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The challenge of ab-initio water

* Molecular interactions in condensed water phases
depend on a delicate balance of electronic effects
(cooperative polarization, dispersion interactions)
that are difficult to model with standard DFT
approximations

* Quantum corrections to the nuclear dynamics
cannot be ignored even at room temperature and

beyond



Background

Ab-initio molecular dynamics
Density functionals
Maximally Localized Wannier Functions

Path Integrals



Potential energy surface without empirical
fitting
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The forces — are calculated analytically (Hellman-Feynman)



Ab-initio Molecular Dynamics on the Fly: The Car-Parrinello
Lagrangian (1985)
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Density functionals
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Hydrogen bonds: some basic background

Maximally Localized Wannier

g ﬁ Functions (Boys Orbitals) in H,O: bond
y and lone pairs. The molecule 1s polar

The water dimer: the hydrogen
bond between two water
molecules originates from simple
electrostatics




Hydrogen Bonds

water dimer

Local tetrahedral H-bond order :
Donors (D) and Acceptors (A)

Bernal-Fowler-Pauling ice rule:
2D +2A

Proton disorder & residual entropy
in ice




Path integral simulations
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DFT functionals & H-bonding in water
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Strict BO, isobaric-isothermal simulation, PBEO-
TS(sc) exchange-correlation functional
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Equilibrium densities (g/cm3):
Liquid water (300K): ~1.03 (expt: 1.00)
Ice (Ih) (273K): ~0.96 (expt: 0.92)
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Kinetic Energy of the nuclei & zero-point
motion

Current calculation:
Ice Ih (273K 1bar): ~ 161 meV (H) ~56 meV(0O) 3/2 kT ~ 35meV

Table 2. Values of (Eg) for SW, Ice, and Water”

Phase T |KI {EI\,}DI.\T (E;{)I‘Y'q {‘E;\')”
[meV| [meV]| [meV]
SW 269  (199+2)%" (1524+4)%
270 (148.1£0.5)°
271 156.0+2.0 (152+4)*
(2284-2)%°
273 (1504£2)%  (1534+4)%
Ice 270 (149.5+0.5)°
271 157.0+£2.0 (158+4)*'  (155+3)°
(1564+2)%
Liquid 296  (146+3)%" (150+4)%
300 (155£3)?
(143+3)1

. . . DOL 10.1021/acsjpclett6b00926
From C. Andreani, G. Romanelli, R. Senesi: phys. chem. Let. 2015:“)7‘ 2216-2220



Thermal and quantum fluctuations affect
differently the electronic properties
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Electron-lattice coupling cannot be neglected when estimating the electron
excitation gap



Urbach tail and electron localization
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The states at the top of the valence band are (Anderson) localized by disorder: the
effect is more pronounced in presence of guantum fluctuations



Top valence band states correspond to
“autoprotolysis” configurations

Ice-lh @ 273 K, 1 Bar
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Local environment and Inherent Potential
Energy Surface

The local structure index / (Shiratani and Sasai
(1996))
On the Inherent Potential Energy Surface

HIGH I (IPES, Stillinger and Weber (1984)) the LSI
0 distribution is bimodal: I, is the “isosbestic”
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A site with />/_, is in a low density environment

From Santra, DiStasio, Martelli, RC, Mol : : . . . ,
Phys (2015) A site with /<[, is in a high density environment



The IPES of ambient water: clusters of
low density water (red) in a sea of high
density water (blue
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The ring distribution in red/blue crystalline ice

clusters
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The IRO of the red and blue
clusters on the IPES bears
similarity with that of LDA
and HDA: the seeds of
water polyamorphism are
present in ambient water
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Water “No Man’s Land” may hold the
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clue for understanding water anomalies

Metastable undercooled water is currently
unaccessible to ab-initio simulations because the
time scales of network relaxation are in the
microsecond domain: coarse grained models are
necessary. Here we use the ST2 model potential
(Stillinger and Rahman (1974))

Does the 1st order LDA-HDA boundary continue into deeply
supercooled water? LDL-HDL boundary would terminate at a
critical point. Second critical point hypothesis (Poole et al.
(1992)) would provide an elegant explanation of the water
anomalies such as the observed large increase in density and
entropy fluctuations upon cooling

Results with ST2 potential from:
Metastable liquid-liquid transition in a molecular model of water (J. C. Palmer et al. Nature

(2014))



Sampling the free energy surface of
liquid and ice
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* 1,000,000+ CPU hours...and counting
* Other efficiency techniques
» Parallel Tempering (228 — 282 K)
» Configurational Pre-sampling
» Collective Moves (Force Bias)
* Metadynamics



Liquid-liquid coexistence in water “No

Man’s Land”

Simulations with the ST2 model potential (Stillinger and Rahman (1974)) for water
shows HDL/LDL coexistence under deeply undercooled conditions
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Why two network structures In
the IPES?

OF Bernal and Fowler (1933) suggested that water
CHEMICAL PHYSICS was characterized by a continuous
transformation from a denser quartz-like structure
R (4-coordinated) to a less dense ice tridymite

o R S ot o e structure (4-coordinated) upon lowering T

J. D. BErNAL AND R. H. FOWLER, University of Cambridge, England
(Received April 29, 1933)
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WWW bond switches

A simple continuous random network tetrahedral model shows an abrupt transition in
the amorphous structures generated by simulated annealing upon increasing the
density



Molecular interactions and intrinsic
water defects (H,O0*, OH-, OH)

* Pioneering AIMD studies on the Grotthuss mechanism of proton transfer
by Parrinello, Tuckerman, Marx and coworkers

« Pioneering force-field studies using the empirical valence bond formalism
on the Grotthus mechanism by Voth and coworkers

* Recently a paradigm changing paper by Hassanali, Giberti, Kuhne, and
Parrinello (PNAS (2013)) pointed out the crucial role of dynamic
correlation in successful proton jumps (overlooked in earlier studies
adopting a transition state theory framework) and its connection with the
topology of the H-bond network

 How do molecular interactions at the PBEO-TS(sc) level affect charged
and neutral water defects?



Effect of the interactions on the
proton jump distribution
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Why does PBEO-TS(sc) (substantially) reduce multiple jumps for the hydroxide
ion?

(Princeton-Temple collaboration)



Exact exchange and vdW increase the relative
concentration of hypercoordinated OH-

configurations
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Exact exchange makes the lone pair
side more hydrophilic and the hydrogen
site more hydrophobic as indicated by
Wannier function analysis. vdW
modifies the intermediate range order
favoring more disordered configurations
(low LSI) and this again favors
hypercoordination



Effect of exact exchange on the solvation
structure of the OH radical
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spin hole level is moved deep into the gap by exact
exchange (eliminating the metallic character of the
defect complex evident at the GGA level)
— Upon electron capture the hole level moves close
3.8eV to the valence band maximum after a substantial
network rearrangement associated to the formation
of a hydroxide ion. The greater stability of the
hydroxide ion versus the hydroxyl radical indicates

the Anderson negative U character of this defect
complex
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(Princeton-Temple collaboration)



Temperature (K)

Ice at extreme pressure is very different
from low pressure ice

3500
1000 TEEREEEC | At gxtreme pressure (>50 Gpa) the H-bond netwo_rk
is disrupted, water molecules cease to be the basic
2500 |Bcesi cpsi P2./c-SI constituents and ice becomes an ionic compound
5000 that may exhibit superionic behavior
1500
1000 Weird water lurking inside giant planets | New Scientist
Crystalline Phases
500 Alayer of superionic water seems to lie around the rocky cores of both
H HH H i Neptune and Uranus, It may not undergo convection, which could help
lce-X ' Pbcm Pebc:b P3:21 ' Pcca : P2:/c explain the planets’ strange magnetic fields
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The phase diagram of superionic ice o
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Superionic ice and ionic water may explain the unusual
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Temperature (K)
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Ice at extreme pressure is very different
from low pressure ice

Superionic Phases
BCC-SI CP-SI P21/c-SI
Crystalline Phases
Ice-X ' Pbcm P:bc'b P3:21 ' Pcca P2:/c
50 500 1000 1500 2000

Pressure ( GPa)

2500

The superionic phase diagram is predicted
from single phase NPT ab-initio MD
simulations (PBE functional) using the
Parrinello-Rahman variable cell technique

From Superionic ices at ultrahigh pressure (J. Sun et al.
Nature Commun. (2015))

The newly predicted monoclinic (P21/c) superionic phase

Bohr




From molecules to ions: a dramatic
change in the electronic structure

Probability Density
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The distribution of the Maximally Localized Wannier
function Centers (MLWC) shows vividly the change in
chemical bond promoted by pressure: from H-bonds to
ionic bonds
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Character of the superionic transition
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The conductivity shows that FCC
(DHCP) superionic ice is type |,
whereas P21/c superionic ice is type Il.
Type I-ll character correlates with the

behavior of the mean squared
displacement (MSD) of the O sublattice
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Typical conductivity data for
superionic conductors (from Boyce
and Huberman, Phys. Rep. (1979))



Locating the melting line for the Sl transition in a type Il system
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Large zero point motion effects expected !



Temperatrue (K)

Are nuclear quantum effects important?
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Qualitatively NQE on the phase
diagram can be understood
using the lowest order (2" order)
expansion of the free energy in
the Planck constant



Concluding remarks

Trends are more important than perfect agreement with experiment

It is reassuring that the qualitative agreement with experiment
improves for many properties when more accurate functionals and
NQE are included

AIMD provides a unified description not only of pure water but also
of solvation processes and is able to describe different
environments (e.g. interfaces, effect of pressure, solvation
phenomena etc.)

From the electronic structure point of view the low pressure phases
are more challenging than the phases at ultrahigh pressure due to
the important role of electron correlations.
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