X-ray Spectroscopy Water; Experimental Perspective of Water Anders Nilsson, Chemical Physics, Stockholm University

Synergy of Mixture and Continuum Models Fluctuating Heterogeneous Model

A. Nilsson and L. G. M. Pettersson Nature Communication 6 8998 (2015)

Pair Correlation Functions

Water at 298 K

Skinner et al. J. Chem. Phys. 138, 074506 (2013).

Amorphous Phases of water

Low-density amorphous ice (LDA)

T/°C

Тм

Stable water

300

J. L. Finney et al., Phys. Rev. Lett. 88, 225503 (2002) H. E. Stanley, *Mysteries of Water*, Les Houches Lecture (1998)

Different Liquid Structures in MD

A. Nilsson and L. G. M. Pettersson Nature Communication 6 8998 (2015)

Snapshot from MD at -20° TIP4P/2005

12 Å

Perspective on water Chem. Phys. 389, 1 (2011). Blue: High tetrahedrality Yellow: High density Box side length 100 Å Small Angle X-ray Scattering (SAXS)

Courtesy Mike Toney

Structure Factor

SAXS: Normal Liquid vs Water

Apparent Power Law

Critical phenomena characterized by power laws with critical exponents

2nd critical point scenario Fluctuations between HDL/LDL Poole *et al.*, *Nature* **360**, 324 (1992)

TIP4P-2005 simulations Blue LDL Red HDL based on inherent structure

Huang et al. JCP 133, 134504 (2010)

Wikfeldt et al., PCCP 13, 19918 (2011)

Hypothesis Two Local Structures

Low Density Liquid (LDL)

is connected to strong tetrahedral coordination

High Density Liquid (HDL)

is connected to species with higher coordination with the expense of breaking hydrogen bonds Asymmetrical species Importance of van der Waals interactions

Dominates at RT!!!!

Bond Energy

Entropy

Probing Valence Electrons

The hydrogen bond is directional Probing of valence electrons

X-ray Absorption Spectroscopy Probes Unoccupied Orbitals X-ray Emission Spectroscopy Probes Occupied Orbitals

X-ray Absorption Spectroscopy (XAS)

Dipole selection rule $\Delta l = \pm 1$

NEXAFS or XANES

 $1s \rightarrow 2p$

Stöhr, NEXAFS spectroscopy

XAS Gas Phase Water

XAS of Ice

Denoted Post-Edge Conduction band in Ice Delocalized states

Water and Methane

C-C distance in solid methane 4.2Å

No change between gas-solid

O-O distance in ice 2.75 Å

Large change between gas-solid

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Liquid Water XAS measurements

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Liquid Water XAS measurements II

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Final XAS Water

3 major resolved spectral features

lce

Different ice preparations gives different spectra!!

X-ray Absorption Spectroscopy of Water (XAS)

Wernet et al, *Science* **304** (2004) 995 Nilsson et.al. J. El. Spec. Rel. Phen. **177**, 99 (2010) Myneni et.al. *J. Phys. Condens. Matter* **14** (2002) 213

Main-edge; Collapse of 2nd shell High density form

X-ray Raman scattering of high pressure ices Strong increase in main-edge pre-edge shifts to higher energy

VII (1.60 g/cm³) VI (1.37 g/cm³) III (1.17 g/cm³) Ih (0.92 g/cm³)

Pylkkänen et al. J. Phys. Chem. B 2010, 114, 3804

Main-edge; Collapse of 2nd shell High density form

Water should have a collapsed 2nd shell High Density Liquid To low density indicating thermal distortions

Pylkkänen et al. J. Phys. Chem. B 2010, 114, 3804

Water Clusters on Surfaces

Scanning Tunneling Microscopy (STM) of Water on Ru(0001) Nordlund et al. Phys. Rev. B **80**, 233404 (2009)

Deposited at 50 K

Annealed to 130 K imaged at 50 K

IR shows that water molecules are adsorbed flat with the HOH plane parallel to the surface

A. Hodgson et.al. unpublished

Isolated Water

Like Gas Phase water

Nordlund et al. Phys. Rev. B 80, 233404 (2009)

Small Clusters

One strong and one broken donor H-bond

⁵⁴⁵ Nordlund et al. Phys. Rev. B **80**, 233404 (2009) Dhoton Energy [aV]

Two dimensional Monolayer

Complete H-bond layer spectrum similar to ice

Nordlund et al. Phys. Rev. B 80, 233404 (2009)

Two dimensional Monolayer

Complete H-bond layer spectrum similar to ice

Nordlund et al. Phys. Rev. B 80, 233404 (2009)

Two Dimensional Water Structures

Nordlund et al. Phys. Rev. B 80, 233404 (2009)

Different Liquid Structures in MD

A. Nilsson and L. G. M. Pettersson Nature Communication 6 8998 (2015)

Interpretation of Water XAS Spectrum

Interpretation of Water XAS Spectrum

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Anderson Impurity Model

Anderson Impurity XAS Model; Ice

Anderson Impurity XAS Model; Ice

Anderson Impurity XAS Model; Water

Anderson Impurity XAS Model; Water

Temperature Dependence

With increasing temperature

- Increase in pre- and mainedge
- decrease in post-edge
- Similar to difference between water and ice
- Shift of resonances towards gas phase

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

NaCl Concentration Dependence

With increasing concentration

- Increase in pre- and main-edge
- decrease in post-edge
- No shift

Similar trend as with temperature but without shift

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Main-edge; Collapse of 2nd shell High density form

X-ray Raman scattering of high pressure ices Strong increase in main-edge pre-edge shifts to higher energy

VII (1.60 g/cm³) VI (1.37 g/cm³) III (1.17 g/cm³) Ih (0.92 g/cm³)

Pylkkänen et al. J. Phys. Chem. B 2010, 114, 3804

Raman OH spectroscopy of H₂O

With increasing temperature

- Increase in weak H-bond
- Decrease in post-edge
- Shift of weak bond towards gas phase

Q. Sun, Vibrational Spectroscopy 62 (2012) 110-114

With increasing concentration

- Increase in weak H-bond
- Decrease in strong H-bond
- No shift

Similar trend as with temperature but without shift

O-O Pair Correlation Function

2.5 7 C - 25 C -66C 2 1.5 4.5 Å g(r) 0.5 0 7 8 2 3 5 6 9 4 r (Ångström)

Temperature Dependence

Decreasing 4.5 Å Tetrahedral

Consistent change in terms of the tetrahedral component between T and NaCl concentration

Huang et al. PCCP 13, 19997 (2011)

Disapparence of 4.5 Å Tetrahedral

Mancinelli et al. PCCP 9, 2559 (2007)

Summary XAS

Post-edge is related to directed H-bonds Position shifts with H-bond length Tetrahedral structures in water at similar H-bond length in water

Pre-edge is related to weaken/broken Hbonds Intensity and energy position changes depends on distortions

Main-edge intensity is related to collapse of 2nd shell High density liquid structures

Probing Valence Electrons

The hydrogen bond is directional Probing of valence electrons

X-ray Absorption Spectroscopy Probes Unoccupied Orbitals X-ray Emission Spectroscopy Probes Occupied Orbitals

Liquid Water XES measurements

X-ray Emission Spectroscopy of Water (XES)

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Isotope effect in XES of water

Isotope dependent line shape

Two different Interpretations

Ultrafast Dissociation

Intact water Dissociated water

Fuch et al., Phys. Rev. Lett. 100 (2008) 027801

Isotope effect in XES of water

Isotope dependent line shape

Two different Interpretations

Two distinct local environments

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Connection XAS and XES

Participator Decay in XES/RIXS Vibrations

Pre-edge excitation Strongly antibonding orbital

Y. Harada et al. Phys. Rev. Lett. 111, 193001 (2013)

Excitation Dependence in Vibrations

Temperature Dependence

 Intensity transferred tetrahedral to disordered as temperature is increased (fewer H-bonds)

• NO broadening, NO new peaks: Either tetrahedral *OR* very distorted

Tokushima *et al.*, Chem. Phys. Lett. **460** (2008) 387 Huang *et al.*, PNAS. **106** (2009) 15214

Two Structural Environments

A. Nilsson and L. G. M. Pettersson Nature Communication 6 8998 (2015)

Temperature Dependence

With increasing temperature

- Increase in pre- and mainedge
- decrease in post-edge
- Similar to difference between water and ice
- Shift of resonances towards gas phase

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

NaCl Concentration Dependence

With increasing concentration

- Increase in pre- and main-edge
- decrease in post-edge
- No shift

Similar trend as with temperature but without shift

Nilsson et.al. J. El. Spec. Rel. Phen. 177, 99 (2010)

Main-edge; Collapse of 2nd shell High density form

X-ray Raman scattering of high pressure ices Strong increase in main-edge pre-edge shifts to higher energy

VII (1.60 g/cm³) VI (1.37 g/cm³) III (1.17 g/cm³) Ih (0.92 g/cm³)

Pylkkänen et al. J. Phys. Chem. B 2010, 114, 3804

Raman OH spectroscopy of H₂O

With increasing temperature

- Increase in weak H-bond
- Decrease in post-edge
- Shift of weak bond towards gas phase

Q. Sun, Vibrational Spectroscopy 62 (2012) 110-114

With increasing concentration

- Increase in weak H-bond
- Decrease in strong H-bond
- No shift

Similar trend as with temperature but without shift

O-O Pair Correlation Function

2.5 7 C - 25 C -66C 2 1.5 4.5 Å g(r) 0.5 0 7 8 2 3 5 6 9 4 r (Ångström)

Temperature Dependence

Decreasing 4.5 Å Tetrahedral

Consistent change in terms of the tetrahedral component between T and NaCl concentration

Huang et al. PCCP 13, 19997 (2011)

Disapparence of 4.5 Å Tetrahedral

Mancinelli et al. PCCP 9, 2559 (2007)

Temperature Changes of Distorted Component

Huang *et al.,* PNAS. **106** (2009) 15214

Summary X-ray Emission Spectroscopy

- Bimodal structural distribution
- Tetrahedral loses intensity with temperature, but peak at fixed energy
- Distorted gains intensity and disperses with temperature
- Energy taken up through:
 - Thermal excitation of distorted species
 - Breaking up a fraction of tetrahedral species

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Huang et al., PNAS. 106 (2009) 15214

Temperature Changes of Distorted Component

Shifts towards gas phase with increasing temperature

Fixed

Distorted species changes with temperature Tetrahedral fixed

Huang et al., PNAS. 106 (2009) 15214

Coworkers and Funding Stanford/Sweden

Congcong Huang/SSRL Ningdong Huang/SSRL Ira Waluyo/SSRL Dennis Nordlund/SSRL Lars Åke Näslund/SSRL Hirohito Ogasawara/SSRL Sarp Kaya/SUNCAT Tomas Weiss/SSRL Trevor Mcqueen/SUNCAT Chen Chen/SUNCAT Jonas Sellberg/SUNCATL Philippe Wernet/(SSRL/BESSY)

Lars Pettersson/Stockholm Matteo Cavalleri/Stockholm Michael Odelius/Stockholm Michael. Leetma/Stockholm Mathias. Ljungberg/Stockholm Thor Wikfeldt/Stockholm Lars Ojamäe/Linköping Daniel Schlesinger/Stockholm

National Science Foundation (NSF) Department of Energy (DOE) Swedish Research Council (VR)

Coworkers and Funding Japan

University of Tokyo

Y. Harada

- H. Niwa (→Tsukuba U.)
- M. Kobayashi (\rightarrow KEK)
- J. Miyawaki
- H. Kiuchi(D3)
- J. Nakajima(\rightarrow Sharp)
- Y. Kosegawa
- K. Yamazoe(D1)

M. Oshima

- K. Mawatari
- T. Kitamori

RIKEN/SPring-8

\$\$\$\$\$\$\$

T. Tokushima

Y. Horikawa (→ Yamaguchi U.)

S. Shin

Hiroshima University JASRI/SPring-8 Y. Senba O. Takahashi H. Ohashi

\$

Financially supported by

Photon and Quantum Basic **Research Coordinated Development Program by** MEXT