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Outline – By Technique 

•  Introduction 
•  Elastic scattering 

–  Diffraction 
–  Other (Reflectometry, SANS) 

•  Monochromator Crystals & Choppers 
•  Inelastic scattering 

–  Direct Geometry (TOF) vs Triple Axis 
–  Indirect Geometry 

Neutrons show us where the atoms are and what they do. 
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Units commonly used 
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Methods for Elastic Scattering 
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Methods for Inelastic Scattering 
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Diffraction 

BT-1 (NIST website)     D20 (ILL website) 

Bragg’s law 
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Key Component: Crystal Monochromator 

Source: NIST (BT-7)   ANSTO (Echidna) 

Materials: graphite, Si, Cu, Ge, 
Cu2MnAl for polarized beam 
 
To consider: reflectivity, mosaic 
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Diffraction using Time-Of-Flight 

L. Chapon et al., Neutron News 22 22-25 (2011) Bragg’s law 
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Diffraction (elastic, no energy discrimination) 
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The first time-of-flight spectrum ever 

J. R. Dunning et al., PR 48 704 (1935) 
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Key Component: Choppers – 1 – Disk Choppers 

http://www.fz-juelich.de   CNCS  

This type of chopper can be 
used as monochromating 
chopper or as bandwidth 
limiting chopper. The 
transmission is independent 
of wavelength 
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Key Component: Choppers – 1 – Disk Choppers 

Beam 
  
Width W 
Height H 

open position 
(t=0) 

closed position Ian Anderson (ORNL) 
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Counter–rotating Disk Choppers 

Beam 
  
Width W 
Height H 

open position 
(t=0) 

closed position Ian Anderson (ORNL) 
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Key Component: Choppers – 2 – Fermi Choppers  
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Key Component: Choppers – 2 – Fermi Choppers  

ARCS 

CNCS 

The transmission is wavelength 
dependent and has approx. 
triangular shape. 
 
Δt=D/2rω

ω

D

radius r 
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Disk vs Fermi Choppers  

Disk Chopper Fermi Chopper 

Line shape (width) is flexible but 
pulses cannot be very short unless 
the beam is narrow 

Pulses can be nearly arbitrarily 
sharp even when the beam is wide 
(especially important for thermal 
neutrons) 

Monochromator or bandwidth limiter Monochromator or pulse-shaping 

Does not need much space along 
the beam (≤5 cm)  

Rotor is more compact, rotational 
speed can be higher, needs ≥15 cm 
of beam 

Can have 1, 2, 3 or more slits Opens twice per revolution 

Transmission is wavelength-
independent and approaches 1 in 
open position 
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Horizontal axis T0 chopper  
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Comparison TOF – monochromator instrument 

A. Huq et al., Z. Krist. Proc. 1 127-135 (2011)   NIST website 

POWGEN (TOF) @ SNS     BT-1 (Mono.) @ NIST 
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Elastic scattering (again) 

The signal can be something other than powder diffraction 
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TOF – Reflectometer 

ANSTO website 
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TOF – Reflectometer 

T. Saerbeck et al., Physics Procedia 42 213-217 (2013) 
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J. Phys. D: Appl. Phys. 42 (2009) 243001 Topical Review

Table 1. International selection of major neutron imaging facilities and their host institutions (alphabetic).

Institution Facility Location Instrument

Atomic Energy Research Institute BNC Budapest, Hungary NRAD
Atominstitut der österreichischen Universitäten ATI Vienna, Austria Neutronenradiographie
Forschungszentrum Geesthacht FRG1 Geesthacht, Germany GENRA-3
Helmholtz-Centre Berlin (Hahn-Meitner-Institut) BER-2 Berlin, Germany CONRAD 1&2
Institute Laue-Langevin ILL Grenoble, France NEUTROGRAPHa

Japan Atomic Energy Res. Institute JRR-3M Tokaimura, Japan
Korean Atomic Energy Res. Inst. HANARO Daejeon, Korea NRF
Laboratoire Leon Brillouin Orphee Gif-sur-Yvette, France Neutronographie
National Institute of Standards NCNR Gaithersburg, USA BT2 NIF
Nuclear Energy Corp. South Africa SAFARI Pelindaba, South Afr. NRAD
Paul-Scherrer-Institut SINQ Villigen, Switzerland NEUTRA / ICON
Technische Universität München FRM-2 Garching, Germany ANTARES / NECTAR

a Not available at the moment.

(a)

(b)

Figure 1. Interaction of matter with (a) x-rays and (b) neutrons.

close to one another in the periodic table, and are even able to
distinguish between different isotopes. Furthermore, several
light elements (notably hydrogen) attenuate strongly, while
layers of many metals that are several centimetres thick can
be penetrated; for example, the heavy element lead is used for
shielding x-rays, but could be deemed a window material for
neutrons. Figure 2 compares the mass attenuation coefficients
of thermal neutrons and 100 keV x-rays (a typical energy used
in imaging) and clearly demonstrates the complementarity of
neutron and x-ray imaging for a broad range of materials. An
important and industrially relevant example is the ability of
neutrons to detect even small amounts of hydrogen-containing
materials such as water, many synthetics (e.g. lubricants, glues,

Figure 2. Mass attenuation coefficients for thermal neutrons and
100 keV x-rays for the elements (natural isotopical mixture unless
stated differently). (Reprinted with permission from [10]. Copyright
2008, University of Oxford Press.)

etc) or plastics contained within metals; in contrast, x-rays
are better suited to identifying small metallic regions inside
synthetic matrices.

Another factor worth considering alongside the relative
penetrability of different materials with neutrons and x-rays is
the spatial resolution attainable and the volume of the sample
that can be imaged. Though the penetration depths achieved
with thermal neutrons for a broad range of important industrial
materials such as metals are significantly higher (around an
order of magnitude) compared with standard x-ray energies
of several tens or hundred kiloelectronvolts, the best spatial
resolution available with neutrons is at least one order of
magnitude lower. As a consequence of this, along with the
fact that neutron beams generally have a larger cross-section
than high intensity synchrotron x-ray beams, neutron (high-
resolution x-ray) tomography is suited to investigating sample
volumes of several cubic centimetres (millimetres).

Material attenuation coefficients (cf figure 2) are energy-
dependent for both neutrons and x-rays. However, for many
applications the energy range of neutrons used for scattering
experiments, i.e. thermal and cold neutrons (around 25 meV

2

TOF – Imaging 

M. Strobl et al., J. Phys. D: Appl. Phys. 42 (2009) 243001 
Neutron Radiograph of 
Rose in Lead Flask  

courtesy of E. Lehmann, PSI 

Isotope Sensitivity (important 
for soft matter studies) 
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TOF – Imaging 
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Wavelength (Angstroms) 

ROI_1 ROI_2 ROI_3 

(311) 

(220) 

(311) 

(220) 

(311) 

(220) 

(311) 

(220) 

(400) 

(420)	  

High	  textured	   Polycrystal	   Mixed	  
Ni	   Inconel	   ROI_1	   ROI_2	   ROI_3	  

220	   2.492	   2.542	   /	   /	   2.509	  
311	   2.125	   2.168	   1.969	   2.146	   2.128	  
400	   1.762	   1.797	   1.781	   1.779	   /	  

courtesy of 
H. Bilheux, 
SNS 
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TOF – Spin Echo Setup 

ILL 2002 courtesy of Bela Farago 
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Velocity Selector 

https://www.ph.tum.de 

Competes with TOF for use with 
reflectometers, SANS instruments, and 
spin echo spectrometers at a reactor 
source. Essentially a rotating collimator.  
Triple-axis spectrometers may use it for 
background suppression. 
 
The resulting wavelength spectrum is 
triangular. 
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Direct Geometry Spectroscopy 
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Momentum Space Representation 

ki 

kf(t) 

Q(t) 
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Direct Geometry Spectroscopy 

Time of flight now encodes energy transfer 
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Direct Geometry Spectroscopy – Cold Range 

CNCS 
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Direct Geometry Spectroscopy – Thermal Range 

ARCS 
Scattering Chamber 
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Intensity vs Resolution 
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Repetition Rate Multiplication 
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Indirect Geometry Spectroscopy 
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Momentum Space Representation 

ki(t) 

kf 

Q(t) 
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Indirect Geometry Spectroscopy – Cold Range 

E. Mamontov et al., Rev. Sci. Instrum. Phys. 82 085109 (2011) 
BASIS 



36 Neutron School, Erice, April 1-10, 2016 

Indirect Geometry Spectroscopy – Cold Range 

E. Mamontov et al., Rev. Sci. Instrum. Phys. 82 085109 (2011) 

•  high flux (~2.5x107 neutrons/cm2/s)  
•  Si-(111) and Si-(311) crystals (the latter is an upgrade) 
•  bandwidth ±300 µeV at 30 Hz, ±150 µeV at 60 Hz 
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Energy Resolution 

G. Ehlers et al., PRL 102 016405 (2009) 

Resolution is flat ~3 µeV 
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Indirect Geometry Spectroscopy – Thermal Range 

Courtesy of Luke Daemen (SNS) 

•  high flux (~5x107 neutrons/cm2/s) and double-focusing 
•  Broad band (-2 to 1000 meV at 30 Hz, 5 to 500 meV at 60 Hz) 
•  Elastic line HMFW ~150 µs 
•  backward and 90° diffraction banks 

VISION 
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Resolution 

Courtesy of Uli Wildgruber (SNS) 

Instrument Resolution again flat 
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TOF spectrometer at a reactor source? 

ESS TDR (2012) 
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Updated Slide   😉 

Franz Gallmeier (SNS) 
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TOF spectrometer at a reactor source? 

ESS TDR (2012) 

performance ~ source peak flux 
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Spectroscopy at a reactor source 

https://www.helmholtz-berlin.de/forschung/oe/em/transport-phenomena/flex/index_en.html 
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Crystal Analyzer 

http://nvlpubs.nist.gov/nistpubs/jres/117/jres.117.002.pdf 
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Ultimate Flexibility 

http://nvlpubs.nist.gov/nistpubs/jres/117/jres.117.002.pdf 
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Crystal monochromator at a pulsed source – HYSPEC 

http://neutrons.ornl.gov/hyspec 

They call their crystal array a “focusing” 
device as the beam is already 
monochromatic at this point by using 
choppers and time-of-flight.  



47 Neutron School, Erice, April 1-10, 2016 

Diffraction by Time-of-Flight 

Bragg’s law 
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Phonons in Be by Time-of-Flight 

Edited by J. Spaepen (1961) 
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Diffraction by Time-of-Flight 
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Phonons in Mg by Time-of-Flight 
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DONE! 

Questions ? 
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Indirect Geometry Spectroscopy – Thermal Range 

Courtesy of Uli Wildgruber 
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Momentum Space Representation 

ki 
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