

EUROPEAN SPALLATION SOURCE

Instrument Modelling Analytical Methods

6th April 2016

Ken Andersen

Slow Neutrons vs Light

	light	neutrons
λ	< µm	< nm
E	> eV	> meV
n	1→4	0.9997→1.0001
θ _c	90°	1 °
В	10¹⁸ p/cm²/ster/s (60W lightbulb)	10 ¹⁴ n/cm²/ster/s (60MW reactor)
spin	1	1/2
interaction	electromagnetic	strong force, magnetic
charge	0	0

Topics

- Flux calculations
 - source brightness
 - brilliance transfer
 - calculation of flux given instrument parameters
 - example: ESS powder diffractometer
 - example: SNS STS chopper spectrometer
- Resolution calculations
 - calculation of instrument parameters given resolution requirement
 - formulate the measurement requirement
 - calculate partial differentials
 - match resolution contributions
 - example: ESS powder diffractometer
 - example: SNS STS chopper spectrometer

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

Flux Calculations

EUROPEAN SPALLATION SOURCE

• Basic approach:

 $\Phi = \int_{av}^{\lambda_{\text{max}}} B_{av} \, \mathrm{d}\lambda \times \Delta\Omega$ $\lambda_{
m min}$

Flux Calculations

- Basic approach: $\Phi = \int_{\lambda_{\min}}^{\lambda_{\max}} B_{av} \, d\lambda \times \Delta \Omega$
- Transported solid angle: $\Delta \Omega = \Delta \theta_H \times \Delta \theta_V \times BT$
- *BT* = Brilliance Transfer: between 0 and 1
 - how effective the guide system is
 - if you don't know, set it to 0.5

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

- Divergence range
- Wavelength range

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

McStas simulations for BIFROST spectrometer at ESS viewing 3 cm tall cold moderator

EUROPEAN SPALLATION SOURCE

$t[ms] = L[m] \times \lambda[\text{Å}] / 3.956$

EUROPEAN SPALLATION SOURCE

$t[ms] = L[m] \times \lambda[\text{Å}] / 3.956$ $L[m] = T[ms] \times 3.956 / \Delta\lambda[\text{Å}]$

$$t[ms] = L[m] \times \lambda[\text{Å}] / 3.956$$
$$L[m] = T[ms] \times 3.956 / \Delta\lambda[\text{Å}]$$

where $\Delta \lambda$ is determined by the performance requirements: e.g. $\lambda_{\min} = 4 \text{ Å } \lambda_{\max} = 12 \text{ Å} \Rightarrow L = 35 \text{ m}$

33

Example: ESS Powder Diffractometer

$$t[ms] = L[m] \times \lambda[\text{Å}] / 3.956$$

Г

$$\Phi = \int_{\lambda_{\min}}^{\lambda_{\max}} B_{av} \, d\lambda \times \Delta\Omega$$
$$0.6 \text{ Å} < \lambda < 2.4 \text{ Å}$$

41

$$t[ms] = L[m] \times \lambda[\text{Å}] / 3.956$$

$$\Phi = \int_{\lambda_{\min}}^{\lambda_{\max}} B_{av} \, d\lambda \times \Delta\Omega$$
$$\Delta \lambda = 1.6 \times 10^{-3} \,\text{\AA}$$

Resolution Calculations

- Calculation of instrument parameters given resolution requirement
- Decide on the relevant quantity
- Express how it is calculated
- Calculate its uncertainty
 - requires the partial derivatives
- Match the various contributions
 - maximises flux for a given resolution

EUROPEAN SPALLATION SOURCE

$$d = \frac{\lambda}{2\sin\theta}$$

$$d = \frac{\lambda}{2\sin\theta}$$

$$\left|\Delta d^{2} = \left(\frac{\partial d}{\partial \lambda}\Delta\lambda\right)^{2} + \left(\frac{\partial d}{\partial \theta}\Delta\theta\right)^{2}\right|$$

$$d = \frac{\lambda}{2\sin\theta}$$

$$\Delta d^{2} = \left(\frac{\partial d}{\partial \lambda}\Delta \lambda\right)^{2} + \left(\frac{\partial d}{\partial \theta}\Delta \theta\right)^{2}$$

$$\left[\left(\Delta d/d \right)^2 = \left(\Delta \lambda/\lambda \right)^2 + \left(\cot \theta \Delta \theta \right)^2 \right]$$
$$= \left(\Delta t/t \right)^2 + \left(\cot \theta \Delta \theta \right)^2$$

$$d = \frac{\lambda}{2\sin\theta}$$

$$\Delta d^{2} = \left(\frac{\partial d}{\partial \lambda}\Delta \lambda\right)^{2} + \left(\frac{\partial d}{\partial \theta}\Delta \theta\right)^{2}$$

55 POLARIS @ ISIS TS1

$$d = \frac{\lambda}{2\sin\theta} \qquad \Delta d^2 = \left(\frac{\partial d}{\partial \lambda}\Delta\lambda\right)^2 + \left(\frac{\partial d}{\partial \theta}\Delta\theta\right)^2$$

$$\left(\Delta d/d\right)^2 = \left(\Delta\lambda/\lambda\right)^2 + \left(\cot\theta\Delta\theta\right)^2$$

$$= \left(\Delta t/t\right)^2 + \left(\cot\theta\Delta\theta\right)^2$$
the second second

 θ (deg)

$$d = \frac{\lambda}{2\sin\theta} \qquad \qquad \Delta d^2 = \left(\frac{\partial d}{\partial\lambda}\Delta\lambda\right)^2 + \left(\frac{\partial d}{\partial\theta}\Delta\theta\right)^2$$

$$\left[\left(\Delta d/d\right)^{2} = \left(\Delta\lambda/\lambda\right)^{2} + \left(\cot\theta\Delta\theta\right)^{2}$$
$$= \left(\Delta t/t\right)^{2} + \left(\cot\theta\Delta\theta\right)^{2}$$
$$= \left(\Delta t/t\right)^{2} + \Delta\theta^{2}$$
choose to match resolution terms for $2\theta = 90^{\circ}$

 θ (deg)

$$d = \frac{\lambda}{2\sin\theta} \qquad \qquad \Delta d^2 = \left(\frac{\partial d}{\partial\lambda}\Delta\lambda\right)^2 + \left(\frac{\partial d}{\partial\theta}\Delta\theta\right)^2$$

$$\left[\left(\Delta d/d \right)^2 = \left(\Delta \lambda/\lambda \right)^2 + \left(\cot \theta \Delta \theta \right)^2 \\ = \left(\Delta t/t \right)^2 + \left(\cot \theta \Delta \theta \right)^2 \\ = \left(\Delta t/t \right)^2 + \Delta \theta^2$$
choose to match resolution terms for 20 = 90 °
science case: optimise for $\Delta d/d = 0.3\%^{\circ.1} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$d = \frac{\lambda}{2\sin\theta} \qquad \qquad \Delta d^2 = \left(\frac{\partial d}{\partial\lambda}\Delta\lambda\right)^2 + \left(\frac{\partial d}{\partial\theta}\Delta\theta\right)^2$$

$$\left[\left(\Delta d/d \right)^2 = \left(\Delta \lambda/\lambda \right)^2 + \left(\cot \theta \Delta \theta \right)^2 \\ = \left(\Delta t/t \right)^2 + \left(\cot \theta \Delta \theta \right)^2 \\ = \left(\Delta t/t \right)^2 + \Delta \theta^2$$
choose to match resolution terms for 20 = 90 ° science case: optimise for $\Delta d/d = 0.3\%^{0.1}$

$$\Rightarrow \Delta t/t = 2 \times 10^{-3}, \ \Delta \theta = 2 \times 10^{-3} \quad \stackrel{0.01}{\overset{0}{_{-3}}} \quad \stackrel{20}{\overset{40}{_{-60}}} \quad \stackrel{40}{\overset{60}{_{-80}}} \quad \stackrel{60}{\overset{80}{_{-80}}}$$

FUROPEAN

SOURCE

$$\hbar\omega = E_i - E_f$$

$$\hbar\omega = E_i - E_f$$

N

science case: "1% resolution at λ =5Å" detector sample chopper

time

$$\Delta t_{\rm det} = \sqrt{(\Delta t_{\rm det}^{mod})^2 + (\Delta t_{\rm det}^{chop})^2}$$

 Δt_{mod}

$$\Delta t_{\rm det} = \sqrt{\left(\Delta t_{\rm det}^{mod}\right)^2 + \left(\Delta t_{\rm det}^{chop}\right)^2}$$

$$\Delta t_{det}^{mod} = \Delta t_{det}^{chop} = \frac{1}{\sqrt{2}} 19 \,\mu s = 13.4 \,\mu s$$

 Δt_{mod}

$$\Delta t_{\rm det} = \sqrt{\left(\Delta t_{\rm det}^{mod}\right)^2 + \left(\Delta t_{\rm det}^{chop}\right)^2}$$

$$\Delta t_{det}^{mod} = \Delta t_{det}^{chop} = \frac{1}{\sqrt{2}} 19 \,\mu s = 13.4 \,\mu s$$

 Δt_{mod}

$$\Delta t_{\rm det} = \sqrt{\left(\Delta t_{\rm det}^{mod}\right)^2 + \left(\Delta t_{\rm det}^{chop}\right)^2}$$

$$\Delta t_{det}^{mod} = \Delta t_{det}^{chop} = \frac{1}{\sqrt{2}} 19\,\mu s = 13.4\,\mu s$$

 Δt_{mod}

Summary

- Peak vs Time-Average Brightness
- Brilliance Transfer
 - if you don't know it, set it 50%
 - very useful metric when evaluating simulations
- Calculation of flux given instrument parameters
- Flux at sample:
- Resolution calculations

$$\Phi = \int_{\lambda}^{\lambda_{\max}} B_{av} \, \mathrm{d}\lambda \times \Delta\Omega$$

- calculation of instrument parameters given resolution requirement
- formulate the measurement requirement
- calculate partial differentials
- match resolution contributions
- example: ESS powder diffractometer
- example: SNS STS chopper spectrometer

Thank you!

and the second

EUROPEAN SPALLATION SOURCE

5th June 2015