

Understand water-like anomalies with two-scale isotropic interactions

Limei Xu Peking University, China

International School of Neutron Science and Instrumentation 3rd Course: Water and the water systems

Erice-Sicily, July 2016

_	PERIODIC TABLE OF THE ELEMENTS																
1			•		-		-		•••								1
н		All california constation production															He
0079		Antikelinesterikov svedele															4.0026
3	4				UGe	ansitio	5	0		8	9	10					
Li	Be				Ac	tinide	B	С	N	0	F	Ne					
6.941	9.012				Ot	her me	10.811	2.011	14.007	16.00	19.00	20.179					
11	12				NO	nmeta	13	14	15	16 •	17	18					
Na	Mg	Noble gases											Si	Р	S	CI	Ar
22.99	24.30	Lanthanide series											28.00	30.974	32.06	35.453	30.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Se	Ti	v	Cr	Mn	Fe	Ca	Ni	Cu	Zn	Ga	Ge	Ac	Se	Re	Kr
R	Ca	SC	11		CI.	CL 030	re	000	141	Cu	66.30	0.73	00	74.07	70.04	20.00	03.00
39.10	40.08	44.96	47.90	50.94	32.00	43	33.85	38.93	38.09	63.33	48	49	50	51	18.90	53	54
3/	30	39	-10		44						40	-	0		-	-	~
Rb	Sr	Y	Zr	ND	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	SD	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	18.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr	Ra	†Ac	Unq	Unp	Unh	Uns	Uno	Une									
(223)	226.02	227.03	(261)	(262)	(263)	(262)	(265)	(266)									
									-								

	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
*Lanthanide Series:	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
	140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
	90	91	92	93	94	95	96	97	98	99	100 -	101	102	103	
†Actinide Series:	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

_	PERIODIC TABLE OF THE ELEMENTS															2	
÷		Alkali motals															
н		Alkeline gerth motels															He
0079																	4.0026
3	4																10
Li	Be				AC	unide	B	С	N	0	F	Ne					
6.941	9.012				OI	ner me	10.811	2.011	14.007	16.00	19.00	20.179					
11	12				NO	13	14	15	16 •	17	18						
Na	Mg				No	ble ga	ses	-				Al	Si	Р	S	CI	Ar
22.99	24.30				La	nthani		26.98	28.09	30.974	32.06	35.453	39,948				
19	20	21 22 23 24 25 26 27 28 29 30											32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.938	55.85	58.93	58.69	63.55	65.39	60.73	72.59	74.92	78.96	79.90	83.80
37	38 '	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	T	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	18.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La Hf Ta W Re Os Ir Pt Au Hg								TI	Pb	Bi	Po	At	Rn		
132.91	137.33	138.91	178.49	180.95	183,85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr	Ra	TAc	Unq	Unp	Unh	Uns	Uno	Une									
(223)	226.02	227.03	(261)	(262)	(263)	(262)	(265)	(266)									
Should be seen as																	
	58 59 60 61 62 63 64 65 66											67	68	69	70	71	1
*Lanthanida Series:			Ce	Pr	Nd	Pm	Sm	En	Gđ	Th	Dv	Ho	Er	Tm	Yb	Lu	
*Lanthanide Series:				140.91	144.24	(145)	150.4	151.07	157.25	158.97	162.50	164.93	167.26	168.91	173.04	174 97	1.1
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
+ 4 -	dinida S	ariar:	Th	Pa	II	Nn	Pn	Am	Cm	Rk	CF	Fe	Em	Md	No	Lr	

(244) (243) (247) (247)

(252) (257)

(251)

(259)

(260)

(258)

Tetrahedral structured: H2O, SiO2, BeF2, etc Compounds: Y2O3-Al2O3, Fe-Co, Ce-Al, etc

232.04 231.04 238.03 237.05

Poole, Nature 1992; Wilding, Science 2008; Debenedetti, Nature 2014; Wu Nature Comm 2015.

Negatively-sloped melting line

 $\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S}{\Delta V} = \frac{L}{T\Delta V}$

Poole et. al, Nature (1992) Mishima and Stanley, Nature (1998)

- Negatively-sloped melting line
- Density anomaly

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S}{\Delta V} = \frac{L}{T\Delta V}$$

Poole et. al, Nature (1992) Mishima and Stanley, Nature (1998)

- Negatively-sloped melting line
- Density anomaly
- Extrema in melting curve

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S}{\Delta V} = \frac{L}{T\Delta V}$$

Poole et. al, Nature (1992) Mishima and Stanley, Nature (1998)

- Negatively-sloped melting line
- Density anomaly
- Extrema in melting curve
- Response function anomaly

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S}{\Delta V} = \frac{L}{T\Delta V}$$

Poole et. al, Nature (1992) Mishima and Stanley, Nature (1998)

Understanding water anomalies

Scenarios and views (with or without second critical point)

- Liquid-liquid critical point (Stanley)
- Two-state model (Anisimov)
- Two-order parameter model (Tanaka)
- Spinodal reentrant (Angell & Speedy)
- Singularity-free (Sastry & Debenedetti)

Challenges remains to detect experimentally

Liquid-liquid hypothesis

Poole et. al, Nature (1992) Mishima and Stanley, Nature (1998) **Difficulty:** not easily to testify the location of liquid phases in deep supercooled region due to crystallization

Anders Nilsson's & Thomas Loerting's group lowering the limit from above and pushing the limit up Can we construct a simple model that shows stable LLCP and captures water-like anomalies?

How to understand properties of water in terms of isotropic two-scale interactions

How confinement and surface chemistry affect the anomalous properties and phase behaviors? Can we construct a simple model that shows stable LLCP and captures water-like anomalies?

How to understand properties of water in terms of isotropic two-scale interactions

How confinement and surface chemistry affect the anomalous properties and phase behaviors?

Accessible liquid-liquid critical point (Testify the liquid-liquid phase transition hypothesis)

Water-like anomalies (Map simulation result to experimental results)

What makes water water

Simulation approach

Spherically symmetric potentials

T. Head-Gordon and F. H. Stilinger. J. Chem. Phys. 98, 3313 (1993) U(r) ~ ln g (r)

Characteristics:

- Coarse-grained spherical symertrical potential
- Two-length scale: hardcore & softcore

with liquid-liquid transition

 $G(P, T) \equiv \min_{V} \left\{ U + PV - TS \right\}$

L. Xu et al., Phys. Rev. E 74, (2006)

Equation of State

Liquid polyamorphism

Two glasses upon cooling

Two glass states obtained upon cooling

Low density liquid \rightarrow Low density amorphous (LDA) High density liquid \rightarrow High density amorphous (HDA)

Xu et. al., JCP (2009)

Phase diagram

Xu et al., J. Chem. Phys., 2009; Xu et. al., J. Chem. Phys. 2011

Changes in thermal response functions

P<P_c: No anomalous behaviour! (Metastability)
P>P_c: Cp show peaks (Widom line –locus of the C_p^{max})
The Widom line terminates at the liquid-liquid critical point

Xu et al., PRE 74 (2006)

Changes in compressibility

• $P < P_c$: No anomalous behaviour (Metastability)

P>P_c: Response functions show peaks. The location of the peaks decreases approaching to the critical pressure

Xu et al. PRE 2006

Changes in structures: orientational order

Orientational order:

$$Q_{l} = \left[\frac{4\pi}{2l+1} \sum_{m=-l}^{m=l} |Y_{l,m}(\theta,\varphi)|^{2}\right]^{1/2}$$

Xu et al., PRE 2006

Changes in structures: translational order

Translational order parameter:

$$t \equiv \int_0^{r_c} |g(r) - 1| dr$$

Upon crossover the Widom line, structure change is a maximum Xu et al., PRE 2006

Changes in dynamics

Upon crossover the Widom line, a kink in D occurs near T_W

Xu et al., J. Chem. Phys., 2009; Xu et. al., J. Chem. Phys. 2011

Can we construct a simple model that shows stable LLCP and captures water-like anomalies?

How to understand properties of water in terms of isotropic two-scale interactions

□ How confinement and surface chemistry affect the anomalous properties and phase behaviors?

Compare computation results with experiment

Detection of second critical point in experiment

L. Xu et. al, Proc. Natl. Acad. Sci. 102, 16558-16562 (2005) L. Liu et. at. PRL 95, 117802 (2005)

- There exists a fractional Stokes-Einstein relation, the breakdown temperature $Tx \sim 290K$
- Breakdown of Stokes-Einstein relation Tx~290K > Tw > Tg, not directly associated with the Widom line

Xu et al., Nature Physics 2009

- SER breakdown occurs at temperature where the local structure of water changes
- Near the Widom line temperature, structure change is a maximum

Low density glass to high density glass transition

Formation of new high density glasses by compression and decompression along constant pressure

L. Xu et. al, J. Chem. Phys. 134, 064507 (2011)

Polyamorphism

(1984)

HDA is stable at low pressure upon decompression

L. Xu, S. V. Buldyrev, N. Giovambattista, C. A. Angell, H. E. Stanley, JCP (2009)

Stability of liquid-liquid critical point and polyamorphism

How to understand anomalies with two scales

Two "competing" length scales

Within anomaly region, some particles are on the ramp

Materials with different types of coexistence line

positively sloped liquidliquid phase transition line

negatively sloped liquidliquid phase transition line

Supercritical phenomenon in different transitions

Tracing critical point from supercritical region along the Widom can be a rather general approach

Luo et. al., Phys. Rev. Lett. PRL 112, 135791(2014)

- The two-scale model can reproduce water-like anomalies
- Thermodynamic and dynamic quantities shows changes upon crossing the Widom line, not upon crossing the coexistence line
- Provide a way for experiments to locate the possible existence of liquid-liquid critical point
- Maybe not hydrogen bond, not tetrahedral local structure, but the two-scale matters for some of water-like anomalies?

Can we construct a simple model that shows stable LLCP and captures water-like anomalies?

How to understand properties of water in terms of isotropic two-scale interactions

How confinement and surface chemistry affect the anomalous properties and phase behaviors?

Bulk and confined water

Question:

Is the phase diagram for confined system good to represent the phase diagram of bulk water?

Bulk liquid: temperature T, pressure P

Confined liquid:

Finite plates: T, P, D, R

Confined effect and surface interaction effect

Surface chemistry: hydrophobic or hydrophilic

L. Xu, V. Molinero JPCB (2010); JPCB (2011)

Effect of confinement on density anomaly

Hydrophobic surface: phase diagram shifts to low-temperature Hydrophilic surface: phase behavior is not significantly affected

G. Sun, N. Giovambattista, L. Xu, J. Chem. Phys. (2015)

Equation of state for hydrophilic confinement

Confinement effect on liquid-liquid critical point

Confinement effect:

- second critical point shifts to high pressure when strongly confined
- phase behavior approaches to that of bulk liquid at larger separation

G. Sun, N. Giovambattista, L. Xu, J. Chem. Phys. (2015)

Surface chemistry effect on liquid-liquid critical point

Hydrophobic: Critcal point move to lower temperatures Hydrophilic:

•Severe confinement, Tc lower than that of bulk

Under not severe confinement, Tc is not much affected

Summary

✓ Phase behaviors depends on confinement and chemistry of surface

✓ Hydrophilic confinement effect:

 No significant effect on the phase diagram for systems with more than 10 layers of water molecules

Drastically changes the phase behavior for severe confined systems

Acknowledgement

Professors: C. Austen Angell Sergey V. Buldyrev Sow-Hsin Chen Pablo G. Debenedetti Nicolas Giovambattista Francesco Mallamace H Eugene Stanley

Arizona State University Yeshiva University MIT Princeton University CUNY University of Messina Boston University

Graduate students: Gang Sun Jiayuan Luo Renzhong Li