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 Dynamic crossover in glass-forming liquids 

the LLCP in the one-phase region, there exists a locus of
response function extrema, which is regarded as the extension
of the HDL−LDL coexistence line into the one-phase region
and is also called the Widom line.130 At the high-temperature
side of the Widom line the liquid resembles the HDL structure,
while it resembles the LDL structure at low temperature. In this
frame it has been proposed that water shows a dynamic
crossover when the local structure changes from LDL-like to
HDL-like.47,130−132 The data presented in Figure 3a, obtained
at ambient pressure, were therefore interpreted as due to the
crossing of the Widom line, a continuous evolution of the water
structure from HDL-like to LDL-like liquid state.
The cusplike dynamic crossover from non-Arrhenius

behavior at high temperature to Arrhenius behavior at low
temperature was first observed in water confined in MCM-
4138,133,134 via QENS and NMR.38,133,134 This transition was
then linked to the FS transition upon crossing the Widom line
in the vicinity of the LLCP,74 though other authors135−137

argued against a true FS transition for confined water, in
consistency with the two other relaxation scenarios proposed
below. Fourier transform infrared (FTIR) experiments on
confined water at ambient pressure also indicated that a LDL-

like to HDL-like continuous structural transition occurs upon
crossing the Widom line49,131 at T ≈ 225 K. As mentioned,
liquid water polymorphism arises from the existence of two
amorphous phases, LDA and HDA, that can be transformed
one into the other by tuning the pressure. In these terms the
dynamical crossover temperature or the temperature upon
crossing the Widom line depends on the pressure. In other
words, if the hypothesized LLCP exists, according to the
convergence of supercritical phenomena127,130,132 in the vicinity
of the critical point, one should be able to trace the LLCP as
the terminal point of the dynamic crossover, located in the
supercooled region at PC = 1600 ± 400 bar and TC = 200 ± 10
K.
The dynamical crossover has been studied in the frame of the

liquid−liquid critical point scenario in many different aqueous
systems, such as water in aerogels,138 alcohol,139 salts,140 or
confined in ice,141 and in proteins.142,143 Here, we report in
Figure 4 some results for water confined in MCM-41
nanotubes. Figure 4 highlights the distinct roles of the confined
water translational dynamics (self-diffusion, Ds) and the
relaxation time ⟨τr⟩ measured by QENS in a wide temperature
range above and below the dynamical crossover. Here it should

Figure 3. Schematic diagram at ambient pressure of different scenarios for the dynamical behavior of supercooled confined water. αconf indicate
confined α-relaxation, and βJG means Johari−Goldstein β-relaxation.

Figure 4. Neutron scattering correlation times (right)133 and inverse of NMR self-diffusion (left)38 data for water in silica (MCM-41) nanotubes.
The neutron data have been measured in the wave-vector range 0.25 < Q < 1.93 Å−1 and in the temperature range 200−240 K; the main value used
was 1.32 Å−1. In addition, the inverse of NMR self-diffusion in bulk is reported for comparison.153 (Inset) Fractional SE representation: measured Ds
and ⟨τr⟩ in a log−log scaling plot.48,49
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Characteristics near glass transition:
ü   Diverging of dynamics
ü   Continuous change in thermodynamics 
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Layered doped Mott insulators, such as the cuprates, show unusual temperature dependence of the resistivity.
Intriguingly, the resistivity perpendicular to the CuO2 planes, ρc(T ), shows both metallic (dρc/dT > 0) and
semiconducting (dρc/dT < 0) behavior. We shed light on this puzzle by calculating ρc for the two-dimensional
Hubbard model within plaquette cellular dynamical mean-field theory and strong-coupling continuous-time
quantum Monte Carlo as the impurity solver. The temperature, T , and doping, δ, dependencies of ρc are controlled
by the first-order transition between pseudogap and correlated metal phases from which superconductivity can
emerge. On the large-doping side of the transition ρc(T ) is metallic, while on the low-doping side ρc(T ) changes
from metallic to semiconducting behavior with decreasing T . As a function of doping, the jump in ρc across
the first-order transition evolves into a sharp crossover at higher temperatures. This crossover coincides with the
pseudogap temperature T ∗ in the single-particle density of states, the spin susceptibility, and other observables.
Such coincidence in crossovers is expected along the continuation of the first-order transition into the supercritical
regime, called the Widom line. This implies that not only the dynamic and the thermodynamic properties but also
the dc transport in the normal state are governed by the hidden first-order transition. ρc(T ) has a high-temperature
quasilinear regime where it can exceed the Mott-Ioffe-Regel limit, and when it has a minimum it is nearly parallel
to the Widom line.

DOI: 10.1103/PhysRevB.87.041101 PACS number(s): 71.27.+a, 71.10.Fd, 74.25.−q, 71.30.+h

The puzzling behavior of electrical resistivity has been at
the center of the high-temperature superconductivity conun-
drum from the very beginning.1 Normal-state resistivity is
highly anisotropic:2–4 The out-of-plane c-axis resistivity ρc(T )
can be orders of magnitude larger than the in-plane resistivity
ρab(T ). In addition, for values of doping where the cuprates
become superconducting, the normal-state ρab(T ) and ρc(T )
can show contrasting behaviors: The in-plane resistivity
ρab(T ) is metallic, while the out-of-plane c-axis resistivity
ρc(T ) can be both metallic or nonmetallic (semiconducting).
The opening of the pseudogap can be detected by the deviation
in both the in-plane and the c-axis resistivities from their
linear-T behavior at high temperatures.5–7

The behavior of the c-axis resistivity and its relation to
superconductivity and to the pseudogap are important issues
for the understanding of cuprates. Diverse explanations for the
interplane resistivity have been offered over the years. They
can be classified into two groups, depending on whether it is
unconventional for the in-plane physics or for the interlayer
coupling. The first group includes mechanisms based on
spin-charge separation,8,9 fluctuations of the phase of the su-
perconducting order parameter,10 or in-plane strong-coupling
physics.11,12 The second group contains models where the
interlayer tunneling is influenced by disorder,13 by bosons,14–16

or by interplane and in-plane charge fluctuations.17

Here we examine the interplay between c-axis transport,
superconductivity, and pseudogap by studying the dc c-axis
resistivity of a hole-doped Mott insulator represented by the
one-band Hubbard model. We explore the possibility that Mott
physics—essentially the blocking of charge motion driven
by strong Coulomb repulsion—can determine the intricate
doping and temperature behavior of ρc. In our approach, the

interplane transport is governed by the in-plane scattering, as
in the first group of mechanisms for unconventional interplane
conduction.

We solve the model using cellular dynamical mean-field
theory (CDMFT)18,19 for a self-consistent 2 × 2 plaquette.
Recent developments in the algorithms20 make the present
study possible. Recent work11 using a 2-site cluster strengthen
the experimental correlation between the behavior of ρc(T ) and
the opening of the pseudogap as revealed by angle-resolved
photoemission (where the pseudogap appears as a lack of
a quasiparticle peak at the antinode21) and c-axis optical
conductivity σc(ω) (where the pseudogap appears as a low-
frequency suppression of spectral weight transferred to high
frequencies22). Similar c-axis optical conductivity results have
been shown in Ref. 23 using an 8-site cluster.

A recent development requires that those findings be
reexamined: In plaquette CDMFT, a first-order transition24,25

occurs at finite doping between a pseudogap and a correlated
metal. This transition is connected to the Mott transition in the
undoped model. The crossover to the pseudogap state, T ∗(δ),
lies along the thermodynamic crossover (known as Widom
line26) that begins at the critical end point of the transition
and extends in the supercritical region. This indicates the
common origin of the pseudogap and of the thermodynamic
crossovers.27 The further step provided by the present work is
to address the role of the Widom line for interplane transport.
In agreement with previous studies,11,23 we attribute the
semiconducting ρc(T ) to the development of the pseudogap.
We further show that the temperature and doping dependence
of ρc is governed by the Widom line crossover generated
by the pseudogap to correlated metal first-order transition,
thereby providing a unified picture for explaining dc transport,

041101-11098-0121/2013/87(4)/041101(5) ©2013 American Physical Society
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FIG. 3. (Color online) Temperature versus doping phase diagram
of the two-dimensional Hubbard model within plaquette CDMFT
for U = 6.2. Below the superconducting region delineated by T d

c

[blue (light gray) area], the first-order transition [red (dark gray)
area] terminating at the critical end point (δp,Tp) (circle) separates a
correlated metal from a pseudogap metal. Tσc (δ) is the temperature
where σc(µ) has an inflection point. It follows T ∗ and TWL, i.e., the
dynamic and thermodynamic supercritical crossovers determined by
the inflection in the local density of states A(ω = 0,T ) and in the
charge compressibility κ(µ), respectively. The pseudogap scale can
be identified also as inflection points in the local spin susceptibility
χ0(T ), Tχ0 . Tρc,min is the temperature where ρc(T ) has a minimum. It
scales with the temperature where A(ω = 0,T ) [χ0(T )] peaks, TA,max

[Tχ0,max], and can be used as a predictor of the crossover Tσc .

Widom-line crossover governs dc transport properties as well.
This is shown in Fig. 3, which compares three crossover lines:
Tσc

, i.e., the interplane transport crossover in Fig. 2; T ∗, i.e., the
dynamic crossover signaling the pseudogap phase, obtained
from the inflection point in the local density of states27 A(ω =
0) along paths at constant δ; and TWL, i.e., the thermodynamic
crossover identified by a peak in the charge compressibility
κ = 1/n2dn/dµ [or by the inflection point in the T -dependent
spin susceptibility27 (Knight shift), Tχ0 ]. The three phenomena
are concomitant. All crossover temperatures decrease with
increasing doping and they end at the critical end point (δp,Tp).
Below Tp all crossovers become a true phase transition be-
tween a pseudogap phase and a correlated metal. This justifies
our definition of T ∗ as the pseudogap temperature scale.27

Another important feature of ρc(T ) is the appearance of
minima in Fig. 1(b) caused by the gradual onset of the
pseudogap above T ∗. In Fig. 3 we also show the location
of these minima Tρc,min. While Tρc,min occurs at higher T
than Tσc

, the lines are nearly parallel. Thus Tρc,min can be
used as a high-temperature predictor of the crossover Tσc

(or,
equivalently, T ∗). It also scales with TA,max, the maximum
of the local density of states A(ω = 0,T ). However, Tρc,min
does not end at the critical point (δp,Tp); the minimum of
ρc(T ) becomes more shallow with increasing δ [see Fig. 1(b)]
and eventually disappears for values of doping larger than the
first-order transition. Therefore our systematic analysis rules
out interpretations based on a linear extrapolation of Tρc,min
(or TA,min) to T → 0. This would lead to a value of critical
doping δ ≈ 0.07, in contradiction with the metallic like ρc(T )
above δ ≈ 0.05.

Tσc
(δ) intersects the superconducting phase delimited by

T d
c . This result supports our discovery that within clus-

ter DMFT, the pseudogap and superconductivity are dis-
tinct phenomena,31 a result confirmed by larger cluster
calculations42,47 and suggested by recent experiments.48,49

Here, we find that superconductivity can appear from a normal
state where out-of-plane conduction is semiconducting like (on
the small-δ side of the transition) or metallic (on the large-δ
side of the transition).

In summary, the first-order transition ending at a critical
point (δp,Tp), and its associated crossover in the supercritical
region, emerges as the unifying mechanism to interpret the
out-of-plane transport. It is a watershed separating a regime
where ρc(T ) shows a metallic behavior from a regime where
ρc(T ) has a nonmonotonic behavior. The rapid increase of σc

with doping coincides with the pseudogap temperature T ∗ and
with the Widom line, namely the thermodynamic crossover
generated by the first-order transition in the supercritical
region. The resistivity minimum is distinct from T ∗ but follows
a line that is a large-T precursor. Thus we ascribe dc trans-
port, dynamic, and thermodynamic crossovers to a common
origin.
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by CFI, MELS, Calcul Québec, and Compute Canada.

1N. E. Hussey, in Handbook of High-Temperature Superconductivity
(Springer, New York, 2007).

2T. Ito, H. Takagi, T. Ishibashi, and S. Uchida, Nature (London) 350,
596 (1991).

3Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
4K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Phys. Rev.
B 50, 6534 (1994).

5R. Daou, N. Doiron-Leyraud, D. LeBoeuf, S. Y. Li, F. Laliberté,
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Characterization of dynamics: Stokes-Einstein relation 

D =
kBT
6πηR

D: diffusivity
η:  is the Viscosity
R: hydrodynamic radius

Stokes-Einstein relation (SER):  

Characterization of dynamics for Brownian particles, 
but approximately true for molecule systems

the force acting on the brownian particle consists of two parts:  
1) a systematic frictional force proportional to the velocity, but acting in 
opposite direction;  
2) R(t) arise from collisions with surrounding particles.   

 ξ: is the friction coefficient 
R(t): a randomly fluctuating force 

The random force: 

Assumptions: 
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The equation of a brownian particle with mass m 



Stokes-Einstein relation (SER):  

Breakdown of Stokes-Einstein relation has been  
related to glass transition 
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  Breakdown of Stokes-Einstein relation：   
      1) c is not a constant or becomes temperature dependent 
   OR  

      2)γ     1 （fractional Stokes-Einstein relation) 

Dynamics: Stokes-Einstein relation breakdown 



§  Dynamic crossover at 290 K>Tg=135~165K    
 (not due to glass transition) 

§  Dynamic crossover temperature 290>Tw=245K
 (not directly due to phase transition) 

Dynamic crossover in molecular system 

Xu	et	al,	Nature	Physics	2009	
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Local structure for Water－infrared spectroscopy 

Xu	et	al,	Nature	Physics	2009	



Correlation between structure and dynamics 

290K

245K

Dynamic crossover occurs at temperature where the 
local structure of water changes

Relation with phase transition: near the Widom line 
temperature, structure change is a maximum
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H2O in P-90

For water confined in less 2nm region, two local structural states are 
detected, HDL-like and LDL-like. 
 
Below 200 K , LDL-like dominates the hydrophobic confined water 

 Dynamic & structure correlation for hydrophobic confined water 
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§  Above 200 K the dynamical properties of confined water and bulk 
water (supercool without crystallization) are similar. 

§   A dynamic crossover occurs at temperature region 228-200 K, and 
it is correlated with the structural change in confined water.  

 Dynamic crossover of hydrophobic confined water 

Ling,	wang,	Xu,	Wu	(unpublished)	
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Dynamic crossover in metallic liquids 

Cu64Zr36 

Dynamic crossover from SER to fractional SER 
is also observed in metallic system 

!

Pan,	Wang,	Li,	Xu,	submiGed	



Classification of atoms: trapped and non-trapped 

Pan,	Wang,	Li,	Xu	

Red: trapped atoms 

Blue: non-trapped 

Trapped atoms has slow relaxation while non-
trapped atoms are more mobile 



Change in the size of the largest cluster 

§  Breakdown of SER occurs at T=1360K when the size of the 
largest cluster start to change dramatically 

§  Onset of fractional SER occurs at T~1180K where the change 
in the size of the largest cluster is a maximum

Red: trapped atoms 

Blue: non-trapped 

Pan,	Wang,	Li,	Xu,	submiGed	



Association with the percolation dimension 

§  At the breakdown temperature, 1360K, the largest  
cluster expands half of the system

§  At the onset temperature of fractional SER, T~1160K, 
largest cluster percolates the entire system

PDx=Lpx / Lx



Size effect? 

Our system size is larger than 10000 atoms 

!



Distribution of the size of clusters 

Pan,	Wang,	Li,	Xu	(submiGed)	

The size of clusters at T~1160K follows a power law 
behavior, indicating the percolation occurs at ~1160K at 
which fractional SER start to obey 

homogeneous in the sense that the majority of atoms are trapped atoms.

Further analysis of the distribution of cluster size, P (S), as function of cluster size, S, also

confirms the correlation between the percolation of clusters and appearance of the fractional SER.

As shown in Figure 6, the scaled distribution of cluster sizes, P ∗(S) = P (S)/(T/Tc − 1)α, as

function of the scaled cluster size, S∗ = S/(T/Tc − 1)−β , collaps to a master curve, where α and

β are the scaling exponents, and Tc is the critical temperature which also coincides with the onset

temperature of fraction SER (∼ 1160 K). As S∗ → 0, the master curve obeys power-law behavior,

P ∗(S) ∼ S∗−2 ∼ S∗−α/β. (2)

Since at percolation threshold T = Tc, S∗ → 0, according to Eq. 2, this guarantees that the

distribution of size of clusters in the entire range of S (from 0 to ∞) follows power law behavior,

P (S) ∼ P ∗(S) ∗ (T/Tc − 1)α ∼ [S/(T/Tc − 1)−β]∗−α/β ∗ (T/Tc − 1)α ∼ Sα/β. (3)

According to percolation theory 39, at percolation threshold Tc, α/β = d/df + 1, where d is the

dimension of the system (= 3), and df is the dimension of the largest cluster. Using box-counting

method, we obtain df (∼ 2.4) at Tc ∼ 1160 K, thus α/β ∼ 2.25, which is close to the scaling

exponent α/β = 2 as shown in Figure 6. This indicates that the distribution of cluster sizes evolves

toward a power-law behavior as the system approaches the percolation threshold, thus provides a

theoretical evidence of the link between the appearance of fractional SER and the percolation of

the trapped atoms in glass-forming liquids.
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toward a power-law behavior as the system approaches the percolation threshold, thus provides a

theoretical evidence of the link between the appearance of fractional SER and the percolation of
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Structure heterogeneity 

!

Trapped atoms tend to be neighbors of trapped one while 
non-trapped ones tend to be neighbors of non-trapped

Structural heterogeneity

trapped 
atoms 

non-trapped 



Structure heterogeneity and dynamic heterogeneity 
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Trapped atoms show low dynamic mobility while less trapped 
atoms show high dynamic mobility

Structural and dynamic heterogeneity are correlated

!

!



!

Both trapped and non-trapped atoms violate SER, 
thus our results are consistent with the latter 

Breakdown of SER: fast and slow moving particles? 

Opinions: 
1)  Mobile region violate 

the SE relation [Kumar et. 
al, JCP. 124, 214501, 2006]

2)  Both fast and slow 
regions violate the SE 
relation [Becker, PRL 97, 
055901, 2006] 

!



Similar features for general systems 

Breakdown of SER ~T=0.65 
Onset of structural change~T=0.65 
Percolation length L/2~T=0.65  

Dynamic and structural 
heterogeneities are correlated!



 Outline 

q  Different views on dynamic crossover

q  Dynamic crossover & structural origin

q  Dynamic crossover & potential energy landscape 



Dynamics near glass transition 

Debenedetti et al., Nature 2001	
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q  Diverging of dynamics 
(ranging in an order of 
about 20 order)

q   Continuous change in 
thermodynamics 

Glass is far from equilibrium, thus obtaining thermodynamic 
and dynamic properties from configurations is helpful



Potential energy landscape (PEL) 

V(r1, …, rN) Mountain tops

valley bottom

PEL: the potential energy function  
in conformation space 



Potential energy landscape 

Mountain tops

valley bottom

§  PEL does not depend on 
temperature

§  the exploration of the PEL
    is strongly T dependent
 i.e. which parts of the surface are 
explored	

V(r1, …, rN) 

PEL: the potential energy function  
in conformation space 



Franck H. Stillinger, Science 267, 1995 

Potential energy landscape 

§ Minima vary in depth 
§  Transition state between 

basins
§  Equivalent minima attained 

by permutations of identical 
particles

§  Minima: mechanically stable arrangements 
§  Lowest lying minima: perfect crystal
§  Higher lying minima: amorphous particle packing



V(r1, …, rN) = eIS + evib 

Francesco Sciortino J.Stat. Mech. 2005 

Free energy: decoupling of vibrational contribution 

Potential energy: local minimum + vibrational contribution 



Franck H. Stillinger, Science 267, 1995 

Important issues about potential energy landscape 

 1) Number of local minima:  

three-dimen sional space to a space of much 
higher dimension [3N for structureless par- 
ticles, and even more for particles that are 
asymmetric or nonrigid or both (3)] intrin- 
sically creates no new information, but it 
facilitates the description and understanding 
of collective phenomena that operate in 
condensed phases, particularly in liquids and 
glasses. 

An obvious set of topographic questions 
to ask concems the extrema of the 1D surface, 
such as maxima ("mountain tops"), minima 
("valley bottoms"), and saddle points 
("mountain passes"). The minima corre- 
spond to mechanically stable arrangements 
of the N particles in space, with vanishing 
force and torque on every particle; any small 
displacement from such an arrangement 
gives rise to restoring forces to the undis- 
placed arrangement. The lowest lying mini- 
ma are those whose neighborhoods would be 
selected for occupation by the system if it 
were cooled to absolute zero slowly enough 
to maintain thermal equilibrium; for a pure 
substance, this would correspond to a virtu- 
ally perfect crystal. Higher lying minima cor- 
respond to amorphous particle packings and 
are sampled by the stable liquid phase above 
the melting temperature Tm (4) 

Figure 1 shows a highly schematic illus- 
tration of the multidimensional '4)- 
scape." Such a simplified representation 
can be misleading, but it serves to stress 
several key points. First, the minima have 
a substantial variation in depth and are 
arranged in a complex pattern throughout 
configuration space. Second, each mini- 
mum is enclosed in its own "basin of 
attraction," most simply defined as the set 
of all configurations in its "valley," that is, 
all locations that strict downhill motion 
would connect to that minimum. Third, 
contiguous basins share a boundary con- 
taining at least one saddle point, or tran- 
sition state. Fourth, equivalent minima 
can be attained by permutations of iden- 
tical particles. This last point implies, for a 
pure substance, that every minimum be- 
longs to a group of N! equivalent minima 
distributed regularly throughout the mul- 
tidimensional configuration space. 

An important issue concerning the 
(D-scape topography that remains largely 
unresolved concerns the number of minima 
fl(N), and in particular how fast it rises 
with N. Rather general arguments (bol- 
stered by exact calculations for some special 
theoretical models) yield a simple generic 
form for the large-N limit in a single-com- 
ponent system (4, 5): 

Q(N) - N! exp(aN) (1) 
where a > 0 depends significantly on the 
chemical nature of the substance consid- 
ered. The permutational factor N! has al- 
ready been explained; the challenge is to 

predict a reliably from known molecular 
structures and interactions. 

Melting and Freezing Criteria 

The topographic view of the (D-scape advo- 
cated above leads to a clean separation be- 
tween the inherent structural aspects of the 
substance under consideration (that is, the 
classification of potential energy local mini- 
ma), and the "vibrational" aspects that con- 
cem motions within and among the basins 
defined by those inherent structures. Such a 
separation leads naturally to a fresh exami- 
nation of an old but very useful idea, namely, 
the Lindemann melting criterion for crystal- 
line solids, first formulated in 1910 (6). 

The Lindemann criterion concerns the 
dimensionless ratio, f(T), of the root- 
mean-square (rms) vibrational displace- 
ment of particles from their nominal lattice 
positions, to the nearest-neighbor spacing a. 
It asserts that when temperature rise causes 
f(T) to reach a characteristic instability 
value, melting occurs. X-ray and neutron 
diffraction experiments provide measure- 
ments of i(T) (through the Debye-Waller 
factor) for a wide variety of real substances, 
and computer simulations can be used to 
calculate f(T) for model systems. These 
results show that f(Tm) varies a bit with 
crystal structure: It is approximately 0.13 for 
face-centered-cubic crystals and 0.18 for 
body-centered-cubic crystals (7). In any 
event, it is substantially constant across sub- 
stances in a given crystal class and provides 
a good account of the pressure dependence 
of Tm for a given substance. 

Vibrational motions contributing to 
f(Tm) have a significant anharmonic char- 
acter. But aside from a very small concentra- 
tion of thermally created point defects in the 
crystal, these vibrations are confined to the 
basins surrounding the N! absolute minima. 
At any temperature T, then, the Lindemann 
ratio for the crystal can be expressed: 

f(T) = <(AR)2>112/(Na) (2) 
where AR is the intrabasin vibrational dis- 
placement from the absolute minimum in 
the multidimensional configuration space, 
and the brackets denote a thermal average 
confined to that basin at temperature T. 

Although it is not obvious in the usual 
way of presenting the Lindemann melting 
criterion, Eq. 2 has a straightforward exten- 
sion to the liquid phase. One simply recog- 
nizes that the thermal average and the dis- 
placements refer to inherent structures of 
the amorphous packing and their associated 
4)-scape basins that predominate after melt- 
ing. The mean nearest-neighbor distance a 
for the liquid phase (obtained from the mea- 
sured radial distribution function) typically 
is close to that of the unmelted crystal. 

No laboratory experiment has yet been 

Transition states 
Basin (saddle points) 

0) 

e~~~~~~~~~~ 
Amorphous 

inherent 
0 
Q. structures 

Crystal 
permutations 

Particle coordinates 
Fig. 1. Schematic diagram of the potential energy 
hypersurface in the multidimensional configura- 
tion space for a many-particle system. 

Supercooled E i 
liquid liquid 

. 
// 

E 

~Crystal 

0 Tm 
Temperature 

Fig. 2. Root-mean-square particle displacement 
divided by mean neighbor separation, versus tem- 
perature, for crystal and liquid phases. The value of 
this ratio for the crystal at the melting point, f(Tm), is 
specified by the Lindemann melting criterion. 

devised to measure f(T) for liquids. Never- 
theless, computer simulations for models of 
real substances can be designed to supply 
the needed information. Numerically, these 
simulations are required to generate a rep- 
resentative collection of system configura- 
tions for the temperature of interest and to 
evaluate the rms particle displacements that 
return each configuration to its correspond- 
ing inherent structure. Although only a 
small number of simulations of this kind 
have thus far been carried out (8), the main 
features of this extension are clear, and are 
summarized qualitatively in Fig. 2. The 
crystal and liquid f(T) curves are distinct; 
both monotonically increase. with T, with 
the curve for the liquid located well above 
that for the crystal. At the melting-freezing 
point, F'iq is approximately three times that 
for the crystal; equivalently, the rms parti- 
cle displacement is approximately one-half 
that of the nearest-neighbor spacing. 

In its conventional form, the Lindemann 
criterion advances an asymmetric, one- 
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3) Distribution in energy:           

2) Shape of the surface 
around the local minimum: 

  parabolic shape

Inherent structure eis:

Vibrational energy evib:



Partition function: 

Potential energy landscape & equation of state 

F = -NkBT lnZ   

P(T,V ) = −[∂F(T,V )
∂V

]
T 

Free energy: 

Equation of state: 



P=PIS+Pvib 

According to harmonic 
approximation: 
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The inherent pressure shows Van der Waals loop, 
indicate of first-order phase transition 

Van de Waals loop of inherent pressure 

Pressure: 

Sun,	GiovambaKsta,	Xu,	submiGed	



A change in the manner of the exploration of the 
inherent energy eis indicates that above the 
transition temperature, all local states are visited  

Inherent energy as function of temperature 

Tonset =0.38 
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At high T:  thermal energies 
comparable to barriers heights  

At low T: particles move by 
hopping between nearby basins 

According to Adam-Gibbs theory,
 relaxation time τ0: 

τ= τ0exp(E/kBT) 

There exists a critical temperature 
Tc where dynamic crossover occurs 

Change in dynamics 
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Connection between the onset of dynamics and  a 
change in the manner of exploration potential energy 
landscape 
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Connection between dynamics and inherent energy 
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 Summary I 

ü  Glass transition & dynamic crossover
     Dynamic crossover may occur above glass transition

ü  Dynamic crossover & structure percolation
    Dynamic crossover is correlated to structural heterogeneity

ü  Dynamic crossover & potential energy landscape
   Onset of dynamic crossover and  a change in the manner of 
potential energy landscape exploration
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