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States (Phases) of Matter
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States (Phases) of Matter

Source: www.nasa.gov

We now know there are a multitude of distinguishable states of matter, e.g.,

quasicrystals and liquid crystals, which break the continuous translational

and rotational symmetries of a liquid differently from a solid crystal.
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HYPERUNIFORMITY

A hyperuniform many-particle system is one in which normalized density

fluctuations are completely suppressed at very large lengths scales.
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A hyperuniform many-particle system is one in which normalized density

fluctuations are completely suppressed at very large lengths scales.

Disordered hyperuniform many-particle systems can be regarded to be new

ideal states of disordered matter in that they

(i) behave more like crystals or quasicrystals in the manner in which they

suppress large-scale density fluctuations, and yet are also like liquids and

glasses since they are statistically isotropic structures with no Bragg peaks;

(ii) can exist as both as equilibrium and nonequilibrium phases;

(iii) come in quantum-mechanical and classical varieties;

(iv) and, appear to be endowed with unique bulk physical properties.

Understanding such states of matter require new theoretical tools.
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HYPERUNIFORMITY

A hyperuniform many-particle system is one in which normalized density

fluctuations are completely suppressed at very large lengths scales.

Disordered hyperuniform many-particle systems can be regarded to be new

ideal states of disordered matter in that they

(i) behave more like crystals or quasicrystals in the manner in which they

suppress large-scale density fluctuations, and yet are also like liquids and

glasses since they are statistically isotropic structures with no Bragg peaks;

(ii) can exist as both as equilibrium and nonequilibrium phases;

(iii) come in quantum-mechanical and classical varieties;

(iv) and, appear to be endowed with unique bulk physical properties.

Understanding such states of matter require new theoretical tools.

All perfect crystals (periodic systems) and quasicrystals are hyperuniform.

Thus, hyperuniformity provides a unified means of categorizing and

characterizing crystals, quasicrystals and such special disordered systems.
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SCATTERING AND DENSITY FLUCTUATIONS
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Local Density Fluctuations for General Point Patterns

Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a galaxy, or trees in a

forest. Let Ω represent a spherical window of radius R in d-dimensional

Euclidean space R
d.

ΩR Ω
R

Average number of points in window of volume v1(R): 〈N(R)〉 = ρv1(R) ∼ Rd

Local number variance: σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2
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Points can represent molecules of a material, stars in a galaxy, or trees in a

forest. Let Ω represent a spherical window of radius R in d-dimensional

Euclidean space R
d.

ΩR Ω
R

Average number of points in window of volume v1(R): 〈N(R)〉 = ρv1(R) ∼ Rd

Local number variance: σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2

For a Poisson point pattern and many disordered point patterns, σ2(R) ∼ Rd.

We call point patterns whose variance grows more slowly than Rd (window

volume) hyperuniform . This implies that structure factor S(k) → 0 for k → 0.

All perfect crystals and perfect quasicrystals are hyperuniform such that

σ2(R) ∼ Rd−1: number variance grows like window surface area.

Hyperuniformity is aka superhomogeneity: Gabrielli, Joyce & Sylos Labini, Phys. Rev. E (2002)
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Pair Statistics in Direct and Fourier Spaces

Poisson Distribution (Ideal Gas)
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Hidden Order on Large Length Scales

Which is the hyperuniform pattern?
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Scaled Number Variance for 3D Systems at Unit Density
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Remarks About Equilibrium Systems

For single-component systems in equilibrium at average number density ρ,

ρkBTκT =
〈N2〉∗ − 〈N〉2∗

〈N〉∗
= S(k = 0) = 1 + ρ

∫

Rd

h(r)dr

where 〈〉∗ denotes an average in the grand canonical ensemble.

Some observations:

Any ground state (T = 0) in which the isothermal compressibility κT is

bounded and positive must be hyperuniform. This includes crystal ground

states as well as exotic disordered ground states, described later.

However, in order to have a hyperuniform system at positive T , the

isothermal compressibility must be zero; i.e., the system must be

incompressible.

Note that generally ρkTκT 6= S(k = 0).

X =
S(k = 0)

ρkBTκT
− 1 : Nonequilibrium index
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GENERAL ENSEMBLE-AVERAGE FORMULATION

For a translationally invariant point process at number density ρ in R
d:

σ2(R) = 〈N(R)〉
[

1 + ρ

∫

Rd

h(r)α(r;R)dr
]

α(r;R): intersection volume of 2 windows of radius R separated by r

R

r
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For large R, we can show

σ2(R) = 2dφ
[

A

(

R

D

)d

+B

(

R

D

)d−1

+ o

(

R

D

)d−1 ]

,

where A and B are the “volume” and “surface-area” coefficients:

A = S(k = 0) = 1 + ρ

∫

Rd

h(r)dr, B = −c(d)

∫

Rd

h(r)rdr,

D: microscopic length scale, φ: dimensionless density

Hyperuniform: A = 0, B > 0

. – p. 10/33



INVERTED CRITICAL PHENOMENA: Ornstein-Zernike Formalism

h(r) can be divided into direct correlations, via function c(r), and indirect correlations:

c̃(k) =
h̃(k)

1 + ρh̃(k)
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For any hyperuniform system, h̃(k = 0) = −1/ρ, and thus c̃(k = 0) = −∞. Therefore, at the

“critical” reduced density φc, h(r) is short-ranged and c(r) is long-ranged.

This is the inverse of the behavior at liquid-gas (or magnetic) critical points, where h(r) is

long-ranged (compressibility or susceptibility diverges) and c(r) is short-ranged.
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For any hyperuniform system, h̃(k = 0) = −1/ρ, and thus c̃(k = 0) = −∞. Therefore, at the

“critical” reduced density φc, h(r) is short-ranged and c(r) is long-ranged.

This is the inverse of the behavior at liquid-gas (or magnetic) critical points, where h(r) is

long-ranged (compressibility or susceptibility diverges) and c(r) is short-ranged.

For sufficiently large d at a disordered hyperuniform state, whether achieved via a nonequilibrium

or an equilibrium route,

c(r) ∼ −
1

rd−2+η
(r → ∞), c(k) ∼ −

1

k2−η
(k → 0),

h(r) ∼ −
1

rd+2−η
(r → ∞), S(k) ∼ k2−η (k → 0),

where η is a new critical exponent.

One can think of a hyperuniform system as one resulting from an effective pair potential v(r) at

large r that is a generalized Coulombic interaction between like charges. Why? Because

v(r)

kBT
∼ −c(r) ∼

1

rd−2+η
(r → ∞)

However, long-range interactions are not required to drive a nonequilibrium system to a

disordered hyperuniform state.
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SINGLE-CONFIGURATION FORMULATION & GROUND STATES
We showed

σ2(R) = 2dφ

(
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)d [

1− 2dφ

(
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)d

+
1

N

N
∑

i 6=j

α(rij ;R)
]

where α(r;R) can be viewed as a repulsive pair potential:
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For large R, in the special case of hyperuniform systems,

σ2(R) = Λ(R)
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Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

∫ L

0
Λ(R)dR

. – p. 13/33



Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

∫ L

0
Λ(R)dR

We showed that for a lattice

σ2(R) =
∑

q 6=0

(

2πR

q

)d

[Jd/2(qR)]2, Λ = 2dπd−1
∑

q 6=0

1

|q|d+1
.

Epstein zeta function for a lattice is defined by

ZQ(s) =
∑

q 6=0

1

|q|2s
, Re s > d/2.

Summand can be viewed as an inverse power-law potential. For lattices,

minimizer of ZQ(d+ 1) is the lattice dual to the minimizer of Λ.

Surface-area coefficient Λ provides useful way to rank order crystals,

quasicrystals and special correlated disordered point patterns.

. – p. 13/33



Quantifying Suppression of Density Fluctuations at Large Scales: 1D

The surface-area coefficient Λ for some crystal, quasicrystal

and disordered one-dimensional hyperuniform point patterns.

Pattern Λ

Integer Lattice 1/6 ≈ 0.166667

Step+Delta-Function g2 3/16 =0.1875

Fibonacci Chain∗ 0.2011

Step-Function g2 1/4 = 0.25

Randomized Lattice 1/3 ≈ 0.333333

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 2D

The surface-area coefficient Λ for some crystal, quasicrystal

and disordered two-dimensional hyperuniform point patterns.

2D Pattern Λ

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling∗ 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 3D

Contrary to conjecture that lattices associated with the densest

sphere packings have smallest variance regardless of d, we have

shown that for d = 3, BCC has a smaller variance than FCC.

Pattern Λ

BCC Lattice 1.24476

FCC Lattice 1.24552

HCP Lattice 1.24569

SC Lattice 1.28920

Diamond Lattice 1.41892

Wurtzite Lattice 1.42184

Damped-Oscillating g2 1.44837

Step+Delta-Function g2 1.52686

Step-Function g2 2.25

Carried out analogous calculations in high d (Zachary &

Torquato, 2009), of importance in communications. Disordered

point patterns may win in high d (Torquato & Stillinger, 2006).
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1D Translationally Invariant Hyperuniform Systems

An interesting 1D hyperuniform point pattern is the distribution of the

nontrivial zeros of the Riemann zeta function (eigenvalues of random

Hermitian matrices and bus arrivals in Cuernavaca): Dyson, 1970;

Montgomery, 1973; Krbàlek & S̆eba, 2000; g2(r) = 1− sin2(πr)/(πr)2
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1D point process is always negatively correlated, i.e., g2(r) ≤ 1 and pairs of

points tend to repel one another, i.e., g2(r) → 0 as r tends to zero.
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1D point process is always negatively correlated, i.e., g2(r) ≤ 1 and pairs of

points tend to repel one another, i.e., g2(r) → 0 as r tends to zero.

Dyson mapped this problem to a 1D log Coulomb gas at positive temperature:

kBT = 1/2. The total potential energy of the system is given by

ΦN (rN ) =
1

2

N
∑

i=1

|ri|
2 −

N
∑

i≤j

ln(|ri − rj |) .
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Dyson mapped this problem to a 1D log Coulomb gas at positive temperature:

kBT = 1/2. The total potential energy of the system is given by

ΦN (rN ) =
1

2

N
∑

i=1

|ri|
2 −

N
∑

i≤j

ln(|ri − rj |) .

Constructing and/or identifying homogeneous, isotropic hyperuniform

patterns for d ≥ 2 is more challenging. We now know of many more examples.
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More Recent Examples of Disordered Hyperuniform Systems

Fermionic point processes: S(k) ∼ k as k → 0 (ground states and/or

positive temperature equilibrium states): Torquato et al. J. Stat. Mech. (2008)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0

(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack

et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL (2015)

Disordered classical ground states: Uche et al. PRE (2004)
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Natural Disordered Hyperuniform Systems

Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)
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Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)

Nearly Hyperuniform Disordered Systems

Amorphous Silicon (nonequilibrium states): Henja et al. PRB (2013)

Structural Glasses (nonequilibrium states): Marcotte et al. (2013)
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Hyperuniformity and Jammed Packings

Conjecture: All strictly jammed saturated sphere packings are hyperuniform

(Torquato & Stillinger, 2003).
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Hyperuniformity and Jammed Packings

Conjecture: All strictly jammed saturated sphere packings are hyperuniform

(Torquato & Stillinger, 2003).

A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it

is maximally disordered but perfectly rigid (infinite elastic moduli).

Such packings of identical spheres have been shown to be hyperuniform with

quasi-long-range (QLR) pair correlations in which h(r) decays as −1/r4

(Donev, Stillinger & Torquato, PRL, 2005).
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This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast.
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This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast.

Apparently, hyperuniform QLR correlations with decay −1/rd+1 are a

universal feature of general MRJ packings in R
d.

Zachary, Jiao and Torquato, PRL (2011): ellipsoids, superballs, sphere mixtures

Berthier et al., PRL (2011); Kurita and Weeks, PRE (2011) : sphere mixtures

Jiao and Torquato, PRE (2011): polyhedra
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Hyperuniformity, Free Fermions & Determinantal Point Processes

One can map random Hermitian matrices (GUE), fermionic gases, and zeros of

the Riemann zeta function to a unique hyperuniform point process on R.

(r)

d=1

d=3
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Hyperuniformity, Free Fermions & Determinantal Point Processes

One can map random Hermitian matrices (GUE), fermionic gases, and zeros of

the Riemann zeta function to a unique hyperuniform point process on R.

We provide exact generalizations of such a point process in d-dimensional

Euclidean space R
d and the corresponding n-particle correlation functions,

which correspond to those of spin-polarized free fermionic systems in R
d.
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d=1

d=3

g2(r) = 1−
2Γ(1 + d/2) cos2 (rK − π(d+ 1)/4)

K πd/2+1 rd+1
(r → ∞)

S(k) =
c(d)

2K
k + O(k3) (k → 0) (K : Fermi sphere radius)

Torquato, Zachary & Scardicchio, J. Stat. Mech., 2008

Scardicchio, Zachary & Torquato, Phys. Rev., 2009

. – p. 20/33



Hyperuniformity and One-Component Plasma (OCP)

OCP: particles of charge e interacting via the Coulomb potential immersed in a

rigid, uniform background of opposite charge.

By construction, OCPs are hyperuniform. Why? At sufficiently high T , OCPs

are disordered.
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Hyperuniformity and One-Component Plasma (OCP)

OCP: particles of charge e interacting via the Coulomb potential immersed in a

rigid, uniform background of opposite charge.

By construction, OCPs are hyperuniform. Why? At sufficiently high T , OCPs

are disordered.

For d = 2 and a special coupling constant Γ = e2/kBT equal to 2, the total

correlation function h(r) and S(k) have been ascertained exactly by

Jancovici (Phys. Rev. Lett, 1981):

h(r) = − exp
(

−πr2
)

This shows that hyperuniformity is not always accompanied by long-range

correlations.

Corresponding structure factor is given by

S(k) = 1− exp[−k2/(4π)]

S(k) ∼ k2 (k → 0)
. – p. 21/33



Out-of-This-World Example

Superionic ice is a special group of ice phases at high temperatures and

pressures, which may exist in ice-rich planets and exoplanets.

We reported evidence that from 280 GPa to 1.3 TPa, there are several

competing phases within the close-packed oxygen sublattice.

. – p. 22/33



Out-of-This-World Example

Superionic ice is a special group of ice phases at high temperatures and

pressures, which may exist in ice-rich planets and exoplanets.

We reported evidence that from 280 GPa to 1.3 TPa, there are several

competing phases within the close-packed oxygen sublattice.

At higher pressures, these sublattices become unstable to a new unusual

superionic phase in which the oxygen sublattice takes the P21/c symmetry.
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anisotropic behavior and forms a quasi-two-dimensional liquid.
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The diffusive hydrogen in the P21/c superionic phase shows strong

anisotropic behavior and forms a quasi-two-dimensional liquid.

Superionic ice is nearly hyperuniform.
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In the Eye of a Chicken: Photoreceptors

Optimal spatial sampling of light requires that photoreceptors be arranged in

the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are

irregular.
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In the Eye of a Chicken: Photoreceptors

Optimal spatial sampling of light requires that photoreceptors be arranged in

the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are

irregular.

5 Cone Types

Jiao, Corbo & Torquato, PRE (2014).
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Avian Cone Photoreceptors

Disordered mosaics of both total population and individual cone types are

effectively hyperuniform, which has been never observed in any system before

(biological or not). We term this multi-hyperuniformity.

Jiao, Corbo & Torquato, PRE (2014)
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Slow and Rapid Cooling of a Liquid

Classical ground states are those classical particle

configurations with minimal potential energy per particle.
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Typically, ground states are periodic with high crystallographic

symmetries.
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Slow and Rapid Cooling of a Liquid

Classical ground states are those classical particle

configurations with minimal potential energy per particle.
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Typically, ground states are periodic with high crystallographic

symmetries.

Can classical ground states ever be disordered?
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Creation of Disordered Hyperuniform Ground States

Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

• Consider a system of N particles with configuration rN in a fundamental region Ω under periodic

boundary conditions) with a pair potentials v(r) that is bounded with Fourier transform ṽ(k).

k/K

v(k)
~

Kr

v(r)
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Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

• Consider a system of N particles with configuration rN in a fundamental region Ω under periodic

boundary conditions) with a pair potentials v(r) that is bounded with Fourier transform ṽ(k).

The total energy is
ΦN (rN ) =

∑

i<j

v(rij)

=
N

2|Ω|

∑

k

ṽ(k)S(k) + constant

• For ṽ(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, finding configurations in which S(k) is

constrained to be zero where ṽ(k) has support is equivalent to globally minimizing Φ(rN ).

0 1 2 3
k

0

0.5

1

1.5

S(
k)

0 0.5 1 1.5

k/K

0

0.5

1

v(k)
~

0 2 4 6 8 10 12 14 16

Kr

0

0.005

0.01

0.015

0.02

v(r)

These hyperuniform ground states are called “stealthy” and generally highly degenerate.
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These hyperuniform ground states are called “stealthy” and generally highly degenerate.

• Stealthy patterns can be tuned by varying the parameter χ: ratio of number of constrained degrees of

freedom to the total number of degrees of freedom, d(N − 1).
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Creation of Disordered Stealthy Ground States

Unconstrained

Region

Exclusion

Zone S=0

K
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Creation of Disordered Stealthy Ground States

Unconstrained

Region

Exclusion

Zone S=0

K

One class of stealthy potentials involves the following power-law form:

ṽ(k) = v0(1− k/K)m Θ(K − k),

where n is any whole number. The special case n = 0 is just the simple step function.
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In the large-system (thermodynamic) limit with m = 0 and m = 4, we have the following large-r

asymptotic behavior, respectively:
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v(r) ∼
1

r4
(m = 4)
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K

One class of stealthy potentials involves the following power-law form:

ṽ(k) = v0(1− k/K)m Θ(K − k),

where n is any whole number. The special case n = 0 is just the simple step function.
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In the large-system (thermodynamic) limit with m = 0 and m = 4, we have the following large-r

asymptotic behavior, respectively:

v(r) ∼
cos(r)

r2
(m = 0)

v(r) ∼
1

r4
(m = 4)

While the specific forms of these stealthy potentials lead to the same convergent ground-state

energies, this may not be the case for the pressure and other thermodynamic quantities. . – p. 27/33



Creation of Disordered Stealthy Ground States
Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.
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Creation of Disordered Stealthy Ground States
Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.

For 0 ≤ χ < 0.5, ground states are degenerate, disordered & isotropic.

Success rate to achieve disordered ground states is 100%.

(a)   χ= 0.04167 (b)  χ = 0.41071

As χ increases, short-range order increases. This suggests new order metric

τ =
1

(2π)dDd

∫

|k|≤K

[S(k)− 1]2dk,
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Creation of Disordered Stealthy Ground States
Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.

For 0 ≤ χ < 0.5, ground states are degenerate, disordered & isotropic.

Success rate to achieve disordered ground states is 100%.

(a)   χ= 0.04167 (b)  χ = 0.41071

As χ increases, short-range order increases. This suggests new order metric

τ =
1

(2π)dDd

∫

|k|≤K

[S(k)− 1]2dk,

For χ > 1/2, the system undergoes a transition to a crystal phase and the

energy landscape becomes considerably more complex.
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Stealthy Disordered Ground States and Novel Materials

Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps.
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metamaterials with complete photonic band gaps.

Have used disordered, isotropic “stealthy” ground-state configurations to

design photonic materials with large complete (both polarizations and all

directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)
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Have used disordered, isotropic “stealthy” ground-state configurations to

design photonic materials with large complete (both polarizations and all

directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)

These metamaterial designs have been fabricated for microwave regime.

Man et. al., PNAS (2013)

Because band gaps are isotropic, such photonic materials offer advantages

over photonic crystals (e.g., free-form waveguides).
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Stealthy Disordered Ground States and Novel Materials

Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps.

Have used disordered, isotropic “stealthy” ground-state configurations to

design photonic materials with large complete (both polarizations and all

directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)

These metamaterial designs have been fabricated for microwave regime.

Man et. al., PNAS (2013)

Because band gaps are isotropic, such photonic materials offer advantages

over photonic crystals (e.g., free-form waveguides).

Other applications include new phononic devices.
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Ensemble Theory of Disordered Ground States
Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial: Dimensionality of the configuration space depends on the number density ρ (or χ) and

there is a multitude of ways of sampling the ground-state manifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by

u ≡ 〈
Φ(rN )

N
〉 =

ρ

2

∫

Rd

v(r)g2(r)dr

=
ρ

2
ṽ(k = 0)−

1

2
v(r = 0) +

1

2(2π)d

∫

Rd

ṽ(k)S(k)dk.
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Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial: Dimensionality of the configuration space depends on the number density ρ (or χ) and

there is a multitude of ways of sampling the ground-state manifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by

u ≡ 〈
Φ(rN )

N
〉 =

ρ

2

∫

Rd

v(r)g2(r)dr

=
ρ

2
ṽ(k = 0)−

1

2
v(r = 0) +

1

2(2π)d

∫

Rd

ṽ(k)S(k)dk.

Consider the same class of “stealthy” radial potential functions ṽ(k) in R
d. Whenever particle

configurations in R
d exist such that S(k) is constrained to be its minimum value of zero where

ṽ(k) has support, the system must be at its ground state or global energy minimum:

u =
ρ

2
v0 −

1

2
v(r = 0)

Remark: Ground-state manifold is generally highly degenerate.
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Nontrivial: Dimensionality of the configuration space depends on the number density ρ (or χ) and

there is a multitude of ways of sampling the ground-state manifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by
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v(r)g2(r)dr

=
ρ
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ṽ(k = 0)−

1

2
v(r = 0) +

1

2(2π)d

∫

Rd

ṽ(k)S(k)dk.

Consider the same class of “stealthy” radial potential functions ṽ(k) in R
d. Whenever particle

configurations in R
d exist such that S(k) is constrained to be its minimum value of zero where

ṽ(k) has support, the system must be at its ground state or global energy minimum:

u =
ρ

2
v0 −

1

2
v(r = 0)

Remark: Ground-state manifold is generally highly degenerate.

In the thermodynamic limit, parameter χ is related to the number density ρ in any dimension d via

ρχ =
V1(K)

2d (2π)d
,

where V1(K) is the volume of a d-dimensional sphere of radius K .

Remarks: We see that χ and ρ are inversely proportional to one another. Thus, for fixed K and d,

as χ tends to zero, ρ tends to infinity, which corresponds counterintuitively to the uncorrelated

ideal-gas limit (Poisson distribution). As χ increases from zero, the density ρ decreases.
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Pseudo-Hard Spheres in Fourier Space

From previous considerations, we see that that an important contribution to

S(k) is a simple hard-core step function Θ(k −K), which can be viewed as a

disordered hard-sphere system in Fourier space in the limit that χ tends to

zero, i.e., as the number density ρ tends to infinity.

0 1 2 3

k

0

0.5

1

1.5

S
(k)

0 1 2 3
r

0

0.5

1

1.5

g
2
(r)

That the structure factor must have the behavior

S(k) → Θ(k −K), χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which

S(k) = 1 for all k.
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That the structure factor must have the behavior

S(k) → Θ(k −K), χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which

S(k) = 1 for all k.

Imagine carrying out a series expansion of S(k) about χ = 0. We make the

ansatz that for sufficiently small χ, S(k) in the canonical ensemble for a

stealthy potential can be mapped to g2(r) for an effective disordered

hard-sphere system for sufficiently small density.
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Pseudo-Hard Spheres in Fourier Space

Let us define
H̃(k) ≡ ρh̃(k) = hHS(r = k)

There is an Ornstein-Zernike integral eq. that defines FT of appropriate direct correlation function, C̃(k):

H̃(k) = C̃(k) + η H̃(k)⊗ C̃(k),

where η is an effective packing fraction. Therefore,

H(r) =
C(r)

1− (2π)d η C(r)
.

This mapping enables us to exploit the well-developed accurate theories of standard Gibbsian

disordered hard spheres in direct space.
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CONCLUSIONS
Disordered hyperuniform materials can be regarded to be new ideal states of

disordered matter.

Hyperuniformity provides a unified means of categorizing and characterizing

crystals, quasicrystals and special correlated disordered systems.

The degree of hyperuniformity provides an order metric for the extent to which

large-scale density fluctuations are suppressed in such systems.

Disordered hyperuniform systems appear to be endowed with unusual

physical properties that we are only beginning to discover.

Hyperuniformity has connections to physics and materials science (e.g.,

ground states, quantum systems, random matrices, novel materials, etc.),

mathematics (e.g., geometry and number theory), and biology.

Halton-type low-discrepancy point sets are hyperuniform but not disordered.
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