

• atomic number Z and atomic weight A 
• spin state relative to that of the neutron 

– depends on interaction between neutron and nucleus components 
• sign and magnitude of b change irregularly with Z and A. 

– observe light atoms (especially H or O) beside heavy ones 

– distinguish atoms of similar Z 

– isotopic substitution and contrast variation
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Nuclear Scattering: scattering length (cont’d)

• Two spin states, (I ± 1/2) of neutron-nucleus system 
– Quite different scattering lengths possible 

• Incoherent scattering (I’ll be back …) 
• In case of polarized nuclei 

– measure the configuration of the nuclear spins 
– nuclear magnetism is a much weaker phenomenon than electronic magnetism  

• Low-lying resonance of neutron-nucleus system 
– scattering and absorption cross sections depending on wavelength 
– scattering length becomes complex.  

• Scattering length in laboratory system smaller by a factor (A/A+1)  
– Only, if the nucleus is free to recoil.  
– Neutron scattering on condensed-matter: 

• Fixed atom more appropriate limiting case 
• “bound-atom” values quoted for scattering lengths and cross sections 

– http://www.ncnr.nist.gov/resources/n-lengths/ 
• (A/A+1) to be considered for scattering experiments on gases
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Magnetic scattering
• Neutron’s magnetic moment interacts with unpaired electrons 
• Paramagnet with electrons localized in specific ions 

– Random spin orientations and no external magnetic field 
– Differential cross section dσ/dΩ = (γ r0)

2 [ f (k1-k0) ]
2 S(S+1) 

• γ r0 = 0.54·10–12 cm 
• Spin quantum number for the ions: S 

– Magnetic form factor f(Q) = f (k1-k0) 
• Fourier transform of the density distribution of the unpaired electrons 
• normalized to f(0) = 1 

– Nuclear scattering length constant, considering the nucleus as a point 
• Good intensities for higher scattering angles, larger wave vectors Q 

– Magnetic neutron scattering like X-ray and electron scattering: 
• Form factor decreases with scattering angle, less information for higher Q.  

• Orbital contribution to the magnetic interaction 
– Additional scattering from current associated with a moving electron
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Nuclear absorption
– Incident neutron on sample: beside transmission and scattering, 

• Absorption as a third possible outcome  
– Treated as simple attenuation of incident and scattered beams 

• Numerical factor in general expression for differential cross section  

– Other things leading to attenuation 
• Beam removal from multiple scattering involving the same neutron 

– Strong absorption due to resonance capture 
• Wavelength-dependent complex scattering length.
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Energy & momentum conservation
• Wave vector k suffers change in direction 

– momentum exchanged with sample 
– corresponding wave vector Q 
– law of momentum conservation as  

– k0 - k1 = Q.  

• Momentum h/2π·Q taken up by the scattering atom  
• Subsequently shared with the rest, 
• or, single crystals,  the sample as a whole recoils  

• Magnitude of k can change as well 
– neutron exchanges energy 
– law of energy conservation, 
– (h/2π)2

 k0
2/2m – (h/2π)2

 k1
2/2m = E,  

• E is the energy transferred to the sample 
• two terms on the left-hand side: incident and scattered neutron energies
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Energy & momentum conservation …

• Process, in which a neutron is scattered from k0 to k1 

– associated with a set of values of Q and E 

• Intensity of scattering: function of the variables (Q, E) 
– Property of the particular sample and its environment  

• Temperature, pressure, magnetic field, etc. 
– Neutron experiments try to measure this function  

• description of its form  
– for different materials  
– in different environments
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Diffraction
• Sample of individual, non-interacting scattering units of mass M 

– Relation between E and Q takes the simple form E = (h/2π)2
 Q

2/2m.  

– Two-body collision problem, with E = 2E0 m/M (1 – cos θ) + O (m/M)2 

• θ : scattering angle between k0 and k1  

• E0: incident neutron energy 
• m: neutron mass, M: sample mass 

• Energy transfer tends to zero as mass M of scattering unit increases 
– Solid sample: significant amount of scattering is “elastic”, i.e., E = 0 

• Sample recoils as rigid unit, scattering unit = whole sample 
• |k1| = |k0|  

– 2k0 sin(θ/2) = Q. 

• Crystalline materials:  
– Strong elastic scattering when Q equal to a reciprocal lattice vector 

– Q = 2π (h/a, k/b, l/c) or Q = 2π/d. 
• d : spacing of the (h, k, l) set of crystal planes (I’ll be back on this …) 

• With k0 = 2π/λ0, we derive the common Bragg condition for diffraction:
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Diffraction: Bragg’s law

• λ0 = 2d sin(θ/2)   

– Waves scattered from successive lattice planes interfere 
constructively  

– Giving an intensity maximum in the diffraction pattern 
– Single-crystal sample 

• crystal orientation : Q parallel to reciprocal lattice vector 

• 2 scanning methods through different lattice plane spacings  
– varying θ at constant λ0 

– varying λ0 at constant θ  

• Involving either definition or measurement of λ0: 2 ways 
– Using mosaic single-crystal monochromators/analysers (Bragg 

condition) 
– Velocity, determining/measuring travel time for a known distance 
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Diffraction: Elastic scattering
• Truly elastic scattering,  

– Determine the wavelength of both incident and scattered beams 
– Ensure that |k1| = |k0| 
– Structural measurements in crystalline materials 

• Elastic scattering is dominant contribution  
• Total scattering corresponding to certain λ0 and θ measured  

– regardless of energy transfer.  

• Inelastic (E ≠ 0) contribution either neglected of removed by data 
analysis 

– Non-crystalline samples (glasses or liquids) 
• Total scattering usually quantity of interest 
• Corrections have to be made for inelastic scattering 

• Count rate C in a typical neutron diffraction experiment  
– C ≈ Φ(λ0) (Δλ0) N b2 (ΔΩ) η ≈ 10–22N 

• 1% resolution 
• Φ(λ0)λ0 ≈ 109n/cm2s, Δλ0/λ0 ≈ 10–2, b2 ≈ 2·10-25cm2, ΔΩ ≈ 10-4, η ≈ 0.5  

– 1 count/s: 1022 atoms, 1 g sample
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Bragg Diffraction for crystal structure

• Crystalline matter: 
– Each single atom scatters an incoming wave serving as a 

secondary isotropic point source 
– Constructive interference in certain directions 
– Atoms arranged on many infinite sets of equidistant parallel 

lattice planes
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Bragg’s law: interference

• Lattice planes regarded as semi-transparent mirrors 
– Constructive interference if reflected beams in phase:   

– 2d sinθ = nλ 

– Total cancellation if not, due to infinite number of planes
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Bragg’s law: movie

• Lattice planes regarded as semi-transparent mirrors 
– Constructive interference if reflected beams in phase:   
– 2d sinθ = nλ 
– Total cancellation if not, due to infinite number of planes
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Bragg diffraction as specular reflection on semi-
transparent mirrors of lattice planes

18
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The Master Formula

• Possible changes in scattering experiments:  
– Sample state λ0 → λ1, neutron spin σ0 → σ1 

• Differential cross section 
– W: number of transitions per second 
–  Fermi’s Golden Rule 

• First order perturbation theory  
– Valid for nuclear scattering: nuclear potential short-ranged 

– V: interaction potential, ρ: density of states 

– Wave function V0
-1/2ekr|σ> for sample volume V0 

• Energy interval dE1 = (h/2π)2k1dk1/m 

– Incident flux
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Euler‘s Identity
EULER‘s

 
identity

 
(1748)

e±iĹ
 

= cos(Ĺ) ± i sin(Ĺ)

e-iĹ
 

is the conjugate complex of eiĹ
 

and 
vice versa. A conjugate complex

 
function is 

denoted by f(Ĺ)*; the product f(Ĺ)· f(Ĺ)* 
has no imaginary components.
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The Master Formula (cont’d)

• Energy conservation condition as a δ function 

• sum over all final states,  
• average over initial states, occurring with probability p 

• “master-formula” 
– basis for the interpretation of all neutron scattering experiments 
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• Nuclear potential range 3 orders of magnitude < wavelength 
– δ function: Fermi pseudo-potential: 

– b scattering length, r and R neutron and nucleus positions 

• Interaction potential neutron-sample: sum over atoms in samples 

• Average over neutron wave function: 

• Master formula ⇒ 

• Unpolarised neutrons :
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Nuclear scattering
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Real time presentation
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Angular brackets: thermal average of expectation values of operator 
Heisenberg time-dependent representation of the operators:
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Decoupled nuclear parameters
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Nuclear spins and isotopes (ΔA/A) randomly distributed,  
Scattering without nuclear states,  only in terms of atomic coordinates
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Coherent and incoherent scattering
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Coherent & incoherent scattering functions

      

€ 

Scoh
d ʹ d Q, E( ) ≡ 1

NdN ʹ d 

Si ʹ i 
i∈d, ʹ i ∈ ʹ d 
∑ =

1
NdN ʹ d 

1
h

e− iQ ⋅Ri(0)eiQ ⋅R  ́i (t) e−2πiEt/ hdt
−∞

∞

∫
i∈d, ʹ i ∈ ʹ d 
∑

Sinc
d ʹ d Q, E( ) ≡ 1

Nd
Sii

i∈d
∑ =

1
Nd

1
h

e− iQ ⋅Ri(0)eiQ ⋅Ri(t) e−2πiEt/ hdt
−∞

∞

∫
i∈d
∑

      

€ 

d2σ

dΩdE
=

k1

k0
cd

1
2c ʹ d 

1
2 bd

*b ʹ d Scoh
d ʹ d Q, E( )

d ʹ d 
∑ +

k1

k0
cd
σ i nc

d

4π
Sinc

d ʹ d Q, E( )
d
∑

      

€ 

Itot
d ʹ d Q, E( ) ≡ 1

NdN ʹ d 

e− iQ ⋅Ri(0)eiQ ⋅R  ́i (t)

i∈d, ʹ i ∈ ʹ d 
∑

Iincd ʹ d Q, E( ) ≡ 1
Nd

e− iQ ⋅Ri(0)eiQ ⋅Ri(t)

i∈d
∑

Total intermediate and self intermediate scattering functions
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Euler‘s Identity
EULER‘s

 
identity

 
(1748)

e±iĹ
 

= cos(Ĺ) ± i sin(Ĺ)

e-iĹ
 

is the conjugate complex of eiĹ
 

and 
vice versa. A conjugate complex

 
function is 

denoted by f(Ĺ)*; the product f(Ĺ)· f(Ĺ)* 
has no imaginary components.

      

€ 

Si ʹ i Q,E( ) =
1
h

e−iQ⋅R i(0)eiQ ⋅R ʹ i (t)

−∞

∞

∫ e−2πi Et/hdtScattering function
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Normal modes

      

€ 

Scoh
d ʹ d Q, E( ) =

1
N

1
h

e− iQ ⋅ui(0)eiQ ⋅u  ́i (t) eiQ ⋅( ʹ i − i)e−2πiEt/ hdt
−∞

∞

∫
i, ʹ i 
∑

Sinc
d ʹ d Q, E( ) =

1
N

1
h

e− iQ ⋅ui(0)eiQ ⋅ui(t) e−2πiEt/ hdt
−∞

∞

∫
i
∑

      

€ 

ui t( ) =
h

4πMiω j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

ei
je−iωjtaj + ei

j *e−iωjtaj
+⎡ 

⎣ 
⎤ 
⎦ j

∑

      

€ 

Di ʹ i =
1

MiM ʹ i ( )
1
2

Φi ʹ i 

      

€ 

U − U0 =
1
2uiΦi ʹ i u ʹ i 

Instantaneous displacement from equilibrium site

Harmonic forces:  
 linear function of displacement,  
 3N normal modes 
quantum mechanical operators a: 
 annihilation and creation of energy quantum 
mode frequency ω, polarisation vector e

mode frequency ω, polarisation vector e: 
 Eigenvalues/-vectors of dynamical matrix D 
Force constants Φ
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Euler‘s Identity
EULER‘s

 
identity

 
(1748)

e±iĹ
 

= cos(Ĺ) ± i sin(Ĺ)

e-iĹ
 

is the conjugate complex of eiĹ
 

and 
vice versa. A conjugate complex

 
function is 

denoted by f(Ĺ)*; the product f(Ĺ)· f(Ĺ)* 
has no imaginary components.

      

€ 

Si ʹ i Q,E( ) =
1
h

e−iQ⋅R i(0)eiQ ⋅R ʹ i (t)

−∞

∞

∫ e−2πi Et/hdt

Solid: Each atom well defined, fixed equilibrium position 

Scattering function
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Evaluation of scattering functions

      

€ 

e− iQ ⋅ui(0)eiQ ⋅u  ́i (t) = e− Wi Q( )+ W  ́i Q( )[ ]e Q ⋅ui(0)Q ⋅u  ́i (t)

      

€ 

e−Wi Q( ) = e
−

1
2 Q ⋅ui(0)[ ]2

      

€ 

Wi(Q)=
h

6πMi

Qei
j 2

ω j
2nj + 1

j
∑

harmonic oscillator

Debye-Waller factor

    

€ 

nj =
1

e
hωj

2πkBT − 1
population factor
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∫
i
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Elastic scattering

      

€ 

Sc,el Q, E( ) =
1
N

1
h e− Wi Q( )+ W  ́i Q( )[ ]eiQ ⋅( ʹ i − i)e−2πiEt/ hdt

−∞

∞

∫
i, ʹ i 
∑ =

1
N e− Wi Q( )+ W  ́i Q( )[ ]ei Q ⋅( ʹ i − i)δ E( )

i, ʹ i 
∑

      

€ 

Sel Q( ) =
1
N e− Wi Q( )+ W  ́i Q( )[ ]eiQ ⋅( ʹ i − i)

i, ʹ i 
∑

      

€ 

Si,el Q, E( ) =
1
N e−2Wi Q( )δ E( )

i
∑

      

€ 

Si,el Q, E( )dE∫ =
1
N e−2Wi Q( )

i
∑

      

€ 

Sel
d ʹ d Q( ) =

2π( )3

v0
e− Wd Q( )+ W  ́d Q( )[ ]eiQ ⋅( ʹ d −d) δ Q − τ( )

τ

∑

      

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

c,el
=

2π
v0

F τ( )
2
δ Q − τ( )

τ

∑

      

€ 

F τ( ) = bde−Wd(τ)eiτ ⋅d

d
∑

      

€ 

dσ
dΩ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i, el
= cdσ i

de−2Wd Q( )

d
∑

elastic structure factor

average Debye-Waller

long-range order i=l+d 
crystal lattice made up by l 
reciprocal lattice vectors τ
Bragg peaks if Q=τ

elastic coherent scattering cross section 
unit-cell structure factor F(τ)
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Neutron diffraction from crystals

• In which direction does scattering occur? 
– Interference and Ewald sphere 

• Reciprocal lattice 

• How strong is the scattering in a given direction? 
– Structure factor 

• Phase problem 
• Debye-Waller factor 
• coherent scattering length 

• How realistic are perfectly imperfect crystals? 
– Kinematical and dynamical diffraction theory 
– How can we get the intensities right? 

• Corrections to be made: Extinction 

• How to properly measure intensities 
– Experimental aspects of single crystal diffraction

29
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Structure

=

Base

+

Lattice

Atom
A
B
C

a

b

Base vectors a, b, c set up the  
unit cell of the lattice a

b

Crystal lattice

30
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Crystal lattice planes

Miller indices (hkl): 
  

smallest possible integer multiples of reciprocal lattice 
intersections

a
b

c
Here: 
(525)

31
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Crystal lattice planes

a

b

Miller indices (hkl) not only tell the position of one lattice 
plane but of the infinite array of all parallel planes 

Lattice planes of higher indices have smaller distances to 
each other

(100) 
(-100) 

(1-10) 
(-110) 

(210) 
(-2-10) 

(310) 
(-3-10)

32
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Reciprocal lattice
• The 3D reciprocal lattice with the basis 

a*, b* and c* is the Fourier transform 
of a 3D direct lattice with the basis 
vectors a, b, c. 
– 2D example: (102) lattice planes and 

corresponding reciprocal lattice point 102, 
direct lattice grey, reciprocal lattice black. 
The reciprocal lattice vector G is  to the 
planes (102). NB: a* is  c (and b) and its 
permutations 
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Reciprocal lattice

a

c

a

c
a*

c*

2D example: (102) lattice planes and corresponding reciprocal lattice point 
102, direct lattice grey, reciprocal lattice black. The reciprocal lattice 
vector G

 
is ŏ

 

to the planes (102). NB: a* is ŏ
 

c
 

(and b) and its permutations

102

The 3D reciprocal lattice with the basis a*, b* and c* is 
the Fourier transform

 
of a 3D direct lattice with the 

basis vectors a, b, c.                                     See part I p.32

(10
2)

G
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Reciprocal lattice

real         reciprocal real    reciprocal real    reciprocal

lattice
 rods

lattice
 sheets

Ceterum censeo*:
 

An infinite 
3D lattice in real space 
Fourier-transforms into an 
infinite 3D lattice in reciprocal 
space. 

1D 2D

* I say it once again
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Elastic scattering geometry

• Incident radiation 
– Wave vector k0 |k0|=2π/λ 

• Scattered radiation 
– Wave vector k, |k|=2π/λ 

• Wavevector transfer 
– Q = k - k0 or k = k0 + Q 
– Scattering angle 2θ

34
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Elastic scattering geometry

Q

2Ĳ

k0

k

Incident radiation:
wave vector :

 
k0

|k0

 

|= 2�/ Ǉ

Wavevector
 

transfer:

Q
 

= k
 

–
 

k0  or  k
 

= k0
 

+ Q

Scattering angle 2Ĳ

Scattered radiation:
wave vector :

 
k

|k|= 2�/ Ǉ

k0

Q
W.F.Kuhs

6

Reminder:
 

A pair of scatterers
Adding up the phases of two scattering centers

k0

k

-k0
 

rj k
 

rj

rj

Q
 

=k-k0
exp (iĹ)

Adding up all contributions: F(Q) = � bj
 

exp(iQrj
 

) 

exp(iQrj
 

) exp(iĹ)

NB: krj
 

–
 

k0
 

rj
 

= qrj

Atomic
 

scattering
 

power
 

fj

 

(bj

 

)

NB: In crystallographic notation: k0

 

replaces ki

 

, and k
 

(or k’) replaces kf

More
 

atoms:

see
 

Part I p.56

F(Q)=f ∑bj[exp(i Q rj)]
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Sharp scattering condition

• k a = k0 a: constructive interference 
• With Q = 2π h (h: Miller indices hkl) 

– Q = k - k0: F(h)=f ∑[exp(2π i h a)] 

• For a given k0 and 1D lattice vector a, scattering 
occurs only in very specific directions k!
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Sharp scattering condition

a

k a
k0

 

a

Q
 

= k
 

-
 

k0

k a = k0
 

a
 

which means constructive interference. 
Replacing Q

 
by 2�h

 
gives

F(h) = f Ƶexp
 

(2�i h a)
k0

k
Scalar products

For a given k0
 

and 1D lattice vector a
 

scattering occurs 
only in very specific directions k

 
defining a scattering cone



• Reciprocal space: Diffraction occurs when k0, k and h 
are coplanar and Q=2πh ends in the Ewald sphere 
– |k0|=|k|=2π/λ and |h|=1/dhkl 
– The Ewald sphere is in experimental reality rather a shell 

with a finite thickness due to the fact that perfect 
monochromaticity does not exist
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Ewald construction

36
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Ewald  construction 3D

k

k0

Q=G

Paul Peter Ewald 1888-1985

The Ewald
 

construction is of enormous help when 
it comes to consider diffraction phenomena in 
condensed matter, including instrumental effects.

Ewald
 

sphere
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Ewald construction

37

• Bragg plane 
– In reciprocal space, for a 

diffraction peak of a crystal 
to occur, the tip of a wave 
vector  has to lie on one of 
the Bragg planes, which are 
perpendicularly bisecting 
the lines from the origin of 
the reciprocal space to the 
reciprocal lattice points 
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Ewald construction

• Bragg plane 
– In reciprocal space, for a 

diffraction peak of a crystal 
to occur, the tip of a wave 
vector  has to lie on one of 
the Bragg planes, which are 
perpendicularly bisecting 
the lines from the origin of 
the reciprocal space to the 
reciprocal lattice points 
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Ewald construction

39

• Rotating crystal 
– The rotation axis is 

perpendicular to the plane. 
The red circles are the orbits 
swept out by the reciprocal 
lattice vectors. Each 
intersection with the Ewald 
circle represents a Bragg peak
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Ewald construction

40

• Debye-Scherrer (powder) 
– The Ewald sphere intersects a sphere centred at the origin with 

a radius of K for each lattice vector with K < 2k. Bragg peaks will 
appear for any wave vector connecting any point on the 
intersection circle with the tip of the incident wave vector. For 
each lattice vector the scattered rays therefore lie on a so-
called Debye-Scherrer cone.



• The Fourier transform of a 3D array of δ functions is 
the reciprocal lattice Ghkl(q) with integer h,k,l (Miller 
indices). 

• Laue-condition: Interference only occurs when Q=G 
– Geometrically equivalent to Bragg condition
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Bragg’s law and Laue conditions

41
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Bragg‘s law and Laue
 

conditions
The FT of a 3-D array of ĵ-functions

 
is the reciprocal 

lattice Ghkl
 

(q) with integer h,k,l. Interference only 
occurs when Q

 
= G (Laue-condition). The Laue

 
condition 

is geometrically equivalent to the Bragg condition.

Bragg: nǇ
 

= 2dhkl
 

sinǄ
 

Laue: Q
 

= Ghkl

Integer-valued h,k,l
 

are the Miller indices

lQl=4�sinĲ/Ǉ
 or

lQl = 2�/dhkl
ki

kf

Q=G

ki kf

Miller indices
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Structure factor
• The structure factor is the Fourier transform of the 

scattering density distribution of the unit cell: 
– F(G)=∑[bj·exp(i·G·xj)] or Fhkl=∑[bj·exp[2π·i·(hx+ky+lz)]] 
– The scalar product Gxj is given as hx+hy+hz with the Miller indices hkl 

and the fractional atomic coordinates xyz of an atom j in the unit cell 
of a crystal structure; it contains the information on the phase angle 

• Structure factor in complex plane 
– Each scatterer contributes with a different phase. The structure 

factor results from adding the individual contributions. 
– The result can be real for centroysmmetric arrangements (for each 

atom at x there is an equivalent one at -x), phase angles φ are either 
0º or 180º (structure factor positive or negative) 

– For acentric materials the result has an imaginary component
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Structure factor in complex plane
Each scatterer

 
(atom) contributes with a different phase. 

The structure factor results from adding the individual 
contributions. The result can be real (for centrosymmetric

 arrangements) or imaginary (for acentric
 

materials).

centro-symmetricacentric

All phase angles Ĺ
 

possible   Phase angles either 0° or 180°

x,y,z -x,-y,-z
atom

 
at 

(see
 

also part
 

I p.24 bottom
 

left)
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The Phase problem
• Structure factor in complex plane 

– Each scatterer contributes with a different phase. The 
structure factor results from adding the individual 
contributions. 

– The result can be real for centroysmmetric arrangements 
(for each atom at (xyz)  there is an identical one at -(xyz), 
phase angles φ are either 0º or 180º (structure factor 
positive or negative) 

– For acentric materials the result has an imaginary 
component 

• The Phase problem 
– The scattered intensity I is proportional to |Fhkl|

2, i.e. the 
product of F(G) with its conjugate complex F*(G) 

– Fourier back-transforming I(G)=F(G)·F*(G) yields the 
convolution ρ(r)·ρ(-r)=∫ρ(u)·ρ(r+u)du=g(r) 

– g(r) is the pair correlation function, the so-called 
“Patterson function” for crystals 

– To calculate the phase, we need information on the atomic 
positions xyz from “Patterson techniques” of by “direct 
methods”
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Phase problem
The scattered intensity is proportional to |Fhkl

 

(G)|2, 
i.e. the product of F(G) with its conjugate complex

 F*(G) (see figure). 

Fourier back-transforming I(G) = F(G) · F*(G) yields 
the convolution ǋ(r) *

 

ǋ(-r) = �ǋ(u) ǋ(r+u) du
 

= g(r). 
g(r) is the pair correlation function

 
(the so-called 

“Patterson function” for crystals).

The measured intensities do not contain information on the 
phase !

To calculate the phase we need information on the atomic 
positions xyz.

 
Thus we need to build an initial model of the 

structure. This can be obtained e.g. by so-called “Patterson 
techniques” or by “direct methods” from the measured 
intensities.
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Debye-Waller factor

• Harmonic oscillator as assumption for atomic displacement 
– Fhkl=∑[bj·Tj·exp[2π·i·(hx+ky+lz)]] 
– One can describe the thermal smearing of atomic positions as a 

convolution with the static structure.  
– The Debye-Waller factor T(Q) describes the averaged reduction of 

intensity with increasing Q. 
– It contains the atom-specific parameter B which can be seen as the 

surface in Å2 of a sphere in which the atom is found most probably 
• Alternatively one finds a notation using u which by 8π2 smaller as it 

can be seen as the length in Å of the displacement vector of an atom
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Coherent and incoherent scattering
– Scattering length bj depends on isotope and spin orientation! 

• I(Q) = (1/V)⟨|∑[bj·exp(iQrj)]|2⟩ 
– Scattered intensity depends on the relative position of atoms: 

•  I(Q) = (1/V)⟨∑[bibj·exp(iq(ri-rj))]⟩ 
– Isotopes and spins are statistically distributed and thus 

uncorrelated with atomic positions 

•  I(Q) = (1/V)                 ∑[⟨bibj⟩⟨exp(iq(ri-rj))⟩]  
        = (1/V)⟨b⟩2     ·     ∑         ⟨exp(iq(ri-rj))⟩     Icoh  
        + (1/V)(⟨b 2⟩-⟨b⟩2)·∑         ⟨exp(iq(rj-rj))⟩     Iinc  

                                                                           = 1 (no structure information)  
• Dramatic for hydrogen: 1.8 vs. 79.8 barn 

– Therefore: deuteration: 5.6 vs. 2.0 barn 
• The scattering cross section σ is often given in “barn” (10-24cm2)
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Kinematic vs. dynamic scattering theory

• Scattering in a perfect lattice 
– A diffracted beam can itself act 

as incident beam and back-
diffracted into the initial 
direction: diffracted intensity 
weaker than expected 

• Kinematical theory 
– In far-from-perfect crystals this 

does not happen, intensity is 
proportional to sample volume 

– Shortcomings can be cured by a 
so-called extinction correction 

• Dynamic theory  
– necessary for perfect crystals
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Intensity vs. size/ perfection
If the investigated crystal is far from being perfect, indeed only 
one such scattering event takes place as the lattice planes do not 
exactly match up along the crystal. In this case the diffracted 
intensity grows linearly with the sample volume. That this is the 
case is the basic assumption of “kinematical theory”

 
of diffraction.

Rg

 

intensity, L crystal
 

size, ĸ
 

crystal
 

perfection

In perfect crystals this 
cannot be assumed and the 
fully fledged “dynamic 
theory”

 
of scattering needs 

to be employed.

The shortcomings of 
kinematical theory can be 
(at least partly) cured by 
using a so-called “extinction 
correction”

 
with a correc-

 tion
 

factor usually called “y”

K.T. Kinematical theory 
S.E.T. Secondary 
extinction theory           
D.T. Dynamic theory

y
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Mosaic crystal
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Mosaic crystal
Fortunately, most investigated crystalline materials can reasonably 
well be described within the framework of kinematical theory, in 
particular when extinction corrections are employed. A crude 
pictorial way to see imperfect crystals is the so-called “mosaic 
crystal”. 

Both the size of the mosaic blocks
 

and the misorientation
 

are 
important ingredients in extinction corrections.  

Mosaic 
crystal with 
boundaries 
between 
more perfect 
blocks rich in 
dislocations 

edge- screw-

dislocations

• Kinematical theory with extinction 
correction for imperfect crystals 
– Size of mosaic blocks 
– Misorientation 

• Primary extinction 
– Blocks so large that more than one scattering 

event occurs within 
• Block-size counts 

• Secondary extinction 
– Blocks shadowed from upstream blocks with 

identical orientation 
• Angular distribution of blocks counts 

• Both effects may well be anisotropic
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• The Bragg peak is a 3D volume in reciprocal space 
– One needs to integrate over a Bragg peak 
– This can be done by rotating the reciprocal lattice (thus, the 

crystal) through the Ewald shell 

• ω-scan 
– Sensitive to angular variations of lattice planes 

(“rocking curve) 

• ω-2ϴ scan 
– Sensitive to distance variations of lattice planes
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Single crystal diffraction
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W.F.Kuhs
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TDS under Bragg peaks
The contributions of all acoustic 
phonons peak under the Bragg peak.

The TDS intensity increases with 
increasing scattering angles. Elastic 
(Bragg) and inelastic components 
(TDS) can be separated by neutron 
or Mößbauer

 
scattering.

The amount of TDS reaching the 
detector depends on the exact way 
one scans the part of reciprocal 
space around a Bragg reflection: ǐ-

 scan
 

(turning the crystal only); ǐ-
 2Ĳ scan

 
(coupled motion of crystal 

and detector). The shaded area 
scatters into the detector.

ǐ-rotation means moving a Bragg 
spot through the Ewald

 
sphere (ES)

ǐ-2Ĳ scanǐ-scan

ES ES

k0
k
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Single crystal diffraction
The Bragg peak is a 3D body in reciprocal space. One needs 
to integrate over a Bragg peak. This can be done by 
rotating the reciprocal lattice through the Ewald

 
shell. NB: 

Rotating the crystal rotates also its reciprocal lattice.

Two ways to rotate a crystal through the Ewald
 

shell we 
have seen on p.34 (ǐ-scan

 
and ǐ-2Ĳ scan). How far one 

needs to scan depends also instrumental parameters.

ǐ-scan ǐ-2Ĳ scan

Sensitive to angular variations of 
lattice planes (“rocking curve”)

Sensitive to distance variations 
of lattice planes
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Proper integration

• How far do I need to scan? 
– Finite source size P 
– Finite detector aperture 
– Wavelength spread 

• 2D detectors 
– Very large detector aperture 
– Integration in 2D by software 
– Third direction still needs to be scanned

49

W.F.Kuhs
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On proper integration

Finite source size P
Finite P and finite 
detector aperture Wavelength spread

How far one needs to scan depends also instrumental 
limitations.

Presently one is moving strongly towards a world of 2D 
detectors

 
with their very large “apertures”. Integration 

in 2D can be handled by software, the third direction, 
however,  usually still needs to be scanned.

The blue areas
 

indicate the shape of the resolution ellipsoid
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• “White” radiation = very thick Ewald shell
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White beam: Laue method
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W.F.Kuhs

39

Ewald
 

construction for white beam
white radiation = very 

thick Ewald
 

shell

Laue
 

diffractogram
 

of a 
protein crystal (HASYLAB)

Lines instead of 
reciprocal lattice 
points

000

Each Bragg reflection picks 
the appropriate wavelengths
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Four circle  diffractometers
• Solution and refinement of crystal structures 

– Measurement of numerous reciprocal lattice point 
intensities 

– Accurate intensities: Scan over each reflection 
• Four-cycle diffractometer 

– well collimated roughly monochromatic incident beam 
– Small sample bathed in the beam 
– Large detector (PSD) integrate neutrons scattered by 

the sample  
– For small mosaic spread of sample, wavelength spread 

of incident beam:  
• Spot in reciprocal space elongated parallel to Q 

– Integrated by performing a θ-2θ scan,  
– which also performs a parallel scan in reciprocal space 

– For samples with broad mosaic, the sample angle 
should be rocked (ω-scan). 
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Powder Diffraction

•Neutron (or X-ray) Powder Diffraction, why 
bother?  

•Some equations and formalisms

•Data Analysis: The Rietveld Method

•Peak shape functions and microstructure

•Examples
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Short History of Powder 
Diffraction

1895  Discovery of X-rays by Röntgen  
1912  von Laue demonstrates that X-rays can be diffracted by crystals 
1935  Le Galley constructs the first X-ray powder diffractometer 
1947  Phillips introduces the first commercial powder diffractometer 
1950’s  Powder diffraction used primarily to study  structural  
1960’s  imperfections, phase identification,  … largely by metallurgists 
 and mineralogists 
1969  Hugo Rietveld  develops a method for whole pattern analysis  
 of neutron powder diffraction data 
1977  Cox, Young, Thomas and others first apply Rietveld method 
 to synchrotron and conventional X-ray data 
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Powder Diffraction

Real space Reciprocal space

54

Single Crystal



5 April 2016 T.Hansen - Diffraction - Erice

Powder Diffraction
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Real space Reciprocal space

Single CrystalFour s
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Powder Diffraction
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Single CrystalFour sty 
Reciprocal space
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Powder Diffraction

Reciprocal space

57

Single CrystalTwo hundred s
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Powder Diffraction

In three dimensions the reciprocal space 
corresponding to billions of crystals is a set of 
concentric spherical shells. The intersection of 
these shells with the Ewald Sphere gives rise 
to powder diffraction as a set of Debye-
Sherrer cones
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Powder Diffraction: Preferred orientation

Preferred orientation is the main limitation 
factor for exploiting the intensities of X-ray 
powder diffraction. In order to use powders for 
structure determination and refinement one 
has to avoid preferred orientation
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Uses of Powder Diffraction:  
Applications in Physics, Chemistry, Geology, Industry, ...

Qualitative Analysis  Phase Identification 
Quantitative Analysis  
    Lattice Parameter (indexing & refinement) 
    Phase Fraction Analysis 
Structure Determination  
    Reciprocal Space Methods  
    Real Space Methods 
Structure Refinement  
    Rietveld Method 
Peak Shape Analysis   
    Crystallite Size Distribution 
    Microstrain Analysis 
    Anti-phase domains, stacking faults,…
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Limitations of Powder Diffraction for  
solving crystal structures

Single crystal diffraction allows solving crystal structures by using 
appropriate mathematical algorithms and accurate peak intensities.

The 3D set of reflections obtained from a single crystal experiment is 
condensed into 1D in powder diffraction pattern. This leads to both 
accidental and exact peak overlap, and complicates the determination 
of individual peak intensities.

Indexing may be a bottleneck for starting to solve a crystal structure. 
Multiphase mixtures complicates the task.

Crystal symmetry cannot be obtained directly from powder diffraction 
patterns.

Preferred orientation leads to biased peak intensities.
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Collimators	α1, α2, α3	

Mosaicity	of	monochromator	βM 

«	take-off	»	angle	:	2θM

Parameters determining resolution and intensity

Scheme of a two axis diffractometer

62FPSchool-2011, Basic session, 2011
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Instrument resolution
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'Q/Q or

Ex: sample in a 
10mm diam can, 
'L/L = 0.01/80m 
'L/L = 1.25.10-4

10-3~10-2
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A powder diffraction pattern can be recorded in numerical 
form for a discrete set of scattering angles, times of flight or 
energies. We will refer to this scattering variable as : T. 
The experimental powder diffraction pattern is usually given 
as three arrays :

 

The profile can be modelled using the calculated counts:  yci 

at the ith step by summing the contribution from neighbouring 
Bragg reflections plus the background.

What is a powder diffraction pattern?
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yi

Position “i”: Ti

Bragg position Th

yi-yci
zero

Powder diffraction profile:
scattering variable T: 2θ, TOF, Energy
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• Resolution function determined by 
• optical diffractometer arrangements and collimators,

• coupled to scattering angle and wavelength 
• Limited Q-range

• depends on selected wavelength
• Hot source (low lambda):

• gain in Q-range degraded by lower resolution
• Difficult to obtain high resolution 

• in the whole Q-range on a single instrument.
• Simple data treatment:

• Minimal corrections of the raw data before processing.
• Simple model of peak shape:

• faster calculations in data analysis

Constant wavelength neutron powder diffraction
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• Resolution function determined by 
• pulse width and flight path

• Large Q-range 
• with excellent resolution for long flight path instruments

• Simple to obtain high resolution 
• in the whole Q-range on a single instrument

• by using several detector banks
• Spectro-diffractometers:

• study dynamics together with structural aspects
• Complex data treatment:

• Important corrections of the raw data before processing
• Complex models of peak shape:

•  lengthy calculations in data analysis

Time of Flight neutron powder diffraction
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FPSchool-2011, Basic session, 2011
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Neutrons versus X-rays: advantages and 
drawbacks for Powder Diffraction

• Constant  
scattering  
length

• Contrast
• Low absorption: easy 

sample environment
• Magnetic structures
• High precision in structure 

refinement
• Moderate resolution

• Extremely high 
resolution

• Subtle distortions
• Indexing & structure 

determination
• Anomalous scattering
• Texture effects
• Form factor

Neutrons X-rays

67

Neutrons / X-rays

Contrasts between form factors are different
f0 (RX) proportional to Z, b (neutrons) | random (at least for me)
=>neutrons can see light atoms (ex : H, O …), or discriminate atoms with close =·V

Neutrons : b(sinT/O) = const.,  RX : f0 (sinT/O) decrease
=> neutrons = more signal at higher angles, better « deconvolution » between occupancy and 
displacement
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for each reflection can be measured with reasonable 

are functions of unit cell dimensions

The indexing problem
❖ Single Crystal:

❖ Unit cell and symmetry unambiguous

❖ Each reflection:  correct Miller indices hkl

❖ Diffracted intensity (structure amplitude 
|F|hkl ) accurate

❖ Powder:

❖ nothing of all this known …

❖ Informations in a powder pattern:

❖ Peak positions as function of unit 
cell dimensions

❖ Peak shapes

❖ Integrated intensities
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The Rietveld Method for 
refinement of crystal and 

magnetic structures
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The profile of powder diffraction 
patterns

The model to calculate a powder diffraction pattern is:

Profile function characterized by its  
full width at half maximum (FWHM=H) 
and shape parameters (η, m, ...)

70
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For a valid/safe refinement,  the number of 
refined structural parameters (e. g.  related to 
the integrated intensities of Bragg peaks) is to 
be compared to the number of (independent) 
Bragg peaks in the pattern.  

NOT to the number of 2Ǆ points in the pattern 
(always much larger)

(see ANA in FullProf)
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Contains structural information:  
atom positions, magnetic moments, etc.

Contains micro-structural information:  
instrumental resolution, defects, crystallite 
size, ...
Background: noise, diffuse scattering, ...

The profile of powder diffraction 
patterns
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The Rietveld Method consist of refining a crystal (and/or 
magnetic) structure by minimising the weighted squared 
difference between the observed  and the calculated 
pattern  against the parameter vector:  β

:   variance of the "observation" yi

The Rietveld Method

72

Poisson statistics => σi ≈ √yi ; wi = 1/σi2 => wi = 1/yi (least squares method)
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Least squares: Gauss-Newton
Minimum necessary condition: 

A Taylor expansion of                 around       allows the application 
of an iterative process. The shifts to be applied to the parameters 
at each cycle for improving χ2 are obtained by solving a linear 
system of equations (normal equations)
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Least squares: Gauss-Newton

The new parameters are considered as the starting ones in the 
next cycle and the process is repeated until a convergence 
criterion is satisfied. The variance of the adjusted parameters are 
calculated by the expression:

The shifts of the parameters obtained by solving the normal 
equations are added to the starting parameters giving rise 
to a new set
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Least squares:  
a local optimisation method

• The least squares procedure provides (if it converges) the value 
of the parameters constituting the local minimum closest to the 
starting point 

• A set of good starting values for all parameters is needed 

• If the initial model is bad for some reasons, the LSQ procedure 
will not converge, but may diverge.

75



5 April 2016 T.Hansen - Diffraction - Erice

The structural information 
contained in the integrated 

intensities
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Integrated intensities are proportional to 
the square of the structure factor F.  
The proportionality factors are:  
• Lorentz-polarization (Lp),  
• preferred orientation (O),  
• absorption (A),  
• other “corrections” (C) ... 

The Integrated Intensity

7721

For a valid/safe refinement,  the number of 
refined structural parameters (e. g.  related to 
the integrated intensities of Bragg peaks) is to 
be compared to the number of (independent) 
Bragg peaks in the pattern.  

NOT to the number of 2Ǆ points in the pattern 
(always much larger)

(see ANA in FullProf)
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• Lorentz-polarization (Lp)  
K = polarisation ratio
Neutrons: K=0, laboratory X-rays: K=0.5 ; synchrotron K≈0.1

• preferred orientation (O)  
Empirical March-Dollase function: 
Principal axis must be determined by inspection 
αj: angle between (hkl) and orientation axis  
r: ratio of orientation: 

r <1 platelet type, r >1 needle type orientation 

• absorption (A) 
• other “corrections” (C) ... 

The Integrated Intensity

78

12

Corrections applied to intensities

Absorption :
Bragg-Brentano : usually no absorption correction 
(but there is absorption !!) 

Debye-Scherrer : for µR up to 1

µ = linear absorption coeff. ; R : cylinder radius

Lorentz-Polarization
Bragg-Brentano & Debye-Scherrer

K = polarisation ratio
Neutrons : K = 0, lab. x-rays : K=0.5 ; synchr. K ~ 0.1

For special cases, it is possible to use already corrected data

Prefered orientation / texture
Appears in powders when grain orientations are not random.

Example: piling up platelets in flat sample for Bragg-Brentano geometry.
Be carefull when preparing the sample !!

2... hh FLpSI hO Modifies observed intensities !.

An empirical correction: the March-Dollase function
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(in B-B geometry)
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• Lorentz-polarization (Lp),  
• preferred orientation (O), 
• Absorption (A) 

µ = linear absorption coefficient ; R : cylinder radius

• other “corrections” (C) ... 

The Integrated Intensity
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Corrections applied to intensities

Absorption :
Bragg-Brentano : usually no absorption correction 
(but there is absorption !!) 

Debye-Scherrer : for µR up to 1

µ = linear absorption coeff. ; R : cylinder radius

Lorentz-Polarization
Bragg-Brentano & Debye-Scherrer

K = polarisation ratio
Neutrons : K = 0, lab. x-rays : K=0.5 ; synchr. K ~ 0.1

For special cases, it is possible to use already corrected data
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The Structure Factor contains the 
structural parameters
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Structural Parameters 
(simplest case) 

Atom positions  

up to 3n parameters

Occupation factors  
up to n-1 parameters

Isotropic displacement (temperature) factors  
up to n parameters
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Structural Parameters 
(complex cases) 

As in the simplest case plus additional (or alternative) parameters: 

• Anisotropic temperature (displacement) factors 

• Anharmonic temperature factors 

• Special form-factors (symmetry-adapted spherical harmonics ), 
TLS for rigid molecules, etc. 

• Magnetic moments, coefficients of Fourier components of 
magnetic moments, basis functions, etc.
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The magnetic structure factor:

Magnetic structures

83

The magnetic moments can be expressed as Fourier series
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Cu2+ ordering

Ho3+ ordering Notice the decrease of the 
paramagnetic background 
on Ho3+ ordering

Magnetic ordering of Ho and Cu ions in Ho2BaCuO5 (D1B)
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What can we get from precise 
crystallographic structures?

E.g. with the Bond Valence approach:  
The information contained in data bases 
suggest a strong correlation between 
average metal-oxygen distances and formal 
valence of metal ions
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â  Nature of the octahedral distortions in manganite-perovskites?
Measure of the Jahn-

Teller effect (distortion):
Valence state associated to 

a Mn site : 

Directly related to the average Mn-O 
 distance  <d>=<dMn-O>

Mn4+ (non-JT) ions in CaMnO3, T=RT
⇒ <dMn-O >= 1.90 Å,  Δ = 0,03.10-4

Mn3+(JT) ions in LaMnO3, T=RT< TJT
⇒  <dMn-O >= 2,02 Å 

 
l= 2.18, m=1.97, s=1.91 Å,  Δ = 33,1.10-4

e-o

The importance of  precise structural refinements
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Electronic crystallisation in a Li battery 
material: columnar ordering of electron and 

holes in the spinel LiMn2O4

J. Rodríguez-Carvajal, G. Rousse, Ch. Masquelier and M. Hervieu
 Physical Review Letters, 81, 4660 (1998)

LiTd [Mn2]Oct.O4   : Mn3.5+ 

High temperature: mixed valence state
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VOLUME 81, NUMBER 21 P HY S I CA L REV I EW LE T T ER S 23 NOVEMBER 1998

The high temperature form was carefully studied at
350 K fa ≠ 8.2495s2d Åg to confirm the crystalline qual-
ity and the stoichiometry of the sample. The refined struc-
tural parameters were (i) the oxygen parameter x of the
Wyckoff site 32e (space group Fd3m, origin choice at
inversion center), (ii) the occupation of the oxygen site,
(iii) the isotropic temperature factor of Li, and (iv) the
anisotropic temperature factors of Mn and O. The final
Bragg R factor was 1.2%. The refined value of x was
0.26301(3) and the oxygen occupation refined to the nomi-
nal value within the experimental error. The unique Mn-O
distance is 1.9609(3) Å, which is intermediate between
what is expected for Mn31-O and Mn41-O bond lengths.
A valence bond analysis [23–25] assuming Mn31-O22

gives an effective valence of 3.45 valence units (v.u.). Us-
ing the Mn41-O22 d0 parameter [23], the valence obtained
is 3.39 v.u. The correction of the calculated valence for
using d0 for RT is negligible sDV , 0.02 v.u.d [25].
The neutron powder diffraction patterns at low tempera-

ture showed many small superstructure reflections, which
we recognized immediately to be at the origin of a big unit
cell. The indexing of the pattern using solely the neutron
data was ambiguous and gave several reasonable solutions
due to the strong overlap between neighboring reflections.
The information provided by electron diffraction at dif-
ferent temperatures was of capital importance for find-
ing the Fddd “3a 3 3a 3 a” cell. Similar observations
were recently reported by Oikawa et al. [10] who pro-
pose an average orthorhombic structure fa ≠ 8.2797s2d,
b ≠ 8.2444s3d, c ≠ 8.1981s2d Åg to describe their neu-
tron diffraction pattern, despite evidence of a tripled pe-
riodicity in their electron diffraction photographs.
The sample for electron microscopy was prepared by

crushing the crystals in alcohol. The small flakes in sus-
pension were deposited on a holed carbon film, supported
by a copper grid. The electron diffraction (ED) study ver-
sus temperature was carried out with a JEOL 2010 elec-
tron microscope fitted with a double tilt cooling sample
holder s640±d. The ED patterns were recorded from 92 K
to RT keeping a constant electron current density. At the
lowest temperature we studied the ED patterns of thirty
crystals. All of them can be indexed considering a spinel-
type subcell with a system of extra reflections. A large
majority of the crystallites (26y30) exhibit a common
3a 3 3a 3 a supercell, whereas the others (4y30) are
characterized by a different superstructure that transformed
to the 3a 3 3a 3 a supercell on heating. The reconstruc-
tion of the reciprocal space was carried out, for the major-
ity phase, by tilting around the main crystallographic axes.
The extinction conditions are compatible with the Fddd
space group. The same reciprocal plane ([001] zone axis,
hk0 reflections) is shown for the high temperature phase
[Fig. 1(a)] and for the low temperature phase [Fig. 1(b)].
The structure of the low temperature form was solved

with the help of a program that generates atoms in super-
cells with changes of origin. The final atom positions are
given in Table I. It is worth mentioning that five sites of

FIG. 1. Electron diffraction patterns along [001] of the high
(a) and low (b) temperature phases of stoichiometric LiMn2O4.
Indices are referred to the cubic Fd3m spinel lattice.

Mn ions are found so that the crystal structure does not
support a total charge ordering that needs an even number
of sites for the Mn31yMn41 ≠ 1 ratio. In Fig. 2 parts of
the observed and calculated diffraction patterns are shown
for both phases.
Electronic conductivity measurements [21] gave similar

results to those already published [9], showing an abrupt
increase of resistivity upon cooling to the low temperature
phase. The activation energy of the low temperature form
is slightly higher but similar to that of the high tempera-
ture. This fact was interpreted [8–10] as the consequence
of the appearance of a new insulating “tetragonal phase”
coexisting with a smaller volume fraction of cubic phase.
Our study reveals that only one phase, orthorhombic, ex-
ists at 230 K. The charge carriers are very probably Jahn-
Teller small polarons.
The analysis of the structure obtained from the Rietveld

refinement of our neutron data clearly shows the electron
ordering nature of the phase transition and allows us to
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Refinement of the high-temperature phase
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Refinement of the charge-ordered phase
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FIG. 2. Details of the observed and calculated neutron diffrac-
tion patterns sl ≠ 1.2253 Åd of the high temperature charge-
disordered phase (350 K), and of the low temperature partially
charge-ordered phase (230 K) of LiMn2O4. Additional tick
marks in the low temperature pattern correspond to the super-
structure reflections.

complex superstructure at 92 K may indicate the onset of
such a phase transition. The electronic crystallization ob-
served in this compound must be due to a combination

FIG. 3. Simplified projection of the charge partially ordered
structure. Static holes (Mn41, open circles) wrap columns of
nearly pure Mn31 ions along the c axis. 8

72 ≠ 1
9 of the total

number of holes are mobile within the Mn31 sublattices.

of Coulomb interaction and another mechanism implying
electron-lattice coupling as in the Jahn-Teller effect. The
observed charge-ordering pattern at 230 K cannot be the
ground state of the electronic system in LiMn2O4. If we
consider just screened Coulomb interaction, alternating
Mn31-Mn41 patterns are favored. The study of the
magnetically ordered ground state is under way.
The authors gratefully acknowledge Dr. Mitsuharu

Tabuchi (ONRI, Japan), Professor Ryoji Kanno (Kobe
University), and Y. Matsui (NIRIM, Japan) for fruitful
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The peak shape function of 
powder diffraction patterns

Microstructural effects 
Anisotropic peak 

broadening
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The profile of powder diffraction patterns

The model to calculate a powder diffraction pattern is:

Profile function characterized by its  
full width at half maximum (FWHM=H) 
and shape parameters (η, m, ...)

usual notation in literature
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For a valid/safe refinement,  the number of 
refined structural parameters (e. g.  related to 
the integrated intensities of Bragg peaks) is to 
be compared to the number of (independent) 
Bragg peaks in the pattern.  

NOT to the number of 2Ǆ points in the pattern 
(always much larger)

(see ANA in FullProf)
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The integral breadth of a peak is the width of a rectangle that 
has the same height and the same area as those of the peak

Integral breadth

Always less than 1

FWHM
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The peak shape function of powder diffraction 
patterns contains the Profile Parameters 

(constant wavelength case)

The cell parameters are included, through Th, within 
the profile function. They determine the peak 
positions in the whole diffraction pattern.
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The pseudo-Voigt function

The Voigt function

98

“Many brilliant demonstrations starting from the well established Fourier coefficients description of 
diffraction profile are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the 
original general sense by successive approximations” (A. Le Bail)

9

Voigt

Pseudo-Voigt
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Convolution properties of Gaussian and Lorentzian functions
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Properties of the Voigt function

Lorentzian breadths simply 
have to be summed

Gaussian breadths have to 
be summed quadratically

Correction for 
instrumental broadening 
(‘Double Voigt’, D. Balzar)

“The Voigt function has proven to be a very good experimental  approximation in many cases” (I. Langford)
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General 2θ dependence of the instrumental 
broadening (determined by a standard sample)

The Gaussian and Lorentzian components of the instrumental Voigt 
function are interpolated between empirically determined values. 
If needed, axial divergence is convoluted numerically with the 
resulting profile.
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Some equations and formalisms
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In scattering experiments, the incident particle (neutron, electron, 
photon...) experiences a change in its momentum and energy.  

 (h/2π)Q = (h/2π)(kF-kI) = hs   hν = EF-EI 

In the following we shall be concerned with elastic scattering 
(hν=0) for which |kF| = |kI| = 2π/λ and |Q| = Q = (4π/λ) sinθ,  
θ being half the scattering angle.  

  “crystallographic scattering vector”:     s = Q/2π

kI=2π/λ uI

kF=2π/λ uFQ= kF - kI

2θ

Some equations and formalisms
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In the kinematics theory (first Born approximation), the amplitude of 
the wave scattered by an object is the Fourier transform (FT) of its 
scattering density (SD) ρ(r) measured in cm-2. Any object can be 
considered as constituted by atoms of SD ρaj(r) centred at positions 
Rj; the SD and the corresponding scattered amplitude and intensity 
can be written as: 
 

Scattering expressions for arbitrary objects
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Shape function: g(r) is defined as g(r)=1 for r inside the crystal, 
and g(r)=0 for r outside the crystal ⇒ G(s)=FT{g(r)}.

G2(s)=FT{g(r)⊗g(-r)} is the Fourier transform of the 
auto-correlation function:

rAS(r) is the fraction of the total volume shared in common 

between the object and its "ghost" displaced by the vector r. 

AS(0)=1 and decreases as r increases. G2(s)=V FT{AS(r)}

Scattered Intensity of a Finite Crystal
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Size effects in reciprocal space

G determines the shape of 
the peak profile and it is the 
same for all reciprocal nodes

Peak width increases in 2θ space 
with (cosθ)-1 
Apart from spheres, the width depends 
on the direction in reciprocal space

*

*
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auto-correlation function VAS(r)

r

shape function g(r)
crystallographic scattering vector s=Q/2π
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Defects: average lattice + structure factor depending on unit cell 

Fm = Fm(s) is the structure factor of the cell m.  
pn(Rn,s)=〈Fm F*

m+n〉 is independent of m, but depends on s.  
The number of terms in the inner sum is given by VAS(Rn)/Vc and the 
equation can be transformed to: 

 

Scattered Intensity of a Real Crystal

107

auto-correlation function VAS(r)
crystallographic scattering vector s=Q/2π
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A crystal is said to be “strained” if the structure 
factor of the cell m can be written in the form:

Strained Crystals

If s=H+Δs, the scattered intensity around a Bragg peak is given by:

size   strain

Defining the quantity:
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Strain effects in reciprocal space

The interpretation of the peak shape in 
the case of strains is not so 
straightforward as that of size because 
there are many possible physical origins 
for strain broadening: 

dislocations, interstitials, vacancies, 
compositional fluctuations, etc.  

The important point is that the peak 
shape and width depend on both 

particular reflection and 
direction in reciprocal space.

Peak width increases in 2θ space with  tanθ 

109

Peak width increases in 2θ space with  tanθ 
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Simplified methods for treating the 
intrinsic profile

The method of Warren-Averbach, based in the Fourier series 
representing the intrinsic profile of a powder diffraction peak, has 
drawbacks when overlap is strong. Moreover, not enough statistics 
make this de-convolution method extremely unstable.

Integral breadth methods, combined with an analytical approximation for 
f, g and Ω, are, by far, much more simple and robust: strain and size 
parameters are volume averaged quantities
They separate peak broadening effects due to size and strain, by 
adding peak width terms with distinct Q-dependencies.
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The peak shape function of powder diffraction 
patterns contains the Profile Parameters 

(constant wavelength case)

The cell parameters are included, through Th, within 
the profile function. They determine the peak 
positions in the whole diffraction pattern.
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The pseudo-Voigt function

The Voigt function

112

“Many brilliant demonstrations starting from the well established Fourier coefficients description of 
diffraction profile are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the 
original general sense by successive approximations” (A. Le Bail)
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Convolution properties of 
Gaussian and Lorentzian 

functions
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Properties of the Voigt function

Lorentzian breadths simply 
have to be summed

Gaussian breadths have to 
be summed quadratically

Correction for 
instrumental broadening 
(‘Double Voigt’, D. Balzar)

“The Voigt function has proven to be a very good experimental  approximation in many cases” (I. Langford)
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• h (x) = g (x) ⊗ f (x) 

• Instrument resolution function modeled by the 
parameters (U, V, W, X, Y)g : 
• total profile:Voigt function with (HG, HL)

Profile parametrization
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FPSchool-2011, Basic session, 2011
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(I) Instrument resolution function characterized by a Voigt function
modeled by the parameters (U, V, W, X, Y)g : the total profile is a Voigt 
function wtih (HG, HL) calculated as

This Voigt function characterized by (HG, +L) is internally computed/approximated as a 
pseudo-Voigt function parametrised by (H, K)

Complete parameterization of the profile h(x)
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: Polar angles of reciprocal vector h w.r.t. crystal frame

Spherical harmonics to simulate the average 
shape of crystallites

Arbitrary shapes of crystallites can be 
simulated using spherical harmonics. 
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• h (x) = g (x) ⊗ f (x) 

• Instrument resolution function modelled by the 
parameters (U, V, W, X, Y)g : 
• total profile:Voigt function with (HG, HL)

Profile parameterisation
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FPSchool-2011, Basic session, 2011
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(I) Instrument resolution function characterized by a Voigt function
modeled by the parameters (U, V, W, X, Y)g : the total profile is a Voigt 
function wtih (HG, HL) calculated as

This Voigt function characterized by (HG, +L) is internally computed/approximated as a 
pseudo-Voigt function parametrised by (H, K)
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Simple cases: isotropic broadening 
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General 2θ dependence of the instrumental 
broadening (determined by a standard sample)

The Gaussian and Lorentzian components of the instrumental Voigt 
function are interpolated between empirically determined values. 
If needed, axial divergence is convoluted numerically with the 
resulting profile.
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Instrumental and sample contribution to 
the broadening 

Sample Instrument 

The Gaussian and 
Lorentzian contributions 
of the instrument must be 
determined experimentally 
with a size/strain-free 
sample 

strain

size
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Portion of the neutron diffraction pattern of Pd3MnD0.8 at room temperature obtained on 
3T2 (LLB, λ = 1.22 Å). On top, the comparison with the calculated profile using the 
resolution function of the instrument. Below the fit using IsizeModel = -14. Notice that 
only the reflections with indices of different parity are strongly broadened. An isotropic 
strain, due to the disorder of deuterium atoms, is also included for all kind of reflections.
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Example: Simulated data of anisotropic size 
effects using Spherical Harmonics  
(based in unpublished real data)  

 
The sample was a component of a catalyst, 
mostly constituted by a tetragonal alumina 

polymorph
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Comparison of the experimental pattern with the resolution 
function of the diffractometer 
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Refinement using isotropic Lorentzian and Gaussian parameters: Average 
crystallite size  58.3 Å
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Refinement using anisotropic Lorentzian and isotropic Gaussian 
size parameters: Average crystallite size (anisotropy): 56.31 (7.74) 

Spherical harmonics treatment of 
the Lorentzian size broadening
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c

a

a

b

b

c

35 Å

70 Å

43 Å

Anisotropic crystallite size
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c

b

a

c

Size broadening in Ni(OH)2
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