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Poole, Nature 1992; Wilding, Science 2008; Debenedetti, Nature 2014; Wu Nature Comm 2015.

Tetrahedral structured: H2O, SiO2, BeF2, etc
Compounds: Y2O3-Al2O3, Fe-Co, Ce-Al, etc



Materials share similar anomalous properties 

Liquid-liquid hypothesis 

Challenges remains to detect experimentally 

Poole et. al, Nature (1992) 
Mishima and Stanley, Nature (1998) 

Difficulty:,not!easily!to!tes8fy!
the!loca8on!of!liquid!phases!
in!deep!supercooled!region!
due!to!crystalliza8on!

§  Negatively-sloped melting line

Condensation is a first-order phase transition since it coincides 
with discontinuities in the first-order thermodyanmic derivatives 
of the Gibbs free energy ΔG
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ΔS is related to the latent heat of the transition 
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Clapeyron equation:


For vaporisation, both V and T increases, it follows that the 
slope of the coexistence curve is always positive 
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§  Density anomaly

Density  
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§  Density anomaly

Density  

§  Extrema in melting curve
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<(δS)2>~N kB Cp 

Specific Heat

§  Response function anomaly

§  Density anomaly

Density  

§  Extrema in melting curve



 Understanding water anomalies 

Scenarios and views 
(with or without second critical point) 
§  Liquid-liquid critical point (Stanley) 
§  Two-state model (Anisimov) 
§  Two-order parameter model (Tanaka) 
§  Spinodal reentrant (Angell & Speedy) 
§  Singularity-free (Sastry & Debenedetti)  



Liquid-liquid hypothesis 

Challenges remains to detect experimentally 

Poole et. al, Nature (1992) 
Mishima and Stanley, Nature (1998) 

Difficulty:	not	easily	to	tes+fy	
the	loca+on	of	liquid	phases	
in	deep	supercooled	region	
due	to	crystalliza+on	

Anders	Nilsson’s	&	Thomas	
Loer:ng’s	group	lowering	the	limit	
from	above	and		pushing	the	limit	
up	



 
q  Can we construct a simple model that shows 

stable LLCP and captures water-like anomalies? 
  
 
q  How to understand properties of water in terms 

of isotropic two-scale interactions 
 

q  How confinement and surface chemistry affect 
the anomalous properties and phase behaviors? 



 
q  Can we construct a simple model that shows 

stable LLCP and captures water-like anomalies? 
  
 
q  How to understand properties of water in terms 

of isotropic two-scale interactions 
 

q  How confinement and surface chemistry affect 
the anomalous properties and phase behaviors? 



Ø Accessible liquid-liquid critical point 
(Testify the liquid-liquid phase transition  hypothesis) 

Ø  Water-like anomalies
(Map simulation result to  experimental results)

Characteristics of model 



 What makes water water 



Simulation approach 



no liquid-liquid 
transition 

with	liquid-liquid	transi+on	

Spherically symmetric potentials  

Effective 
potential 

T. Head-Gordon and F. H. Stilinger. 
 J. Chem. Phys. 98, 3313 (1993) 
       U( r )  ~ ln g ( r ) 

Characteristics：
§  Coarse-grained spherical symertrical potential 

§  Two-length scale: hardcore & softcore 

L. Xu et.al. Phys. Rev. E (2006) 

L. Xu et al., Phys. Rev. E 74, (2006)	



Equation of State 
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HDL 
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LDL 

HDL 

Liquid polyamorphism 



Two glass states obtained upon cooling
  Low density liquid  à Low density amorphous (LDA)
  High density liquid à High density amorphous (HDA)

Xu et. al., JCP (2009)

Two glasses upon cooling 



§  Stable liquid-liquid 
critical point (LLCP)

§  Density anomaly
      (TMD and TmD)

§  LDA and HDA 

Phase diagram 

Xu et al., J. Chem. Phys. , 2009;   Xu et. al., J. Chem. Phys. 2011  	



 Changes in  thermal response functions  

Pc=0.24 

§  P<Pc :    No anomalous behaviour!  (Metastability)
§  P>Pc :   Cp show peaks ( Widom line –locus of the Cp

max  )  

TW(P) 

The Widom line terminates at the liquid-liquid critical point

Xu et al., PRE 74 (2006)	



Changes in compressibility 

Pc=0.24 
compressibility 

TW(P)	

§  P<Pc :   No anomalous behaviour  (Metastability) 
§  P>Pc :  Response functions show peaks. The location of the 

peaks decreases approaching to the critical pressure 

Xu et al. PRE 2006	



Changes in structures: orientational order 

Pc=0.24 
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Figure 4.6: Structural changes upon crossing the Widom line along constant pressure

path α for P > Pc [Fig. 4.1]. (a) The translational order parameter t and (b) its

derivative with respect to T . (c) The orientational order parameter Q6 and (d) its

derivative with respect to T . The sudden change in t and Q6 occurs when the system

crosses the positively sloped Widom line.

For P = 0.225, the fitting parameters are B ≈ 0.2, T0 ≈ 0.184, and the fragility

parameter f = T0/B ≈ 0.66 [Fig. 4.7]. Following the reference [60], we estimate

the glass transition temperature Tg = 0.192, defined as the temperature at which

exp(B/(T − T0)) = 10k with k = 16, a typical value for thermally-activated system.

The fragility index m [60], defined as the slope of the Arrhenius plot at Tg, is approxi-

mately 368. This large value of m indicates that the behavior in the LDL phase resem-

Xu et al., PRE 2006	

Orientational order:  



Changes in structures: translational order 

   Upon crossover the Widom line,  structure change is a maximum 

19

2.4 The Quantities Studied

(a) The diffusion coefficient is defined as

D ≡ lim
t→∞

⟨[r⃗j(t′ + t) − r⃗j(t′)]
2⟩t′

6t
, (2.7)

where r⃗j(t) is the displacement of particle j at time t, and ⟨. . .⟩t′ denotes an

average over all particles and over all t′.

(b) The static structure factor for wave vector q⃗ is S(q⃗) = F (q⃗, t = 0), where F (q⃗, t)

is the intermediate scattering function defined as

F (q⃗, t) ≡ ⟨ρ(q⃗, t)ρ(−q⃗, 0)⟩ (2.8)

where ρ(q⃗, t) is the Fourier transform of the density

ρ(q⃗, t) ≡
N
∑

j=1

exp[−iq⃗ · r⃗j(t)]. (2.9)

where j = 1, 2, ...., N , and N is number of particles.

(c) There are two components—α processes and β processes—in the decay of F (q, t) [

see Fig. 2.5]. The slow decay α process gives the long time behavior,

F (q, t) ∼ exp

⎡

⎣−

(

t

τ(q)

)β
⎤

⎦ , (2.10)

for a certain q (the first peak of the static structure factor in our study).

The long time characteristic relaxation time τ is defined as the time when

F (q, t) ≈ 1/e [44].

(d) The translational order parameter [49, 55] is defined as

t ≡
∫ rc

0

|g(r)− 1|dr (2.11)

where r is the radial distance, g(r) is the pair correlation function, and rc = L/2

is the cutoff distance. A change in the translational order parameter indicates a

   Translational order parameter:

Pc=0.24 

Xu et al., PRE 2006	
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Changes in dynamics 

   Upon crossover the Widom line, a kink in D occurs near TW  

TW P

T	

CP
max 

HDL 

LDL 

Xu et al., J. Chem. Phys. , 2009;   Xu et. al., J. Chem. Phys. 2011  	



 
q  Can we construct a simple model that shows 

stable LLCP and captures water-like anomalies? 
  
 
q  How to understand properties of water in terms 

of isotropic two-scale interactions 
 

q  How confinement and surface chemistry affect 
the anomalous properties and phase behaviors? 



Compare computation results with experiment 

Specific heat 

diffusivity	 Self 
Diffusion 

Specific Heat 

Maruyama	et.	al.,AIP	conf.		Proc.	708,	675	(2004)	

Mallamace	et	al,	JCP	124,	161102	(2006)	



Tw	

Detection of second critical point in experiment  

Tw	

Region to detect：high temperature and low pressure 
Criteria: response function maxima 

L. Xu et. al, Proc. Natl. Acad. Sci. 102, 16558-16562 (2005) L. Liu et. at. PRL 95, 117802 (2005) 

Self 
Diffusion 

Specific Heat 



§  There exists a fractional Stokes-Einstein relation，the 
breakdown temperature  Tx～290K 

§  Breakdown of Stokes-Einstein relation Tx～290K > Tw > Tg, not 
directly associated with the  Widom line 

Fractional Stokes-Einstein relation and its breakdown 

Xu et al., Nature Physics 2009	



§  SER breakdown occurs at temperature where the local 
structure of water changes 

§  Near the Widom line temperature, structure change is a 
maximum 

Changes in structure and breakdown of SER (EXP) 



Formation of new high density glasses by compression and 
decompression along constant pressure 

L. Xu et. al, J. Chem. Phys. 134, 064507 (2011)

LDA 

HDA 

 Low density glass to high density glass transition	



HDA	is	stable	at	low	pressure	upon	decompression	

Polyamorphism 

L.	Xu,	S.	V.	Buldyrev,	N.	GiovambaXsta,	C.	A.	Angell,	H.	E.	Stanley,	JCP	(2009)	

Mishima,	L.	D.	Calvert,	and	E.	Whalley,	Nature	(London)	310,	393	
(1984)	

EXP 



Stability of liquid-liquid critical point and polyamorphism 

LLCP unaccessible 

Stable LLCP	

TMD, diffusivity, etc 

Stable LLCP 



Hard	core	
Linear	ramp	

How to understand anomalies with two scales 



Within	anomaly	region,	some	
par+cles	are	on	the	ramp	

Two “competing” length scales 
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Materials with different types of coexistence line 

positively sloped liquid-
liquid phase transition line 	

Cerium 

negatively sloped liquid-
liquid phase transition line 	

Water 

Condensation is a first-order phase transition since it coincides 
with discontinuities in the first-order thermodyanmic derivatives 
of the Gibbs free energy ΔG
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Clapeyron equation: 


For vaporisation, both V and T increases, it follows that the 
slope of the coexistence curve is always positive 
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<0 



二、超临界现象在液体相变点探测中的应用 

Luo et. al., Phys. Rev. Lett. PRL 112, 135791(2014)

χ1 ≡
!∂ϕ1

∂h1

"

h2

; χ2 ≡
!∂ϕ2

∂h2

"

h1

χ12 ≡
!∂ϕ1

∂h2

"

h1

¼
!∂ϕ2

∂h1

"

h2

: (3)

If ψ is the scaled Gibbs free energy, then the scaled volume
and entropy are V̂ ¼ ð∂ψ=∂P̂ÞT and Ŝ ¼ −ð∂ψ=∂T̂ÞP,
respectively. The critical (fluctuation-induced) parts of the
dimensionless response functions, isothermal com-
pressibility K̂T ¼ −ð∂V̂=∂P̂ÞT=V̂, isobaric specific heat
ĈP ¼ T̂ð∂Ŝ=∂T̂ÞP, and isobaric thermal expansion
α̂P ¼ ð∂V̂=∂T̂ÞP=V̂, can be expressed as the scaling sus-
ceptibilities using Eqs. (1), (2), and (3),

K̂T ¼ ðχ1cos2φþ χ12 sin 2φþ χ2sin2φÞ=V̂;

ĈP ¼ T̂ðχ1sin2φ − χ12 sin 2φþ χ2cos2φÞ;

α̂P ¼ ððχ1 − χ2Þ sin 2φ − 2χ12 cos 2φÞ=ð2V̂Þ: (4)

For simplicity we assume here that φ0 ¼ φ.
Linear scaling theory, developedbySchofieldetal. [25,26],

presents the scaling fields and susceptibilities as functions
of “polar” variables r and θ ∈ ½−1; 1&. Near the critical point,
the thermodynamic potential is written as ψ ¼ r2−αpðθÞ,
where pðθÞ is an analytical function of θ, and the fields are

h1 ¼ arβþγθð1 − θ2Þ; h2 ¼ rð1 − b2θ2Þ; (5)

with b2 ¼ ðγ − 2βÞ=γð1 − 2βÞ ≈ 1.36. In coordinates r
and θ, the Widom line corresponds to θ ¼ 0, and the
coexistence line corresponds to θ ¼ '1. According to
Refs. [25,26], the ordering parameter for liquid-gas phase
transitions and magnetic systems can be approximated by
ϕ1 ¼ krβθ, i.e., a linear function of θ. Here, both a and k are

system-dependent fitting parameters. The susceptibilities
can then be written as

χ1 ¼
k
a
r−γc1ðθÞ; χ2 ¼ akr−αc2ðθÞ;

χ12 ¼ krβ−1c12ðθÞ; (6)

where c1ðθÞ, c12ðθÞ, c2ðθÞ are rational functions of θ
[12–15] which do not have singularities in the interval
[−1, 1]. Moreover, c1ðθÞ and c2ðθÞ are even functions of θ,
while c12ðθÞ is an odd function and negative for θ > 0.
Combining Eqs. (1) and Eqs. (5), we find the positions of

the maxima of the response functions as functions of ΔT̂ at
constant ΔP̂. Clearly these positions do not depend on k,
which is a proportionality coefficient of the χi. If φ ≠ 0
and ΔP̂ → 0, the leading term in rðΔP̂Þ becomes r ¼
ΔP̂=½ð1 − b2θ2Þ sinϕ& since β þ γ > 1. Thus, χ1 becomes
the dominant term in the response functions

K̂T ¼ cos2φðΔP̂Þ−γf1ðθ;ΔP̂Þ=V̂c;

ĈP ¼ T̂csin2φðΔP̂Þ−γf2ðθ;ΔP̂Þ;

α̂P ¼ sinφ cosφðΔP̂Þ−γf3ðθ;ΔP̂Þ=V̂c; (7)

where V̂c ≈ T̂c ≈ 1 near the LLCP, and

fiðθ;ΔP̂Þ ¼ ka−1c1ðθÞ½ð1 − b2θ2Þ sinφ&γ

× ½1þ adiðθÞðΔP̂Þβþγ−1 þ oðΔP̂βþγ−1Þ&; (8)

with diðθÞ as odd functions of θ satisfying dið0Þ ¼ 0
and 0 < d01ð0Þ < d03ð0Þ < d02ð0Þ. Since c1ðθÞ is an even
function of θ, the loci of the maxima of all response
functions coincide for ΔP̂ → 0 along the Widom line
(θ ¼ 0), which projects onto a PT plane as a line emanating
from the critical point with a slope tanφ (Fig. 1). The larger
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FIG. 1 (color online). The behavior of the Widom line in systems with different coexistence line slopes according to linear scaling
theory. (a) Positively sloped coexistence line; CP (upper triangle), αP (opened circle), and KT (square) maxima loci converge into the
Widom line close to the LLCP. (b) Negatively sloped coexistence line; similar to the mirror image of (a). (c) Horizontal coexistence line;
symmetric loci of CP, jαPj, and KT maxima above and below Pc, all approach the LLCP horizontally, with the CP maximum line from
T < Tc and the other two from T > Tc. Graphs are constructed from numerical solutions of linear scaling theory, taking φ0 ¼ φ for
simplicity, and with ϕ ¼ 30°, −30°, and 0, respectively. The spinodals are drawn as interpolation between the critical point and the
extrapolated crossing point of the TMD (αP ¼ 0) line and the KT maxima line beyond the coexistence line where the spinodal must be
horizontal. The Widom line is indicated with a thin brown line in (a) and (b), and overlaps with the TMD line in (c).
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and ΔP̂ → 0, the leading term in rðΔP̂Þ becomes r ¼
ΔP̂=½ð1 − b2θ2Þ sinϕ& since β þ γ > 1. Thus, χ1 becomes
the dominant term in the response functions

K̂T ¼ cos2φðΔP̂Þ−γf1ðθ;ΔP̂Þ=V̂c;

ĈP ¼ T̂csin2φðΔP̂Þ−γf2ðθ;ΔP̂Þ;

α̂P ¼ sinφ cosφðΔP̂Þ−γf3ðθ;ΔP̂Þ=V̂c; (7)

where V̂c ≈ T̂c ≈ 1 near the LLCP, and

fiðθ;ΔP̂Þ ¼ ka−1c1ðθÞ½ð1 − b2θ2Þ sinφ&γ

× ½1þ adiðθÞðΔP̂Þβþγ−1 þ oðΔP̂βþγ−1Þ&; (8)

with diðθÞ as odd functions of θ satisfying dið0Þ ¼ 0
and 0 < d01ð0Þ < d03ð0Þ < d02ð0Þ. Since c1ðθÞ is an even
function of θ, the loci of the maxima of all response
functions coincide for ΔP̂ → 0 along the Widom line
(θ ¼ 0), which projects onto a PT plane as a line emanating
from the critical point with a slope tanφ (Fig. 1). The larger
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FIG. 1 (color online). The behavior of the Widom line in systems with different coexistence line slopes according to linear scaling
theory. (a) Positively sloped coexistence line; CP (upper triangle), αP (opened circle), and KT (square) maxima loci converge into the
Widom line close to the LLCP. (b) Negatively sloped coexistence line; similar to the mirror image of (a). (c) Horizontal coexistence line;
symmetric loci of CP, jαPj, and KT maxima above and below Pc, all approach the LLCP horizontally, with the CP maximum line from
T < Tc and the other two from T > Tc. Graphs are constructed from numerical solutions of linear scaling theory, taking φ0 ¼ φ for
simplicity, and with ϕ ¼ 30°, −30°, and 0, respectively. The spinodals are drawn as interpolation between the critical point and the
extrapolated crossing point of the TMD (αP ¼ 0) line and the KT maxima line beyond the coexistence line where the spinodal must be
horizontal. The Widom line is indicated with a thin brown line in (a) and (b), and overlaps with the TMD line in (c).
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Materials with different slope of coexistence line show 
similar supercritical behaviors '

Materials with different types of coexistence line 
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If ψ is the scaled Gibbs free energy, then the scaled volume
and entropy are V̂ ¼ ð∂ψ=∂P̂ÞT and Ŝ ¼ −ð∂ψ=∂T̂ÞP,
respectively. The critical (fluctuation-induced) parts of the
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pressibility K̂T ¼ −ð∂V̂=∂P̂ÞT=V̂, isobaric specific heat
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For simplicity we assume here that φ0 ¼ φ.
Linear scaling theory, developedbySchofieldetal. [25,26],

presents the scaling fields and susceptibilities as functions
of “polar” variables r and θ ∈ ½−1; 1&. Near the critical point,
the thermodynamic potential is written as ψ ¼ r2−αpðθÞ,
where pðθÞ is an analytical function of θ, and the fields are

h1 ¼ arβþγθð1 − θ2Þ; h2 ¼ rð1 − b2θ2Þ; (5)

with b2 ¼ ðγ − 2βÞ=γð1 − 2βÞ ≈ 1.36. In coordinates r
and θ, the Widom line corresponds to θ ¼ 0, and the
coexistence line corresponds to θ ¼ '1. According to
Refs. [25,26], the ordering parameter for liquid-gas phase
transitions and magnetic systems can be approximated by
ϕ1 ¼ krβθ, i.e., a linear function of θ. Here, both a and k are

system-dependent fitting parameters. The susceptibilities
can then be written as
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a
r−γc1ðθÞ; χ2 ¼ akr−αc2ðθÞ;

χ12 ¼ krβ−1c12ðθÞ; (6)

where c1ðθÞ, c12ðθÞ, c2ðθÞ are rational functions of θ
[12–15] which do not have singularities in the interval
[−1, 1]. Moreover, c1ðθÞ and c2ðθÞ are even functions of θ,
while c12ðθÞ is an odd function and negative for θ > 0.
Combining Eqs. (1) and Eqs. (5), we find the positions of

the maxima of the response functions as functions of ΔT̂ at
constant ΔP̂. Clearly these positions do not depend on k,
which is a proportionality coefficient of the χi. If φ ≠ 0
and ΔP̂ → 0, the leading term in rðΔP̂Þ becomes r ¼
ΔP̂=½ð1 − b2θ2Þ sinϕ& since β þ γ > 1. Thus, χ1 becomes
the dominant term in the response functions

K̂T ¼ cos2φðΔP̂Þ−γf1ðθ;ΔP̂Þ=V̂c;
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where V̂c ≈ T̂c ≈ 1 near the LLCP, and

fiðθ;ΔP̂Þ ¼ ka−1c1ðθÞ½ð1 − b2θ2Þ sinφ&γ

× ½1þ adiðθÞðΔP̂Þβþγ−1 þ oðΔP̂βþγ−1Þ&; (8)

with diðθÞ as odd functions of θ satisfying dið0Þ ¼ 0
and 0 < d01ð0Þ < d03ð0Þ < d02ð0Þ. Since c1ðθÞ is an even
function of θ, the loci of the maxima of all response
functions coincide for ΔP̂ → 0 along the Widom line
(θ ¼ 0), which projects onto a PT plane as a line emanating
from the critical point with a slope tanφ (Fig. 1). The larger
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FIG. 1 (color online). The behavior of the Widom line in systems with different coexistence line slopes according to linear scaling
theory. (a) Positively sloped coexistence line; CP (upper triangle), αP (opened circle), and KT (square) maxima loci converge into the
Widom line close to the LLCP. (b) Negatively sloped coexistence line; similar to the mirror image of (a). (c) Horizontal coexistence line;
symmetric loci of CP, jαPj, and KT maxima above and below Pc, all approach the LLCP horizontally, with the CP maximum line from
T < Tc and the other two from T > Tc. Graphs are constructed from numerical solutions of linear scaling theory, taking φ0 ¼ φ for
simplicity, and with ϕ ¼ 30°, −30°, and 0, respectively. The spinodals are drawn as interpolation between the critical point and the
extrapolated crossing point of the TMD (αP ¼ 0) line and the KT maxima line beyond the coexistence line where the spinodal must be
horizontal. The Widom line is indicated with a thin brown line in (a) and (b), and overlaps with the TMD line in (c).
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If ψ is the scaled Gibbs free energy, then the scaled volume
and entropy are V̂ ¼ ð∂ψ=∂P̂ÞT and Ŝ ¼ −ð∂ψ=∂T̂ÞP,
respectively. The critical (fluctuation-induced) parts of the
dimensionless response functions, isothermal com-
pressibility K̂T ¼ −ð∂V̂=∂P̂ÞT=V̂, isobaric specific heat
ĈP ¼ T̂ð∂Ŝ=∂T̂ÞP, and isobaric thermal expansion
α̂P ¼ ð∂V̂=∂T̂ÞP=V̂, can be expressed as the scaling sus-
ceptibilities using Eqs. (1), (2), and (3),

K̂T ¼ ðχ1cos2φþ χ12 sin 2φþ χ2sin2φÞ=V̂;

ĈP ¼ T̂ðχ1sin2φ − χ12 sin 2φþ χ2cos2φÞ;

α̂P ¼ ððχ1 − χ2Þ sin 2φ − 2χ12 cos 2φÞ=ð2V̂Þ: (4)

For simplicity we assume here that φ0 ¼ φ.
Linear scaling theory, developedbySchofieldetal. [25,26],

presents the scaling fields and susceptibilities as functions
of “polar” variables r and θ ∈ ½−1; 1&. Near the critical point,
the thermodynamic potential is written as ψ ¼ r2−αpðθÞ,
where pðθÞ is an analytical function of θ, and the fields are

h1 ¼ arβþγθð1 − θ2Þ; h2 ¼ rð1 − b2θ2Þ; (5)

with b2 ¼ ðγ − 2βÞ=γð1 − 2βÞ ≈ 1.36. In coordinates r
and θ, the Widom line corresponds to θ ¼ 0, and the
coexistence line corresponds to θ ¼ '1. According to
Refs. [25,26], the ordering parameter for liquid-gas phase
transitions and magnetic systems can be approximated by
ϕ1 ¼ krβθ, i.e., a linear function of θ. Here, both a and k are

system-dependent fitting parameters. The susceptibilities
can then be written as

χ1 ¼
k
a
r−γc1ðθÞ; χ2 ¼ akr−αc2ðθÞ;

χ12 ¼ krβ−1c12ðθÞ; (6)

where c1ðθÞ, c12ðθÞ, c2ðθÞ are rational functions of θ
[12–15] which do not have singularities in the interval
[−1, 1]. Moreover, c1ðθÞ and c2ðθÞ are even functions of θ,
while c12ðθÞ is an odd function and negative for θ > 0.
Combining Eqs. (1) and Eqs. (5), we find the positions of

the maxima of the response functions as functions of ΔT̂ at
constant ΔP̂. Clearly these positions do not depend on k,
which is a proportionality coefficient of the χi. If φ ≠ 0
and ΔP̂ → 0, the leading term in rðΔP̂Þ becomes r ¼
ΔP̂=½ð1 − b2θ2Þ sinϕ& since β þ γ > 1. Thus, χ1 becomes
the dominant term in the response functions

K̂T ¼ cos2φðΔP̂Þ−γf1ðθ;ΔP̂Þ=V̂c;

ĈP ¼ T̂csin2φðΔP̂Þ−γf2ðθ;ΔP̂Þ;

α̂P ¼ sinφ cosφðΔP̂Þ−γf3ðθ;ΔP̂Þ=V̂c; (7)

where V̂c ≈ T̂c ≈ 1 near the LLCP, and

fiðθ;ΔP̂Þ ¼ ka−1c1ðθÞ½ð1 − b2θ2Þ sinφ&γ

× ½1þ adiðθÞðΔP̂Þβþγ−1 þ oðΔP̂βþγ−1Þ&; (8)

with diðθÞ as odd functions of θ satisfying dið0Þ ¼ 0
and 0 < d01ð0Þ < d03ð0Þ < d02ð0Þ. Since c1ðθÞ is an even
function of θ, the loci of the maxima of all response
functions coincide for ΔP̂ → 0 along the Widom line
(θ ¼ 0), which projects onto a PT plane as a line emanating
from the critical point with a slope tanφ (Fig. 1). The larger
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FIG. 1 (color online). The behavior of the Widom line in systems with different coexistence line slopes according to linear scaling
theory. (a) Positively sloped coexistence line; CP (upper triangle), αP (opened circle), and KT (square) maxima loci converge into the
Widom line close to the LLCP. (b) Negatively sloped coexistence line; similar to the mirror image of (a). (c) Horizontal coexistence line;
symmetric loci of CP, jαPj, and KT maxima above and below Pc, all approach the LLCP horizontally, with the CP maximum line from
T < Tc and the other two from T > Tc. Graphs are constructed from numerical solutions of linear scaling theory, taking φ0 ¼ φ for
simplicity, and with ϕ ¼ 30°, −30°, and 0, respectively. The spinodals are drawn as interpolation between the critical point and the
extrapolated crossing point of the TMD (αP ¼ 0) line and the KT maxima line beyond the coexistence line where the spinodal must be
horizontal. The Widom line is indicated with a thin brown line in (a) and (b), and overlaps with the TMD line in (c).
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Materials with different slope of coexistence line show 
similar supercritical behaviors '

Materials with different types of coexistence line 

Negative slope

Critical point Critical
point

Tracing critical point from supercritical region along 
the Widom can be a rather general approach 

Liquid-gas transition Liquid-liquid transition

Supercritical phenomenon in different transitions 



Conclusion I & II 

     
 
 

 
§  The two-scale model can reproduce water-like anomalies 
 
§  Thermodynamic and dynamic quantities shows changes 
     upon crossing the Widom line, not upon crossing the  
     coexistence line 
 
§  Provide a way for experiments to locate the possible  
      existence of liquid-liquid critical point  
 
§  Maybe not hydrogen bond, not tetrahedral local structure,   
    but the two-scale matters for some of water-like 

anomalies? 



 
q  Can we construct a simple model that shows 

stable LLCP and captures water-like anomalies? 
  
 
q  How to understand properties of water in terms 

of isotropic two-scale interactions 
 

q  How confinement and surface chemistry affect 
the anomalous properties and phase behaviors? 



Bulk and confined water 

Tw	

Result for confined system 
directly map to bulk system 

Question:   
Is the phase diagram for confined system  good to 
represent the phase diagram of bulk water?



Bulk	liquid:		temperature	T	,	pressure	P	

Confined	liquid:			

u 			Infinite	plates:	T,	P,	D	

u 			Finite	plates:	T,	P,	D,	R		

u 		Confined	effect	and	surface	interaction	effect	

	

	

D	

D	

R	

Difference between bulk and confined system  



Surface chemistry:  hydrophobic or hydrophilic 

				The	surface	is	hydrophobic	for	interaction	
stlength	ε<0.2,		and	hydrophilic	for		ε>0.2	
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Effect of confinement on density anomaly 

Hydrophobic	surface：		phase	diagram	shifts	to	low-temperature	

Hydrophilic	surface：				phase	behavior	is	not	significantly	affected	

G. Sun, N. Giovambattista，L. Xu, J. Chem. Phys. (2015) 
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FIG. 5. TMD line for the FJ liquid confined by walls with surface-liquid interactions (a) ϵ = 0.1,

(b) ϵ = 0.2, and (c) ϵ = 0.8. For the hydrophobic surfaces (ϵ = 0.1), reducing the wall separation

d0 shifts the TMD line to low temperatures. As the surface solvophilicity increases (ϵ = 0.2 and

ϵ = 0.8), the TMD becomes barely affected by the degree of confinement.
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FIG. 5. TMD line for the FJ liquid confined by walls with surface-liquid interactions (a) ϵ = 0.1,

(b) ϵ = 0.2, and (c) ϵ = 0.8. For the hydrophobic surfaces (ϵ = 0.1), reducing the wall separation

d0 shifts the TMD line to low temperatures. As the surface solvophilicity increases (ϵ = 0.2 and

ϵ = 0.8), the TMD becomes barely affected by the degree of confinement.
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FIG. 1. Isotherms for the confined FJ liquid confined by surfaces with interaction strength ϵ = 0.8

and for different wall separations d0. LLPT are found only at d0 > 8, at which the P (V ) isochores

exhibit negative slopes. The critical point location in teh P−T plane is defined by the T−P values

at which the slow in P (V ) is zero. The critical pressure increases, and the critical temperature

decreases, as the wall separation is reduced .
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Equation of state for hydrophilic confinement 
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FIG. 2. Compressibility as function of pressure for the FJ liquid confined by surfaces with in-

teraction strength ϵ = 0.8. Wall separations are (a) d0 = 8, (b) d0 = 10, (c) d0 = 15, and (d)

d0 = 20.
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FIG. 2. LLCP and maximum compressibility line (κMAX(T, P )) for the FJ liquid confined by

surfaces characterized by contact angles (a) θ(ϵ) = 150◦ (hydrophobic; ϵ = 0.1), (b) θ(ϵ) = 90◦

(ϵ = 0.2), and (c) θ(ϵ) ≈ 0◦ (hydrophilic; ϵ = 0.8). Results for different wall separations d0

are included. A LLCP is found for d0 ≤ 10 and for all surfaces, independently of the surface

hydrophobicity/hydrophilicity. In all cases, the κMAX-line ends at the LLCP. For in this case

ϵ = 0.2, d0 = 10, we cannot determine error bars for the LLCP since the system crystalliazes

rapidly for T < 0.14.
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Confinement	effect:	

§  second	critical	point	shifts	to	high	pressure	when	strongly	confined	

§  phase	behavior	approaches	to	that	of	bulk	liquid	at	larger	separation		

Confinement effect on liquid-liquid critical point 

D	

G. Sun, N. Giovambattista，L. Xu, J. Chem. Phys. (2015) 



Hydrophobic：Critcal point move to lower temperatures 

Hydrophilic： 

§ Severe confinement，Tc lower than that of bulk 

§  Under not severe confinement, Tc is not much affected 
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FIG. 3. Effects of surface chemistry on the LLCP (a) temperature TC and (b) pressure PC . For

a given wall separation d0, the LLCP shifts to higher pressures and temperatures as the surface

solvophilicity, quantified by the liquid-wall interaction strength ϵ, increases. For d0 > 20, TC and

PC converge to the LLCP temperature and pressure of the the bulk FJ liquid, TC,bulk and PC,bulk.
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FIG. 3. E↵ects of surface chemistry on the LLCP (a) temperature TC and
(b) pressure PC. For a given wall separation d0, the LLCP shifts to higher
pressures and temperatures as the surface solvophilicity, quantified by the
liquid-surface interaction strength ✏, increases. For d0 > 20, TC and PC

converge to the LLCP temperature and pressure of the bulk FJ liquid, TC,bulk

and PC,bulk

.

T(P) = �V

�1(@V/@P)A,d0,T
, reaches a maximum at a given

temperature (see Fig. 5). If the liquid indeed exhibits a LLCP,
the isothermal compressibility should increase as the LLCP
is approached and diverge at the LLCP.43,44 Figs. 5(a)-5(d)
show that this is indeed the case for the surfaces characterized
by ✏ = 0.2 (similar results hold for other values of ✏). That

FIG. 4. Isotherms in the P-V plane for the FJ liquid confined between neutral
surfaces (✏ = 0.2) and for di↵erent separations d0. A LLPT occurs only for
d0 > 8 where the slope of P(V ), the pressure of the liquid parallel to the
surfaces, is positive. The location of the LLCP is given by the conditions
@P/@v = 0 and @2P/@2v = 0.

  

  

FIG. 5. Isothermal compressibility T as function of pressure for the FJ
liquid confined between neutral surfaces (✏ = 0.2) and for confining-surface
separations. (a) d0= 8, (b) d0= 10, (c) d0= 15, and (d) d0= 20. For a given
d0, the compressibility increases as the LLCP is approached. The maxima of
T at di↵erent temperatures and pressures define the compressibility maxima
line shown in Fig. 2(b).

is, for all separations, the peak in T(P) becomes sharper
as the temperature decreases and the LLCP is approached.
Thermodynamics requires that the CM line ends at the
LLCP44 and this is fully consistent with Figs. 2(a)-2(c).
In particular, the CM line moves to lower temperatures and
higher pressures as d0 decreases, independently of the surface
solvophobicity/solvophilicity, as is the case of the LLCP
location. We also include T(P) for d0 = 8 in Fig. 5(a).
Interestingly, even when the LLCP is inaccessible at this
wall separation, one can still observe that the peak in T(P)
increases upon cooling, indicating that the location of the
LLCP in the P � T plane has moved below the crystallization
temperature.

It has been shown that the TMD line of water confined
by either hydrophobic or hydrophilic surfaces shifts to
low temperatures compared to bulk water.36,56,58–62 This
observation, together with the absence of the LLCP, has been
used to support the view that hydrophobic and hydrophilic
confinements shift the LLCP to low temperatures.54,56,59,63 In
agreement with these works, our simulations show that for
severe confinement, i.e., d0 = 8a, the TMD line shifts to lower
temperatures [Figs. 6(a)–6(c)]. For such severe confinements,
the changes in the TMD line are indeed indicative of the e↵ect
that confinement and surface chemistry have on the LLCP and
LLPT. However, the TMD line shifts monotonically to lower
temperatures, as d0 decreases, only for solvophobic [✏ = 0.1;
Fig. 6(a)] and neutral [✏ = 0.2; Fig. 6(b)] surfaces. In the case
of solvophilic surfaces [✏ = 0.8; Fig. 6(c)], as d0 decreases, the
TMD line is first (d0 > 10) shifted toward higher temperatures
and then (d0 < 10) to lower temperatures. Thus, in the case
of the FJ liquids, we find that, for all surface chemistry
considered, reducing d0 shifts the TMD line monotonically to
higher pressures compared to those of bulk liquids. We also
point out that, for a fixed surface separation d0, as the surface
becomes more solvophilic (e.g., ✏ varies from 0.1 to 0.8), the
TMD line shifts monotonically to higher temperatures, with
only a weak shift in pressure; see Fig. 7.
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Summary  
	
ü 	Phase	behaviors	depends	on	confinement	and	chemistry	of	surface	

Tw	

For system with more than 
10 layers of liquids, the 
mapping between bulk and 
confined system is reliable  

ü Hydrophilic	confinement	effect:	 
u  No significant effect on the phase diagram for systems with more than 10 
layers of water molecules 

u  Drastically changes the phase behavior for severe confined systems 
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