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Diffraction.. ..

e Diffraction vs. interference

- Diffraction is the interference of waves from many
sources, usually scattering objects

- Focus on Bragg diffraction (diffraction on periodic 3D
lattices)

o Neutron diffraction = elastic neutron scattering

- Introduction to neutron scattering (again ...?)
e Nuclear scattering
« (Magnetic scattering)
- Single crystal Neutron Diffraction
e Structure determination left out
- Neutron Powder Diffraction
e Rietveld method
e Peak shape and microstructure
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Neutron Scattering

Interactions of slow (thermal) neutrons with
condensed matter

* Nuclear scattering

- Magnetic scattering

 Nuclear absorption

Energy and momentum conservation
Diffraction = elastic scattering

Inelastic scattering

Features of the neutron scattering technique
The Master formula
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o Nuclear scattering

FOR SOENCE

e Simple scattering experiment
Neutrons beam : incident wave vector kj, falls on sample

Interaction probability rather small: most neutrons transmitted
Few scattered neutrons measured with detector in direction k;

incident beam

o uniform flux ® (neutrons crossing unit area per unit time)
sample
N identical atoms in the beam

detector
o solid angle AQ and efficiency n

detector (n)

..O.................’

transmitted neutrons

Incident neutrons
sampte
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# Scattering: differential.cross section

o count rate C in the detector

- proportional to all quantities

- constant of proportionality: differential cross section
- do/dQ = C/(PN(AQ)n).
» differential cross section

- function of magnitude and directions of k, and k,

- property of sample ...
e ... and (sometimes) neutron spin state
e types of interaction in condensed matter studies
- nuclear interaction and ...
- ... magnetic dipole interaction
- neglect weaker interactions [C.G. Shull]

detector

\u on>

e
scatteVed =

..O.................'

transmitted neutrons

Incident neutrons
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1 Nuclear scattering: scattering length

FOR SOENCE

» Interaction between slow neutrons and atoms through nuclear force
- wavelength >> range of nuclear force
- atoms in the sample are both non-interacting and identical

» Differential cross section constant:
e do/dQ « b?.

e Scattering length b

- property of nucleus of scattering atom
» atomic number Z and atomic weight A
» spin state relative to that of the neutron
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FOR SOENCE

'.m‘! Nuclear Sc§ttering: scatterir_;g‘length (cont’d)

e Two spin states, (I + 1/2) of neutron-nucleus system

- Quite different scattering lengths possible
» Incoherent scattering (/’ll be back ...)

 In case of polarized nuclei
- measure the configuration of the nuclear spins
- nuclear magnetism is a much weaker phenomenon than electronic magnetism

e Low-lying resonance of neutron-nucleus system
- scattering and absorption cross sections depending on wavelength
- scattering length becomes complex.

o Scattering length in laboratory system smaller by a factor (A/A+1)
- Only, if the nucleus is free to recoil.

- Neutron scattering on condensed-matter:
» Fixed atom more appropriate limiting case
» “bound-atom” values quoted for scattering lengths and cross sections
- http://www.ncnr.nist.gov/resources/n-lengths/
o (A/A+1) to be considered for scattering experiments on gases

Atomic number

Neutrons
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Magnetic scattering

5 April 2016

Neutron’s magnetic moment interacts with unpaired electrons

Paramagnet with electrons localized in specific ions
- Random spin orientations and no external magnetic field
Differential cross section do/dQ = (y ry)? [ f (k;-Kg) 1?2 S(S+1)
o yry=0.54-10"? cm
» Spin quantum number for the ions: S

Magnetic form factor f(Q) = f (k,-k;)
o Fourier transform of the density distribution of the unpaired electrons
e normalized to f(0) =

- Nuclear scattering length constant, considering the nucleus as a point
o Good intensities for higher scattering angles, larger wave vectors Q

- Magnetic neutron scattering like X-ray and electron scattering:
« Form factor decreases with scattering angle, less information for higher Q.

Orbital contribution to the magnetic interaction
rAddltlonal scattering from current associated with a movmg‘é\ctﬁom
e
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m Nuclear absorption.,

FOR SOENCE

- Incident neutron on sample: beside transmission and scattering,

e Absorption as a third possible outcome
- Treated as simple attenuation of incident and scattered beams
« Numerical factor in general expression for differential cross section

- Other things leading to attenuation
 Beam removal from multiple scattering involving the same neutron

- Strong absorption due to resonance capture
» Wavelength-dependent complex scattering length.

V AA

— total scattering cross section / barns — absorption cross section / barns
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% Energy & momentum conservation

FOR SOENCE

Wave vector k suffers change in direction
- momentum exchanged with sample
- corresponding wave vector Q
- law of momentum conservation as
-k, -k, =Q.
e Momentum h/2x-Q taken up by the scattering atom
o Subsequently shared with the rest,
» or, single crystals, the sample as a whole recoils
e Magnitude of k can change as well
- neutron exchanges energy
- law of energy conservation,
- (h/2w)? ky?/2m - (h/2x)? k,2/2m = E,
« E is the energy transferred to the sample
e two terms on the left-hand side: incident and scattered neutron energies

Ko
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M Energy & momentum conservation ...

FOR SOENCE

« Process, in which a neutron is scattered from k; to k,
- associated with a set of values of Q and E

« Intensity of scattering: function of the variables (Q, E)
- Property of the particular sample and its environment
o Temperature, pressure, magnetic field, etc.
- Neutron experiments try to measure this function

e description of its form
- for different materials
- in different environments
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Diffraction.. .

« Sample of individual, non-interacting scattering units of mass M
- Relation between E and Q takes the simple form E = (h/2x)? Q%/2m.
- Two-body collision problem, with E = 2E, m/M (1 - cos 6) + O (m/M)?
« 0 : scattering angle between k; and k;
« E,. incident neutron energy
e m: neutron mass, M: sample mass

e Energy transfer tends to zero as mass M of scattering unit increases

- Solid sample: significant amount of scattering is “elastic”, i.e., E=0

« Sample recoils as rigid unit, scattering unit = whole sample
o kil =1kl

- 2k, sin(6/2) = Q.
e Crystalline materials:

- Strong elastic scattering when Q equal to a reciprocal lattice vector
- Q=2xn (h/a, k/b, l/c) or Q = 2n/d.

e d: spacing of the (h, k, () set of crystal planes (I’ll be back on this ...)
« With k, = 2n/)\,, we derive the common Bragg condition for diffraction:

Ao = 2d sin(6/2)
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Diffraction: Bragg’s.law

o Ag=2dsin(0/2)
- Waves scattered from successive lattice planes interfere
constructively
- Giving an intensity maximum in the diffraction pattern
- Single-crystal sample
« crystal orientation : Q parallel to reciprocal lattice vector
« 2 scanning methods through different lattice plane spacings
- varying 6 at constant A,

- varying A, at constant 0

« Involving either definition or measurement of A,: 2 ways

- Using mosaic single-crystal monochromators/analysers (Bragg
condition)

- Velocity, determining/measuring travel time for a known distance
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#%  Diffraction: Elastic.scattering

FOR SOENCE

e Truly elastic scattering,
Determine the wavelength of both incident and scattered beams
Ensure that |k;| = |k]

Structural measurements in crystalline materials
» Elastic scattering is dominant contribution
Total scattering corresponding to certain A, and 6 measured
- regardless of energy transfer.

o Inelastic (E = 0) contribution either neglected of removed by data
analysis

Non-crystalline samples (glasses or liquids)
« Total scattering usually quantity of interest
» Corrections have to be made for inelastic scattering
o Count rate C in a typical neutron diffraction experiment
- C=®(Ny) (ANg) N b? (AQ) n = 102N
e 1% resolution
e D(AyAy = 10°n/cm?s, Ahy/Ay = 102, b2 = 2:10-cm?, AQ = 104, 1 = 0.5
- 1 count/s: 1022 atoms, 1 g sample
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# Bragg Diffraction for crystal structure

FOR SOENCE

e Crystalline matter:

- Each single atom scatters an incoming wave serving as a
secondary isotropic point source

- Constructive interference in certain directions

- Atoms arranged on many infinite sets of equidistant parallel
lattice planes
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o Bragg’s law: interference

FOR SOENCE

o Lattice planes regarded as semi-transparent mirrors
- Constructive interfe_r;ejjc___ if reflected beams in pha;
- 2d sino = nh \ple
- Total cancellation if not,\
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Y/ /| Bragg diffraction as specular reflection on semi-
A transparent mirrors of lattice planes

2d sin ¢
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The Master Formula
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L The Master Formula.(cont’d)
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Nuclear scattering
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Real time presentatlon
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- Decoupled nuclear parameters
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Coherent and incoherent scattermg
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FI8  Coherent & incoherent scattering functions
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f  Neutron diffraction from,crystals

In which direction does scattering occur?
- Interference and Ewald sphere
e Reciprocal lattice
How strong is the scattering in a given direction?

- Structure factor
e Phase problem
o Debye-Waller factor
e coherent scattering length

How realistic are perfectly imperfect crystals?
- Kinematical and dynamical diffraction theory
- How can we get the intensities right?
o Corrections to be made: Extinction
How to properly measure intensities
- Experimental aspects of single crystal diffraction

5 April 2016 T.Hansen: Diffraction © Institut Max von Laue - Paul Langevin Erice 29



9
LR 4 Structure
O O O O
O i
O O O O
(O~ °
0 o o 0 Base
O
' 4 +
G0,
Base vectors set up the
unit cell of the lattice Lattice
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Miller indices (hkl):

smallest possible integer multiples of reciprocal lattice
Intersections

Here:
(525)
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Miller indices (hkl) not only tell the position of one lattice
plane but of the infinite array of all parallel planes

Lattice planes of higher indices have smaller distances to
each other

cevsvvvele
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& Reciprocal lattice,,

e The 3D reciprocal lattice with the basis
a*, b* and c* is the Fourier transform
of a 3D direct lattice with the basis
vectors a, b, c.

- 2D example: (102) lattice planes and
corresponding reciprocal lattice point 102,
direct lattice grey, reciprocal lattice black.
The reciprocal lattice vector G is - to the
planes (102). NB: a* is - c (and b) and its
permutations

lattice lattice
sheets rods
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Incident radiation
- Wave vector ko |ko|=21/A

e Scattered radiation

e Wavevector transfer
- Q=k-koork=ko+Q
- Scattering angle 260
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Sharp scattering condition

e k a=koa: constructive interference
o With Q = 2m h (h: Miller indices hkl)
- Q =k - ko: F(h)=f 2[exp(21 i h Q)]

\ | Scalar pr'oducP
h
0

o For a given ko and 1D lattice vector a, scattering
occurs only in very specific directions k!
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e Reciprocal space: Diffraction occurs when ko, k and h
are coplanar and Q=21h ends in the Ewald sphere
- |ko|=|k|=2m/A and |h|=1/dhn«k

- The Ewald sphere is in experimental reality rather a shell
with a finite thickness due to the fact that perfect
monochromaticity does not exist

Diffracted beam

0
Ori_gin of the
the centre ,'anewm' ocal

of the sphere
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e Bragg plane

- In reciprocal space, for a
diffraction peak of a crystal
to occur, the tip of a wave
vector has to lie on one of
the Bragg planes, which are
perpendicularly bisecting
the lines from the origin of
the reciprocal space to the
reciprocal lattice points

h
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« Bragg plane

- In reciprocal space, for a
diffraction peak of a crystal
to occur, the tip of a wave
vector has to lie on one of
the Bragg planes, which are
perpendicularly bisecting
the lines from the origin of
the reciprocal space to the
reciprocal lattice points

h
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e Rotating crystal

The rotation axis is
perpendicular to the plane.
The red circles are the orbits
swept out by the reciprocal
lattice vectors. Each
intersection with the Ewald
circle represents a Bragg peak

5 April 2016
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o Debye-Scherrer (powder)

- The Ewald sphere intersects a sphere centred at the origin with
a radius of K for each lattice vector with K < 2k. Bragg peaks will
appear for any wave vector connecting any point on the
intersection circle with the tip of the incident wave vector. For
each lattice vector the scattered rays therefore lie on a so-
called Debye-Scherrer cone.

5 April 2016

T.Hansen: Diffraction © Institut Max von Laue - Paul Langevin Erice

40



f  Bragg’s law and Laue conditions

e The Fourier transform of a 3D array of 0 functions is
the reciprocal lattice Gnu(q) with integer h,k,l (Miller
indices).

e Laue-condition: Interference only occurs when Q=G

- Geometrically equivalent to Bragg condition

Br'aggl nA = Zdhkl sin@ Laue: Q = th|

|IQI=41sin@/A
or

lQI = ZTT/th
2m/d

(1,I)
@ Y

4

Miller indices
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e The structure factor is the Fourier transform of the
scattering density distribution of the unit cell:

- F(G)=1[bj-exp(i-G-Xx;)] or Frk=2[bj-exp[2m-i-(hx+ky+|z)]]

- The scalar product Gx;j is given as hx+hy+hz with the Miller indices hkl
and the fractional atomic coordinates xyz of an atom j in the unit cell
of a crystal structure; it contains the information on the phase angle

o Structure factor in complex plane

- Each scatterer contributes with a different phase. The structure
factor results from adding the individual contributions.

- The result can be real for centroysmmetric arrangements (for each
atom at x there is an equivalent one at -x), phase angles ¢ are either
0° or 180° (structure factor positive or negative)

- For acentric materials the result has an imaginary component

imaginary  centro-symmetric acentric
atom at

XYz,
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- The result can be real for centroysmmetric arrangements

e The Phase problem

- The scattered intensity | is proportional to IEhkllz, i.e. the

e Structure factor in complex plane
- Each scatterer contributes with a different phase. The

structure factor results from adding the individual
contributions.

(for each atom at (xyz) there is an identical one at -(xyz),
phase angles ¢ are either 0° or 180° (structure factor
positive or negative)

For acentric materials the result has an imaginary
component

product of F(G) with its conjugate complex F (G)

Fourier back-transforming 1(G)=F(G)- F*(G) yields the
convolution p(r)-p(-r)=fp(u)-p(r+u)du=g(r)

g(r) is the pair correlation function, the so-called
“Patterson function” for crystals

- To calculate the phase, we need information on the atomic

positions xyz from “Patterson techniques” of by “direct
methods”

43
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e Harmonic oscillator as assumption for atomic displacement
- Frw=X[bj- Tj-exp[2m-i- (hx+ky+z)]]
- One can describe the thermal smearing of atomic positions as a
convolution with the static structure.

- The Debye-Waller factor T(Q) describes the averaged reduction of
intensity with increasing Q.

- It contains the atom-specific parameter B which can be seen as the
surface in A2 of a sphere in which the atom is found most probably

. Alternatively one finds a notation using u which by 8m% smaller as it
can be seen as the length in A of the displacement vector of an atom

; ) 44
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M Coherent and incoherent scattering

- Scattering length bj depends on isotope and spin orientation!
e 1(Q) = (1/V)<I2[b;-exp(iQr;)] |

- Scattered intensity depends on the relative position of atoms:
e 1(Q) = (1/V)<X[bibj-exp(iq(ri-r;j))]>

- |sotopes and spins are statistically distributed and thus
uncorrelated with atomic positions

e 1(Q)=(1/V) Y [<bib;y<exp(iq(ri-r;)))]
= (1/V)b? - % exp(iq(ri-rj))>  leon
+ (1/V) (b £-(b)?)-2 exp(iq(rj-rj))>  linc
éjj}no structure information)

o Dramatic for hydrogen: 1.8 vs. 79.8 barn

- Therefore: deuteration: 5.6 vs. 2.0 barn
« The scattering cross section o is often given in “barn” (10%*cm?)

; ) 4
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M Kinematic vs. dynamic. scattering theory

FOR SOENCE —— el

e Scattering in a perfect lattice

- A diffracted beam can itself act
as incident beam and back-
diffracted into the initial
direction: diffracted intensity
weaker than expected

e Kinematical theory

- In far-from-perfect crystals this
does not happen, intensity is
proportional to sample volume -

- Shortcomings can be cured by a e
so-called extinction correction

e Dynamic theory
- necessary for perfect crystals

: ] ; 4
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Kinematical theory with extinction
correction for imperfect crystals

- Size of mosaic blocks

- Misorientation

e Primary extinction

- Blocks so large that more than one scattering
event occurs within

e Block-size counts

e Secondary extinction

- Blocks shadowed from upstream blocks with
identical orientation

« Angular distribution of blocks counts
o Both effects may well be anisotropic

47
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Single crystal d

=

e« The Bragg peak is a 3D volume in reciprocal space
- One needs to integrate over a Bragg peak

- This can be done by rotating the reciprocal lattice (thus, the
crystal) through the Ewald shell

e W-SCan

- Sensitive to angular variations of lattice planes
(“rocking curve)

Ny
e -20 scan
- Sensitive to distance variations of lattice planes

48
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e How far do | need to scan?
- Finite source size P
- Finite detector aperture
- Wavelength spread

o 2D detectors
- Very large detector aperture
- Integration in 2D by software
- Third direction still needs to be scanned
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Four circle diffractometers

e Solution and refinement of crystal structures

o Four-cycle diffractometer

5 April 2016

Measurement of numerous reciprocal lattice point
intensities

Accurate intensities: Scan over each reflection

well collimated roughly monochromatic incident beagf
Small sample bathed in the beam

Large detector (PSD) integrate neutrons scattered by
the sample

For small mosaic spread of sample, wavelength spread
of incident beam:
e Spot in reciprocal space elongated parallel to Q
- Integrated by performing a 6-26 scan,
- which also performs a parallel scan in reciprocal space
For samples with broad mosaic, the sample angle
should be rocked (w-scan).
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Powder Diffraction

e Neutron (or X-ray) Powder Diffraction, why
bother?

e Some equations and formalisms
e Data Analysis: The Rietveld Method
e Peak shape functions and microstructure

e Examples

V7 (4

NEUTRONS ) : . )
FORSCENCGE 5 April 2016 T.Hansen - Diffraction - Erice
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Short History of Powder
Diffraction

1895 Discovery of X-rays by Rontgen

1912 von Laue demonstrates that X-rays can be diffracted by crystals

1935 Le Galley constructs the first X-ray powder diffractometer

1947 Phillips introduces the first commercial powder diffractometer

1950’s Powder diffraction used primarily to study structural

1960’s imperfections, phase identification, ... largely by metallurgists
and mineralogists._

Cm Hugo Rietveld develops a method for whole pattern analysis
_of neutron powder diffraction data

1977 Cox, Young, Thomas and others first apply Rietveld method

to synchrotron and conventional X-ray data

V7 /4
NEUTRONS ) : . )
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Powder Diffraction

X h[r.lu.]

Real gpace Reciprocal gpace

it Single Crystal
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Powder Diffraction

e
Seop ®oee ee
ooo“"uuoooooou 0000000000000
0000002 %% 00gqy *0000000000000
oooooooooo T
TIIIIIXIL
0000000000000
TIII I

h [r.lu.]

55

T.Hansen - Diffraction - Erice

Reciprocal gpace

Real gpace
Four Single Crystals
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Powder Diffraction

Reciprocal gpace
Two hundred Single Crystals
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Powder Diffraction

image plate [\
detector

Debye-Scherrer | \

cones |

In three dimensions the reciprocal spac
corresponding to billions of crystals is a set of

concentric spherical shells. The intersection of
these shells with the Ewald Sphere gives rise

to powder diffraction as a set of Debye-

¥/ Sherrer cones

NEUTRONS
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Powder Diffraction: Preferred orientation

150

100 |

Intensity

50 ¢

| | *

A |
0_'\_ X (‘l ﬂ : n"\ N EUH\
0 I 2 3 4

h[r.lu.]
Preferred orientation is the main limitation
factor for exploiting the intensities of X-ray
powder diffraction. In order to use powders for
structure determination and refinement one
has to avoid preferred orientation

lll
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Uses of Powder Diffraction:

Applications in Physics, Chemistry, Geology, Industry, ..

Qualitative Analysis Phase Identification
Quantitative Analysis
Lattice Parameter (indexing & refinement)
Phase Fraction Analysis
Structure Determination
Reciprocal Space Methods
Real Space Methods
Structure Refinement
Rietveld Method
Peak Shape Analysis
Crystallite Size Distribution
Microstrain Analysis
Anti-phase domains, stacking faults,...
/(4
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Limitations of Powder Diffraction for
solving crystal structures

J

Single crystal diffraction allows solving crystal structures by using
appropriate mathematical algorithms and accurate peak intensities.

J

The 3D set of reflections obtained from a single crystal experiment is
condensed into 1D in powder diffraction pattern. This leads to both
accidental and exact peak overlap, and complicates the determination
of individual peak intensities.

——> Indexing may be a bottleneck for starting to solve a crystal structure.
Multiphase mixtures complicates the task.

—> Crystal symmetry cannot be obtained directly from powder diffraction
patterns.

> Preferred orientation leads to biased peak intensities.

/(4
NEUTRONS ) . . :
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Scheme of a two axis diffractometer

Detector

Radiation source

Monochromator
with mosaic spread Bt

Parameters determining resolution and intensity

%z%JWcot29+Vcot9+U

Collimators a,;, a,, a; o
=Sty Ad/d

tan®g,,

Mosaicity of monochromator B,, = ..

tane,,
« take-off » angle : 20,, W =a + \
103~1072

/(4 26, 20

NEUTRONS
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What is a powder diffraction pattern?

A powder diffraction pattern can be recorded in numerical
form for a discrete set of scattering angles, times of flight or
energies. We will refer to this scattering variable as : 7.

The experimental powder diffraction pattern is usually given
as three arrays :

{Ti’ yi’Oi i=12,..n

The profile can be modelled using the calculated counts: y .

at the i step by summing the contribution from neighbouring
Bragg reflections plus the background.

I/ {
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Powder diffraction profile:
scattering variable T: 20, TOF, Energy

q

Bragg position T,

it
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Constant wavelength neutron powder diffraction

Ad
e Resolution function determined by d

 optical diffractometer arrangements and collimators,

=%JWcot2€+Vcotﬁ?+U

* coupled to scattering angle and wavelength
e Limited O-range
» depends on selected wavelength
* Hot source (low lambda):
e gain in O-range degraded by lower resolution
e Difficult to obtain high resolution
* in the whole Q-range on a single instrument.
e Simple data treatment:
* Minimal corrections of the raw data before processing.
e Simple model of peak shape:
#8l - iaster calculations in data analysis

NEUTRONS
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Time of Flight neutron powder diffraction \

Ad * (ALY )
e Resolution function determined by [—] = [—] J{T] +(cotd-Af)
TOF

 pulse width and flight path

e Large Q-range
* with excellent resolution for long flight path instruments
e Simple to obtain high resolution
* in the whole O-range on a single instrument
* by using several detector banks
e Spectro-diffractometers:
* study dynamics together with structural aspects
e Complex data treatment:
* Important corrections of the raw data before processing
e Complex models of peak shape:
i - lengthy calculations in data analysis
NEUTRONS
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Neutrons versus X-rays: advantages and
drawbacks for Powder Diffraction

Neutrons X-rays
e Constant ™7 Extremely high
scattering . . ot resolution
os [ V|
length 0 N‘ ™ Subtle distortions
e Contrast ..

e Low absorption: easy
sample environment

e Magnetic structures

e High precision in structure
refinement

e Moderate resolution

Indexing & structure
determination

Anomalous scattering
Texture effects

A
4
y

Form factor {7\

it
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+ Powder:

The indexing problem

+ Single Crystal:
+ Unit cell and symmetry unambiguous
+ Each reflection: correct Miller indices hkl

+ Diffracted intensity (structure amplitude
|Fl,, ) accurate

* nothing of all this known ...
* Informations in a powder pattern:

+ Peak positions as function of unit
cell dimensions

+ Peak shapes

+ Integrated intensities

68



The Rietveld Method for
refinement of crystal and

magnetic structures

it
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The profile of powder diffraction
patterns

V= > LT -T)+b
h

C——

= Profile function characieroizéd iaysitss .
f_ Q)dx =1 gyl width at half maximum (FWHM=H)
and shape parameters (7, m, ...)

Q(x) =g(x)® f(x) =instrumental ® intrinsic profile

m

E NS
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The profile of powder diffraction
patterns

V= > LT -T,)+b,

h
] - 1 [3 Contains structural information:
| " 1 atom positions, magnetic moments, etc.

Q — Q ( X B Contains micro-structural information:
- h; ° P / instrumental resolution, defects, crystallite
size, ...

b _— b (ﬁ ) Background: noise, diffuse scattering, ...
I l B

V7 /4
NEUTRONS _ : . )
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The Rietveld Method

The Rietveld Method consist of refining a crystal (and/or
magnetic) structure by minimising the weighted squared
difference between the observed and the calculated
pattern against the parameter vector: f8

X2 - i W {yi _yci(ﬁ)}z

O 1.2: variance of the "observation" Y,

i’l Poisson statistics => a; = \yi ; wi = 1/62=> w; = 1/yi (least squares method)

NEUTRONS
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Least squares: Gauss-Newton

2
Minimum necessary condition: GL = ()

ap
A Taylor expansion of . () around [3, allows the application
of an iterative process. The shifts to be applied to the parameters
at each cycle for improving y? are obtained by solving a linear
system of equations (normal equations)

Ad, =b

_ 3V, (By) 9. (By)
A= 2" o, o,

ayic(I?)O)
P,
m
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Least squares: Gauss-Newton

The shifts of the parameters obtained by solving the normal
equations are added to the starting parameters giving rise

to a new set
P, = [30 +6|30

The new parameters are considered as the starting ones in the
next cycle and the process is repeated until a convergence
criterion is satisfied. The variance of the adjusted parameters are
calculated by the expression:

6" (B) = (A%

2

% B
- N -P

/(4
NEUTRONS ) : . )
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Least squares:
a local optimisation method

- The least gquareg procedure provides (if it convergeg) the value
of the parameters congtituting the loeal minimum clogest to the
gtarting point

+ A get of good etarting valueg for all parameterg ig needed

+ |f the initial model ig bad for some reagong, the LSQ procedure
will not converge, but may diverge.

V7 [ {
NEUTRONS ) ! . ;
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The structural information
contained in the integrated
intensities

it
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The Integrated Intensity

I, ={LpOACF*}

Integrated intensities are proportional to
the square of the structure factor F.
The proportionality factors are:

e Lorentz-polarization (Lp), =~ ... ~
o preferred orientation (0), - ;@ /%
e absorption (4), - Fa E

e other “corrections” (C)... - —  “———

/[ {
NEUTRON:
FOR

g, 0 2 4 6 8
S
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The Integrated Intensity

I, ={LpOACF*}

 Lorentz-polarization (Lp) ;,_1-K+Kcos'26,,,,cos 26
K = polarisation ratio 2simn” O cos
Neutrons: K=0, laboratory X-rays: K=0.5 ; synchrotron K=0.1

" 1 Jh
* preferred orientation (O)o, -S> cos’ a, 4+ sin’ «
- : h J J
Empirical March-Dollase function: j=1

Principal axis must be determined by inspection
a;: angle between (A7) and orientation axis

r. ratio of orientation:
r <1 platelet type, » >1 needle type orientation

= e absorption (4)
FE . other “corrections” (C) ...
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The Integrated Intensity

I, ={LpOACF*}

e Lorentz-polarization (Lp),
o preferred orientation (O),
e Absorption (4)
T, =exp{—(1.7133-0.0368sin’ 6, )uR +(0.0927+0.375sin’ 6, )(uR)’ |

w = linear absorption coefficient ; R : cylinder radius

e other “corrections” (C) ...

V7 ({
NEUTRONS :
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The Structure Factor contains the
structural parameters

F(h)=20jfj(h) TjZexp %ﬂi[h{S\t}SrJ] }|

h, =(hk,l) =(hk1)S]  (s=1,2,..N;)
r,=(x,0,.2,) (J=12,..n)

sin” 0
]} - exp(_BJ 7\.2 )

it
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Structural Parameters
(simplest case)

. Atom positions
up to 3n parameters

Occupation factors
0 j up to n-1 parameters

Isotropic displacement (temperature) factors
B j up to n parameters

/(4
NEUTRONS ) ) ) )
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Structural Parameters
(complex cases)

As in the simplest case plus additional (or alternative) parameters:
* Anisotropic temperature (displacement) factors

 Anharmonic temperature factors

» Special form-factors (symmetry-adapted spherical harmonics ),
TLS for rigid molecules, etc.

 Magnetic moments, coefficients of Fourier components of
magnetic moments, basis functions, etc.

V7 ({
NEUTRONS
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Magnetic structures

The magnetic moments can be expressed as Fourier series

m, = Zskjexp {—2ﬂ3 ile}
k

The magnetic structure factor:

M(h)=p20jfj (h)Y}ZMjSSlgexp {m[(mk){s

t}s I, —wkjs] }

m

FORSCENCGE 5 April 2016 T.Hansen - Diffraction - Erice
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Magnetic ordering of Ho and Cu ions in Ho,BaCuO, (D1B)

Llo3* ordering Notice the decreage of the
paramagnetic background
on Ho>* ordering

Cu”* ordering

it
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What can we get from precise
erystallographic structures?

4

E.g. with the Bond Valence approach:
The information contained in data bases
suggest a strong correlation between

average metal-oxygen distances and formal
valence of metal ions

m
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The importance of precise structural refinements

2 Nature of the octahedral distortions in manganite-perovskites?

Valence state associated to Measure of the Jahn-
o Ml cife - Teller effect (distortion):

Directly related to the average Mn-O o LZ d; —(d) \72

distance <d>=<d,,, o> N5 )

/\\\‘!55-

Mn4+ (non-JT) ions in CaMnO,, T=RT \‘ly/
= <dy,. o>=1.90 A, A =0,03.104

Mn3+(JT) ions in LaMnO,, T=RT< T ;
= <dy. o>=2,02A

|=2.18, m=1.97, s=1.91 A, A =33,1.10-

V7 [ {
NEUTRONS ) ! . ;
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Electronic crystallisation in a Li battery
material: columnar ordering of electron and
holes in the spinel LiMn,O,

J. Rodriguez-Carvajal, G. Rousse, Ch. Masquelier and M. Hervieu
Physical Review Letters, 81, 4660 (1998)

vvvvvvvvvvvvvvvvvv

? 8 5+ 3 X . —
Y g ; . RT : .
Ligy (Mn,Jp, O :Mn : AT >
] TN 1<
, EEREEE Y Y >
High temperature: mixed valence state : A N 1=
~ P s
£ : :
S 10
2 E
= 10')
ki E
n [
@ 1000} l P ——
= 260 280 300 320 340
F /4 T(K)
NEUTRONS
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LiMn,O, : Electron Diffraction

Orthorhombic Fddd
a = 24.7435(5) A
b = 24.8402(5) A
, | c = 8.1989(1) A
J. Rodriguez-Carvajal et al, PRL, 81, 4660 (1998)
7/ {
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LiMn,O, : Neutron Diffraction, 3T2 (LLB)

350K

AR o
e MM' M' JLM UUJ

a0 5060 80
Charge ordered state 2 theta (°)

Orthorhombic Distortion '
¥/ / Superstructure reflections

NEUTRONS
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Refinement of the high-temperature phase

LiMn204 (33a) DRN HTE Temperature T=350K 3T2

L2 1§ L3 T L) L) . Ls Ll Ll T | T T L) L) | v L)
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Refinement of the charge-ordered phase

LiMn204 (33a) DRN Low Temperature T=230K 3T2

600 T T T L3 Y T T T T T T T T T T T T T T T
1 1 1 1
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LiMn 2O A

: Partial Charge Ordering

o

<Mn-O> = 2,003(2) A
Mn(1) = 3.20+
A =20.6

o

<Mn-O> = 1,903(4) A

Mn(4) = 4.02+
7/

A=46
NEUTRONS
FORSCENCGE 5 April 2016

&

<Mn-O> = 1,996(4) A

Mn(2) = 3.27+
A =194

%b

a

64 « Mn%* »
80 « Mn3* -like»
8 delocalised holes

T.Hansen - Diffraction - Erice

%V%

o

<Mn-O> = 2,020(5) A
Mn(3) = 3.12+
A = 36.6

o

<Mn-O> =1,915(4) A
Mn(5) = 3.90+
M= 61

92



LiMn_O : Partial Charge Ordering
2 4

® Mns3+

O Mn4+
ole Lij+

o
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The peak shape function of
powder diffraction patterns

Microstructural effects
Anisotropic peak

broadening

il
NEUTRONS
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The profile of powder diffraction patterns

The model to calculate a powder diffraction pattern |s

P B — 1 Profile function characterized by its
f_oo (x) = full width at half maximum (FWHM=H)
and shape parameters (, m, ...)

Q(x) = 2(x)® f(x) =instrumental X intrinsic profile

h(x)=g(x)® f(x) usual notation in literature
i
r\FOZRUSTCRIEOPS:’é 5 April 2016 T.Hansen - Diffraction - Erice 95



Integral breadth

The integral breadth of a peak is the width of a rectangle that
has the same height and the same area as those of the peak

f S () dx L |
fhkz (0) S (0)

if f,.,is normalized

L L =S 4w
A B
[ f FWHM
—| FwEM = 5 <1
_,-"" \ Always less than 1
J— R PO :

- . 2 o " 2 . .
’ 467 o0 .3 7.6 .9 5.2 s
20 (%)
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The peak shape function of powder diffraction
patterns contains the Profile Parameters
(constant wavelength case)

Q(Xhia [31)) - Q(Z _Tl'v ﬁP)
f_+: Q(x)dx =1

The cell parameters are included, through 7}, within

the profile function. They determine the peak
positions in the whole diffraction pattern.
7/

NEUTRONS ) . . .
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The Voigt function

V(x) = L(x)® G(x) = f°° L(x —u)G(u)du
Vix)=V(x, H,,H, )=V (x, ﬁL?BG)

-- pure Gauss

The pseudo-Voigt function|

pV(x)=mL'(x)+(1-n)G'(x)
pV(x)=pV(xn,H)
.H)=TCH(H,,H,) < (H,,H,)=TCH '(n,H)

“Many brilliant demonstrations starting from the well established Fourier coefficients deseription of
y !} p

- diffraction profile are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the
| original general senge by successive approximations” (A. Le Bail)

NEUTRONS ) ) i :
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Convolution properties of Gaussian and Lorentzian functions

m

E NS
FORSCENCGE 5 April 2016

L(x,H)®L(x,H,)=L(x,H, + H,)
G(x,H)®G(x,H,) = G(x,[H> + H?)

L(x,H)®G(x,H;,)=V(x,H,,H_)

T.Hansen - Diffraction - Erice



Properties of the Voigt function
V(x) =V (x)®V,(x)

“The Voigt function has proven to be a very good experimental approximation in many cages” (l. Langford)

B o ﬁ + ﬁ __— Lorentzian breadths simply
L 1L 2L have to be summed
2 2
BG - [31G + E’zG
— Gaussian breadths have to
be summed quadratically
ﬁfL ﬁhL BgL Correction for
9) instrumental broadening
.’l ﬁ fG Is WG ﬁ gG (‘Double Voigt’, D. Balzar)

FO CIE\:\,, 5 April 2016 T.Hansen - Diffraction - Erice 100



General 20 dependence of the instrumental
broadening (determined by a standard sample)

Vi
H.; =(U,+(1-¢,)’ Dy (a,)tan’ 0 +—L—+HH2,
cos” 6
Y.+ F. (a
H, = (X, +¢ Dy (0,))tant +[ : f; o) T H g,
COS

The Gaussian and Lorentzian components of the instrumental Voigt
function are interpolated between empirically determined values.

If needed, axial divergence is convoluted numerically with the
resulting profile.
o

NS
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Some equations and formalisms

/(4
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Some equations and formalisms
Q=k; - k, k.=27/) u;

K,=21/A u,

20
Am _/ //\u \\/q.

In scattering experiments, the incident particle (neutron, electron,
photon...) experiences a change in its momentum and energy.

(h2m)Q = (h2m)(k,-k,) = hs hv=EE,

In the following we shall be concerned with elastic scattering
(hv=0) for which |k;| = |k,| = 2n/4 and |Q| = Q = (4n/A) sind),
6 being half the scattering angle.

#8F  crystallographic scattering vector”. s =Q/2xn

NEUTRONS _ : . )
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Scattering expressions for arbitrary objects

In the kinematics theory (first Born approximation), the amplitude of
the wave scattered by an object is the Fourier transform (FT) of its
scattering density (SD) p(r) measured in cm-2. Any object can be
considered as constituted by atoms of SD p,_(r) centred at positions

R; the SD and the corresponding scattered amplitude and intensity

can be written as:|Scattering density: p(r) = 2 p,(r-R)
7

Scattering amplitude: A(s)=FT [p (r)]

A(s) = FT|p(r) |= fp(r)ezm“d3r = fE p,(r-R )™ d’r

A(S) - E e2m’sRJ-Upaj (u)e2m’sud3u=z f}(S)ezniSRj
J

v,

/(4 il
NEUTRONS ' ' . |
FORSCENCGE 5 April 2016 T.Hansen - Diffraction - Erice 104




Scattered Intensity of a Finite Crystal

Shape function: g(r) is defined as g(r)=1 for r inside the crystal,
and g(r)=0 for r outside the crystal = G(s)=FT{g(r)}.

G%(s)=FT{g(r)®g(-r)} is the Fourier transform of the
auto-correlation function:

VA> (r) =fg(u)g(r +u)d’u :

A3(r) is the fraction of the total volume shared in common

between the object and its "ghost" displaced by the vector r.

A%(0)=1 and decreases as r increases. G3(s)=V FT{A5(r)}

I(s) o %F(S)F* (s)E G*(s-H)

/(4
NEUTRONS ) . . :
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Size effects in reciprocal space

crystallographic scattering vector s=Q/2xn
shape function g§r) :
auto-correlation function VA45(r)

‘VAS (r) = [g(wg(r+ u)d?’u‘

r
G*(s) = FT{g(r)®g(-1)} = VFT{4 (r)}

E G’ (s—H) — G (As) = G*(As)

G determines the shape of
the peak profile and it is the
same for all reciprocal nodes

m
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Scattered Intensity of a Real Crystal

crystallographic scattering vector s=Q/2n
auto-correlation function VA5(r)

Defects: average lattice + structure factor depending on unit cell

I(s)= > (Y F,F,,)exp{2nisR,}

F_=F (s)is the structure factor of the cell m.

p, R 8)=F F* _)isindependent of m, but depends on .

The number of terms in the inner sum is given by V45R,)/V_ and the
equation can be transformed to:

1) =7 D AR, (F,F,., )exp{2nisR, }

-NS 4°R,)p,(R,.s)exp{2nisR,}

V7 [ {

NEUTRONS
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Strained Crystals

A crystal is said to be “strained” if the structure
factor of the cell m can be written in the form:

: . 1
F =Fexp{2risu }, (wzthF=F2Fn)

Defining the quantity: 4°(R,,s) = (exp{2nis(u, -u,,,)})

1(s)=NFZEASmn)AD(Rn,s)exp{znisRn}

If s=H+As, the scattered intensity around a Bragg peak is given by:

1,(As) = NFy 3 A°R,) Ag (R, )exp{21i AR, } = Fy f (As)

7 gize strain

V7 ({
NEUTRONS
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Strain effects in reciprocal space

(1,1]
X o 2

The interpretation of the peak shape in

the case of strains is not so
straightforward as that of size because

==there are many possible physical origins

for strain broadening:

>a==» dislocations, interstitials, vacancies,

compositional fluctuations, etc.

The important point is that the peak
~L__ shape and width depend on both
~  particular reflection and
direction in reciprocal space.

/(4
NEUTRONS
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Simplified methods for treating the
intrinsic profile

The method of Warren-Averbach, based in the Fourier series
representing the intrinsic profile of a powder diffraction peak, has
drawbacks when overlap is strong. Moreover, not enough statistics
make this de-convolution method extremely unstable.

A

D cos0
3 (strain) = 4etan0

Integral breadth methods, combined with an analytical approximation for
f, g and Q, are, by far, much more simple and robust: strain and size
parameters are volume averaged quantities
They separate peak broadening effects due to size and strain, by
adding peak width terms with distinct O-dependencies.

ek

FORSCENGE 5 April 2016

3 (size) =
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The peak shape function of powder diffraction
patterns contains the Profile Parameters
(constant wavelength case)

Q(Xhia [31)) - Q(Z _Tl'v ﬁP)
f_+: Q(x)dx =1

The cell parameters are included, through 7}, within

the profile function. They determine the peak
positions in the whole diffraction pattern.
7/
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FORSCENCGE 5 April 2016 T.Hansen - Diffraction - Erice 111



The Voigt function

V(x) = L(x)® G(x) = f°° L(x —u)G(u)du
Vix)=V(x, H,,H, )=V (x, ﬁL?BG)

-- pure Gauss

The pseudo-Voigt function|

pV(x)=mL'(x)+(1-n)G'(x)
pV(x)=pV(xn,H)
.H)=TCH(H,,H,) < (H,,H,)=TCH '(n,H)

“Many brilliant demonstrations starting from the well established Fourier coefficients deseription of
y !} p

- diffraction profile are ending almost invariably into a pseudo-Voigt profile shape, certainly losing a bit of the
| original general senge by successive approximations” (A. Le Bail)

NEUTRONS ) ) } .
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Convolution properties of
Gaussian and Lorentzian

functions
L(x,H)®L(x,H,)=L(x,H, + H,)

G(x, H)®G(x,H,) = G(x,\H> + H?)

L(XDHL)@)G('X:HG) - V(X:HLaHG)

m
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Properties of the Voigt function
V(x) =V (x)®V,(x)

“The Voigt function has proven to be a very good experimental approximation in many cages” (l. Langford)

B o ﬁ + ﬁ __— Lorentzian breadths simply
L 1L 2L have to be summed
2 2
BG - [31G + E’zG
— Gaussian breadths have to
be summed quadratically
ﬁfL ﬁhL BgL Correction for
9) instrumental broadening
.’l ﬁ fG Is WG ﬁ gG (‘Double Voigt’, D. Balzar)
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Profile parametrization

e h(x)=g(x)&f(x)

e Instrument resolution function modeled by the
parameters (U, V, W, X, Y)g :

e total profile:Voigt function with (Hg, HL)

@+U +1-&. )’ D T(aD)). -
M = X 5 By (“D)@Yé;gf (aS)

| J
I [ o
o a0 8o 120 160

NEUTRONS g
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Spherical harmonics to simulate the average
shape of crystallites

Arbitrary shapes of crystallites can be
simulated using spherical harmonics.

1 ‘cosmP,

—= Va cos®, ; =+/-
D, ;p P )\sinmcblf ’

>

(@h ; (I)h ) : Polar angles of reciprocal vector h w.r.t. crystal frame

A ‘cosm®P

Ealmp Im (COS@ ) : ! >

simm®P,

[35=

cosO

V7 (4

r\ umo ) : . )
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Profile parameterisation

e h(x)=g(x)&f(x)

e Instrument resolution function modelled by the
parameters (U, V, W, X, Y)g :

e total profile:Voigt function with (Hg, HL)

@+U +1-&. )’ D T(aD)). -
M = X 5 By (%)@@ (aS)

H>. =U. +U)tan’0+V tan0+W Io
o =( . T f) an” 0 +V tan0+ g+00526’
H, =(X, +X,)tan6 Lt
= + an @ +
V7 /4 " § ! cos

NEUTRONS
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General 20 dependence of the instrumental
broadening (determined by a standard sample)

I
H> =lU.tan’9+—L|+| H?>
e —|Y s o5’ 0 e
H A% tano+—t|dm
= tan @ + +
nh d cos @ st

The Gaussian and Lorentzian components ot the instrumental Voigt
function are interpolated between empirically determined values.

If needed, axial divergence is convoluted numerically with the
resulting profile.

7/
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Portion of the neutron diffraction pattern of Pd;MnD,, ; at room temperature obtained on
3T2 (LLB, A = 1.22 A). On top, the comparison with the calculated profile using the
resolution function of the instrument. Below the fit using IsizeModel = -14. Notice that
only the reflections with indices of different parity are strongly broadened. An isotropic
strain, due to the disorder of deuterium atoms, is also included for all kind of reflections.
A

il
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Example: Simulated data of anisotropic size
effects using Spherical Harmonics
(based in unpublished real data)

The sample was a component of a catalyst,
mostly constituted by a tetragonal alumina
polymorph

it
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Comparison of the experimental pattern with the resolution
function of the diffractometer
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Refinement using isotropic Lorentzian and Gaussian parameters: Average
crystallite size 58.3 A

e =
e e S

il

PP .

N T L S O 0 R

FrTT T T T T T T T T T I T I T I T T I T T T T T T T T I T T I T T I T T T T T I

rrr o by rc bt e r bbbl

PO (N W TN SN TN SN TN TN SN SN SN U A SN SN S SN SN SUN S S N S T S S S S S SN S N S S S S N S S S 1

'.ll 0 20 40 60 80 100 120 140 160 180
28

FORSCENCGE 5 April 2016 T.Hansen - Diffraction - Erice 123




Refinement using anisotropic Lorentzian and isotropic Gaussian
size parameters: Average crys’ralll’re size (anlso’rropy) 56.31 (7.74)

LN (N B B BN B 71 1
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Anisotropic crystallite size

~
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Size broadening in Ni(OH),
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