Pair-Correlation Functions Structure in the Liquid

> Lars G.M. Pettersson Stockholm University Igm@fysik.su.se

Anomalous Properties of Water Structural Fluctuations

Divergence towards a mysterious temperature of -45 ° C BUT anomalies set in already at ambient conditions...

P. Kumar, S. Han, H.E. Stanley, J. Phys.: Condens. Matter 21 (2009) 504108.

X-ray Absorption Spectroscopy (XAS) of Water

Absorption spectroscopy Measures unoccupied (antibonding) states Sensitive to structure

X-ray Emission Spectroscopy (XES) of Water

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

"HDL/LDL" Fluctuations in Ambient and Supercooled Water

- XAS indicates *predominant asymmetrical H-bonding* with fewer H-bonds than in tetrahedral model Wernet *et al.*, Science **304** (2004) 995
- XES shows *two motifs*: strongly tetrahedral ("LDL") and very disordered ("HDL"); 25:75 Tokushima *et al.*, Chem. Phys. Lett. **460** (2008) 387
- SAXS shows *density fluctuations* Enhanced upon cooling Huang *et al.*, PNAS **106**, 15214 (2009); JCP **133**, 134504 (2010)
- **XRD** shows *accelerated transition to LDL* One on supercooling to T~227 K

LCLS free-electron laser; Sellberg et al., Nature 510, 381 (2014)

We Live in the "Funnel" of an ADP

Nilsson and Pettersson, Nature Communications 6, 8998 (2015)

Scattering from a Molecule

 X-ray scattering is one of the most useful techniques for revealing structure of a molecule

Elastic X-ray Scattering

Initial amplitude: $\boldsymbol{\varepsilon} \cdot e^{i\boldsymbol{k}\cdot\boldsymbol{r}} |\Psi_i(\boldsymbol{r};\boldsymbol{R})\rangle$ Final amplitude: $\boldsymbol{\varepsilon}' \cdot e^{i\boldsymbol{k}'\cdot\boldsymbol{r}} |\Psi_i(\boldsymbol{r};\boldsymbol{R})\rangle e^{-i\Delta \boldsymbol{k}\cdot\boldsymbol{R}_{CM}}$ Scattering amplitude:

 $F_T \sim (\boldsymbol{\varepsilon}^{\prime *} \cdot \boldsymbol{\varepsilon}) \int \Psi_i^*(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N; \boldsymbol{R}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N) d\boldsymbol{r}_1 d\boldsymbol{r}_2 \dots d\boldsymbol{r}_{N-1} d\boldsymbol{r}$

Electronic density:

 $\rho(\mathbf{r}) = N \int \Psi^*(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \,\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) d\mathbf{r}_1 d\mathbf{r}_2 ... d\mathbf{r}_{N-1}$

Scattering amplitude Fourier transform of the electronic density: $F_T \sim (\epsilon^{\prime*} \cdot \epsilon) \int \rho(r) e^{iq \cdot r} dr$

Wide Angle X-ray Scattering Measurements

Scattering Patterns

Crystalline Ice Bragg spots

Liquid water Water ring

Raw Diffraction Signal

 $I_X(Q) = I_X^{self}(Q) + I_X^{intra}(Q) + I_X^{inter}(Q).$

Structure Factor

Small Angle Region Q<0.5 Å⁻¹

Wide Angle Region Q>0.5 Å⁻¹

Pair-Correlation Functions

Water at 298 K

Skinner et al. J. Chem. Phys. 138, 074506 (2013).

Fourier Transform

$$egin{aligned} g\left(r
ight) &= 1 + rac{1}{2\pi^2
ho r} \int_{0}^{\mathcal{Q}_{max}} M(Q,\,\Delta(r)) Q\left[S\left(Q
ight) - 1
ight] \ & imes\,\sin\left(Qr
ight) d\,Q, \end{aligned}$$

Important to have long enough Q-range

 $Q_{max} > 18 \text{ Å}^{-1}$

Skinner et al. J. Chem. Phys. 138, 074506 (2013).

RMC Modeling

What do the data actually allow when there are "NO" assumptions *i.e.* when MD potentials or force-fields do not guide the analysis?

Use reverse Monte Carlo (RMC) to determine water structures that reproduce:

• Random Monte Carlo moves to minimize $\chi 2$ difference between model and experiment \rightarrow maximally disordered structure consistent with data and constraints

Leetmaa *et al.*, J. Chem. Phys. **129**, 084502 (2008) Wikfeldt *et al.* J. Phys. Chem. B **113**, 6246 (2009)

Sensitivity

$$S_{ND}(k) = \sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} \langle b_{\alpha} \rangle \langle b_{\beta} \rangle \left(S_{\alpha\beta}(k) - 1 \right)$$

$$S_{XD}(k) = \sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} f_{\alpha}(k) f_{\beta}(k) \left(S_{\alpha\beta}(k) - 1 \right) / \left(\sum_{i} c_{i} f_{i}(k)^{2} \right)$$

 c_{α} concentration of species α b_{α} scattering length of species α $f_{\alpha}(k)$ form factor of species α

Data set	% O-O	% О-Н	%H - H
100% D ₂ O	9.2	42.3	48.6
75% D ₂ O	17.3	48.6	34.1
50% D ₂ O	44.1	44.6	11.3
25% D ₂ O	51.6	40.4	8.0
100% H ₂ O	19.1	49.2	31.7
XD $\alpha_H = 0.0$	70.2	27.1	2.6
XD $\alpha_H = 0.5$	79.8	19.1	1.1

Important to combine data

Unconstrained RMC fits to neutron data only or combined with x-ray data

O-O correlation better defined with XRD

Wikfeldt et al., J. Phys. Chem. B 113, 6246 (2009)

RMC Modeling

What do the data actually allow when there are "NO" assumptions *i.e.* when MD potentials or force-fields do not guide the analysis?

Use reverse Monte Carlo (RMC) to determine water structures that reproduce:

- a) X-ray diffraction (Hura *et al.*, 2003 Q_{max} =10.8 Å⁻¹)
- b) Neutron diffraction (Soper, Q_{max}=50 Å⁻¹)
- c) E-field distribution (Raman spectrum)
- d) Internal geometry distribution (from PI-CPMD; Sterne and Bern, JCP 115 (2001) 7622)
- Random Monte Carlo moves to minimize $\chi 2$ difference between model and experiment \rightarrow maximally disordered structure consistent with data and constraints

TARGET – Explore extreme limits:

- Fit data AND maximize number of H-bonds to get maximally symmetric model OR -
- Fit data AND maximize number of asymmetric species to get maximally asymmetric model
 Leetmaa *et al.*, J. Chem. Phys. 129, 084502 (2008)

Wikfeldt et al. J. Phys. Chem. B 113, 6246 (2009)

RMC Fit of Diffraction Data

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

O-O and O-H Pair Correlations

RMC fitted O-O correlation Compare with EPSR fit to the same data set *Soper, J. Phys.: Cond. Mat.* **19**, 335206 (2007).

O-H correlation not well-defined Wikfeldt *et al.* JPC B **113**, 6246 (2009)

Very similar distributions with EPSR and RMC Very similar distributions from Hura *et al.* and Narten data (Soper 2007) Poor agreement for SPC/E and TIP4P Softer potential needed

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

Raman Spectrum: E-field Distribution

- E-field projected along individual OH
- Distribution can represent Raman spectrum (HOD in D₂O)
- Take as reference the E-field distribution for TIP4P-pol2
- Both DD and SD model reproduce the correct distribution (and XRD+ND)
- Both extreme models equally valid (and a range in between)

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

Structure only known from MD!

Raman Spectrum Decomposition – Symmetric (DD) Model

- Ultra-fast pump-probe see fast frequency shifts: H-bond dynamics
- H-bonded DD dominates
- Pump at blue response
 in center → H-bond reformed
- H-bonds broken "only fleetingly"
- Ultra-fast memory loss
- Valid picture

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

Raman Spectrum Asymmetric (SD) Model

- Ultra-fast pump-probe
- SD species dominates
- Pump at blue response in center → H-bond reoriented
- H-bond situation not affected
- Ultra-fast reorientation in non-H-bonded cavity
- Equally valid picture

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

Angular Correlations Tetrahedrality

Distribution of O-O-O angles for different models (no Raman):

FREE no structural constraints
ASYM enhance broken bonds
SYM enhance intact bonds
MIX 3:1 mix of ASYM and SYM
HSMC hard spheres
TIP4P-pol2, SPC/E force-fields

Inset: E-field included to model Raman \rightarrow no difference between SD and DD

O-O Pair-Correlation from EXAFS

Structure factor determined by Bergmann et al. J. Chem. Phys. **128**, 089902 (2008) from EXAFS wiggles in X-ray Raman Spectroscopy of water.

The derived PCF was highly peaked towards short distances compared to RMC and EPSR fits to neutron data (Soper) and x-ray data (Hura et al.)

Wikfeldt et al., J. Chem. Phys. 132, 104513 (2010)

EXAFS

Extended X-ray Absorption Fine-Structure

Photoelectron scattering against surrounding atoms

"Particle in a box"

Resonances contain information on e.g. distances

Multiple Scattering

Multiple scattering important Focusing effect H-bonded structures give enhanced signal

Wikfeldt et al., J. Chem. Phys. 132, 104513 (2010)

SpecSwap-RMC Multiple-Data Set Fitting

Any experimental data set that depends on structure and can be computed from a structure can be used

Use large set of possible structures, calculate the property Structure + property is a basis function in a library

Choose a set of *m* basis functions from the library, calculate the deviation from the experimental data of the sum of these functions

Make random replacements in a reverse Monte Carlo procedure

https://github.com/leetmaa/SpecSwap-RMC/blob/master/doc/user_manual_v1.0a0.pdf

SpecSwap-RMC: XAS+EXAFS on Ice Ih

8

Leetmaa et al., J. Phys.:Cond. Mat. **22**, 135001 (2010) Wikfeldt et al., J. Chem. Phys. **132**, 104513 (2010)

- Huge number of computed spectra (each 3x12 hours)
- None looking like experiment
- Total spectrum sum of contributions
- Do RMC on spectra to reweight the summation
- 1382 clusters (39 molecules) from PIMD on ice 200K
- Compute XAS spectra and EXAFS signal is basis
- Sample set 80 spectra on which RMC is done
- 10⁸ attempted moves; 1.2 10⁶ accepted
- Collect statistics....
- Connect to structures...
- VERY GENERAL ANY DATA

Combine XRD+ND with EXAFS

Fit simultaneously EXAFS signal and PCF

Joint solution possible

EXAFS very sensitive to strong, directional H-bonds

XRD+ND sees all situations

EXAFS enforces a subclass of structures with well-defined H-bonds

Complementary information

Small Angle Region Q<0.5 Å⁻¹

Small-Angle X-ray Scattering (SAXS)

SAXS: Normal Liquid vs Water

TIP4P/2005

- \bullet TIP4P/2005 reproduces density maximum and qualitatively minimum in χ_T
- LLCP at $T_C = 193$ K, $P_C = 1350$ bar [Abascal and Vega, J. Chem. Phys. 133, 234502 (2010)]
- Need *very* large simulations for SAXS, here 45,000 molecules ($Q\sim 2\pi/R$)
- Need long equilibration times to reach equilibrated long-range correlations
- Need to average RDFs over long time intervals to average out spurious

fluctuations in low-q structure factor $S(q) = 1 + 4\pi\rho \int w(r)r^2[g(r)-1]\frac{\sin(qr)}{r}dr$

SAXS and TIP4P/2005

Excellent representation but:

278 K slight underestimate

Lower T shift both in T and in S(k) needed

At 230 K maximum but smaller than expt. 252 K

Real liquid larger effect

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

Shift in Pressure for TIP4P/2005

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

SAXS

Isotope and Salt Effects

- Density fluctuations grow more quickly in size for D₂O
- H-bond strength reduced by quantum effects (Walker and Michaelides, JCP **133** (2010) 174306)
- Fluctuations towards LDL less favorable for H_2O

Steeper rise for salt solution Adding salt ~ "increasing pressure" Leberman and Soper, Nature **378**, 364 (1995)

Huang et al., JCP 133, 134504 (2010)

SAXS

Ambient to Supercooled Regime

Having both wide and small angle data from the same measurement we fit a normal and anomalous contribution:

Normal contribution from the Percus-Yevick approximation:

$$1/S^{ref} \propto 1 - 12\eta \frac{\left[\eta(3-\eta^2)-2\right]j_1(Q\sigma)}{(1-\eta)^4} \frac{g\sigma}{Q\sigma}$$

Anomalous contribution from Ornstein-Zernike theory:

$$S^A(Q) \propto \frac{1}{\zeta^{-2} + Q^2}$$

 σ – hard sphere diameter η - volume fraction of water $\eta = \pi n \sigma^3 / 6$

Huang et al., JCP 133, 134504 (2010)

Apparent Power Law – Widom Line

Critical phenomena characterized by power laws with critical exponents

 $\xi = \xi_0 \varepsilon^{-\nu}$

with $\varepsilon = T / T_s - 1$

2nd critical point scenario Fluctuations between HDL/LDL Poole *et al.*, *Nature* **360**, 324 (1992)

TIP4P-2005 simulations Blue LDL Red HDL based on inherent structure

Huang et al. JCP **133**, 134504 (2010)

Wikfeldt et al., PCCP 13, 19918 (2011)

Correlation Length Liquid-Gas CP

Simulate liquid-gas critical point at 640 K ρ =310 kg/m³ (Vega et al. JCP 125 (2006) 34503)

OZ correlation length small: ζ = 5.9 Å Affects O-O PCF to large distance There is **no** well defined distance

Real Structure Liquid-Gas CP

The correlation length is not a measure in real space that can be compared with a molecular length scale

SAXS measures instantaneous heterogeneities in the electron density

Real Structure Liquid-Gas CP

To obtain a rough approximate dimesion in real space

Assume static nanoparticle

Guinier radius $R_{\rm G} = \sqrt{3}\xi$

Assuming spherical shape

 $D = 2\sqrt{5/3}R_{\rm G}$ With $\zeta = 5.9$ Å

we get D=26 Å

It gives a sense of size range of inhomogeneity

It is not 5.9 Å nor 59 Å

There are many sizes but an average could be 26Å

Scattering Patterns Speckles

Granularity (speckles) due to the instantaneous local structure

Speckle Dynamics XPCS

 $\beta = 1$

X-ray scattering collected within specific pulse length

Speckle contrast determined by extent of atomic motion during the x-ray pulse

Speckle Correlations XCCA

Perform autocorrelation analysis in Q, Q' and $\Delta \phi$ to discover hidden symmetries in the liquid

Here polystyrene spheres suspended in solution from Wochner et al. X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. *Proc. Natl. Acad. Sci. (USA)* **106**, 11511 (2009)

$$C_{Q_1,Q_2}(\Delta) = \frac{\left\langle \left(I(Q_1,\varphi) - \left\langle I(Q_1,\varphi) \right\rangle \right) \left(I(Q_2,\varphi + \Delta) - \left\langle I(Q_2,\varphi) \right\rangle \right) \right\rangle}{\left\langle I(Q_1,\varphi) \right\rangle \left\langle I(Q_2,\varphi) \right\rangle}$$

Next Lecture....

XAS and XES

Experimental Variation of the Tetrahedrality

 g_2 is the 2nd shell height as a measure of tetrahedrality

Sellberg et al., Nature 510, 381 (2014)

The Change in Structure in Different Scenarios Compared to Experiment...

Nilsson and Pettersson, Nature Communications 6, 8998 (2015)

Several Scenarios

Stability limit scenario

2nd critical point scenario

Critical point free scenario

Singularity free scenario