
Fundamental Aspects of the Glass Transition
Maximally Random Jammed States: Prototypical Glasses

Salvatore Torquato

Department of Chemistry,

Department of Physics,

Princeton Institute for the Science and Technology of Materials,

and Program in Applied & Computational Mathematics

Princeton University

. – p. 1/35



Supercooled Liquids and Glass Transition
A quantitative understanding of nature of the physics of the glass transition is

one of the most fascinating and challenging problems in mate rials science

and condensed-matter physics.

A sufficiently rapid quench of a liquid into a supercooled reg ime can avoid

crystal nucleation to produce a glass with a relaxation time that is much larger

than experimental time scales, resulting in an amorphous characteristic state

(without long-range order) that is simultaneously mechani cally rigid, i.e., it

does not flow like a liquid .

One phenomenological definition of Tg is the temperature at which the shear

viscosity reaches 1013 poise . . – p. 2/35



Supercooled Liquids and Glass Transition
Kob (1997) summarizes the following commonly held view:

“If a glass former is cooled from its melting temperature to i ts glass transition

temperature Tg , it shows an increase of its relaxation time by some 14

decades without a significant change in its structural properties.. .”

I will call this the “frozen-liquid” picture.

Roughly speaking, glasses are structurally liquids that cannot flow .

However, any ergodic amorphous state cannot resist shear . Thus, the rigidity

of an amorphous state is a highly nontrivial phenomenon .

As P. W. Anderson (1999) puts it: “ We are so accustomed to this rigidity property

that we don’t accept its almost miraculous nature, that is an ’emergent property’ not

contained in the simple laws of physics, although it is a consequence of them.”

Over the course of time many different theories have been put forward to

explain the dramatic slowing down on approach to Tg .

Thermodynamically-based : Entropy theory of Adams, Gibbs and Di Marzio

(1958,1965); Random First-Order Transition Theory (Lubch enko and

Wolynes, 2006)

Dynamically-based : Mode-coupling theory of G ötze and Sj ögren (1992)
. – p. 3/35



Supercooled Liquids and Glass Transition
A powerful computational and modeling approach relating th e

phenomonelogy of vitrification and supercooling to molecul ar-scale events is

the quantification of the liquid’s energy landscape , i.e., the multidimensional

potential energy surface. Stillinger and Weber, 1985

A question that has received considerable attention in rece nt years is whether

the growing relaxation times under supercooling have accompanying growing

structural length scales .

Two distinct schools of thought have emerged to address this question:
One camp asserts that static structure of a glass, as measure d by pair

correlations , is indistinguishable from that of the corresponding liquid .

There is no signature of increasing static correlation leng th scales

accompanying the glass transition, it identifies growing dynamical length

scales . Berthier, Biroli, Bouchaud, Kob, Reichman, Sastry, Chandl er

The other camp contends that there is a static growing length scale of

thermodynamic origin , and therefore one need not look for growing length

scales associated with the dynamics. Lubchenko, Wolynes, Hocky,

Markland, Reichman

. – p. 4/35



Idealized Jammed Hard-Sphere Models

Consider packings of frictionless identical spheres in the absence of gravity ,

which represents an idealization of the laboratory situati on for investigations

of jammed packings.

This simplification follows that tradition in condensed-ma tter science to

exploit idealized models, such as the Ising model , which is regarded as one of

the pillars of statistical mechanics.

In that tradition, this idealization offers the opportunit y to obtain fundamental

as well as practical insights and to uncover unifying concepts that describe a

broad range of phenomena. The stripped-down hard-sphere “Ising model” for

jammed packings embodies the primary attributes of real packings and some

molecular systems , while simultaneously generating mathematical solutions

and challenges.

A packing of hard spheres has a packing fraction φ (fraction of space covered

by the spheres).
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3D Hard-Sphere Phase Diagram
Torquato & Stillinger, Rev. Mod. Phys. (2010)

Rapid compression (increase of φ) is like rapid cooling (decrease of T ) of

molecular liquid.

Maximally random jammed (MRJ) state presumably is the mechanically rigid

packing associated with the fastest compression rate .
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MRJ State: Prototypical Glass

Maximally random jammed (MRJ) state is a prototypical glass :

maximally disordered;

infinite bulk and shear moduli;

perfectly nonergodic - forever trapped in configuration spa ce

. – p. 7/35
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MRJ State: Prototypical Glass

Maximally random jammed (MRJ) state is a prototypical glass :

maximally disordered;

infinite bulk and shear moduli;

perfectly nonergodic - forever trapped in configuration spa ce

MRJ state is definitively not a “frozen liquid” as reflected by the fact

that it possesses the exotic hyperuniformity property with

quasi-long-range pair correlations .

MRJ state requires us to think more deeply about the nature of

randomness in many-particle or many-spin systems.
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Definitions
A point process in d-dimensional Euclidean space R

d is a distribution of an

infinite number of points in R
d with configuration r1, r2, . . . with a

well-defined number density ρ (number of points per unit volume). This is

statistically described by the n-particle correlation function gn(r1, , . . . , rn).

A lattice Λ in d-dimensional Euclidean space R
d is the set of points that are

integer linear combinations of d basis (linearly independent) vectors ai, i.e.,

{n1a1 + n2a2 + · · · + ndad | n1, . . . , nd ∈ Z}

The space R
d can be geometrically divided into identical regions F called

fundamental cells , each of which contains just one point. For example, in R
2:

Every lattice has a dual (or reciprocal) lattice Λ∗.

A periodic point distribution in R
d is a fixed but arbitrary configuration of N

points ( N ≥ 1) in each fundamental cell of a lattice.
. – p. 8/35



Definitions
For statistically homogeneous and isotropic point process es in R

d at number density ρ , g2(r) is

a nonnegative radial function that is proportional to the probability density of pair distances r.

We call

h(r) ≡ g2(r) − 1

the total correlation function .

When there is no long-range order in the system, h(r) → 0 [or g2(r) → 1 ] in the large-r limit .

We call a point process disordered if h(r) tends to zero sufficiently rapidly such that it is

integrable over all space .

The nonnegative structure factor S(k) is defined in terms of the Fourier transform of h(r), which

we denote by h̃(k):

S(k) ≡ 1 + ρh̃(k),

where k denotes wavenumber .

When there is no long-range order in the system, S(k) → 1 in the large- k limit, the dual-space

analog of the aforementioned direct space condition.
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Pair Statistics for Spatially Uncorrelated and Ordered Point Processes
Poisson Distribution (Ideal Gas)
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Metastable and Glassy States in Hard-Sphere Systems

Is there a glass transition at packing fraction φ = φg such that

φf < φg < φrcp?

How does one identify a metastable extension of stable disordered

branch ? Previous investigators assumed metastability if g2(r)

exhibited no peak around r =
√

2D.

Rintoul and Torquato, PRL (1996)
. – p. 11/35



Metastable and Glassy States in Hard-Sphere Systems

Previous metastability criterion is deficient . We instead used the bond-orientational parameter Q6

introduced by Steinhardt, Nelson and Ronchetti (1983) to me asure incipient crystallization .

Structure Q6

Icosahedral 0.66332

Face-centered Cubic 0.57452

Hexagonal Close Packed 0.48476

Body-centered Cubic 0.51059

Simple Cubic 0.35355

All systems crystallized on relatively very small time scales and hence found no evidence of a

glass transition for φf < φ < φrcp.

Rintoul and Torquato, PRL (1996)
. – p. 12/35



Random Close Packing (RCP)

• Bernal (circa 1950’s): ‘In closing we must not forget the com mentary on random

packing which Saint Luke attributes to Jesus, “ Give and it will be given unto you;

good measure, pressed down, and shaken together, and runnin g over. For by your

standard of measure it will be measured to you in return.” ’

• An anonymous author summarizes this traditional view as fol lows: “ball bearings

and similar objects have been shaken, settled in oil, stuck w ith paint, kneaded

inside rubber balloons – and all with no better result than (a packing fraction of) ...

0.636.”

• Prevailing notion is that the random close packed (RCP) state corresponds to the

maximum density that a large, random collection of spheres can attain and is a

universal quantity.
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Is Random Close Packing Well Defined?

Torquato, Truskett and Debenedetti, PRL (2000)

NO!

. – p. 14/35
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Problems with RCP

• Dynamical parameters: pouring rate, and amplitude and frequency of vi bration.

Interactions : interparticle forces, friction (inhibiting densificatio n), and gravity.

• φc value is protocol-dependent !

• Randomness was never defined!
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Is Random Close Packing Well Defined?

Torquato, Truskett and Debenedetti, PRL (2000)

NO!

Problems with RCP

• Dynamical parameters: pouring rate, and amplitude and frequency of vi bration.

Interactions : interparticle forces, friction (inhibiting densificatio n), and gravity.

• φc value is protocol-dependent !

• Randomness was never defined!

• Terms “ random ” and “ close packed ” are at odds with one another.

Resolution

• By quantifying order (disorder) in compressed hard-sphere systems (generated

via molecular dynamics), we showed that the RCP state is ill- defined.

• To replace the RCP state, we introduced the concept of the maximally random

jammed (MRJ) state, which can be made precise.
. – p. 14/35



Jamming Categories
Torquato and Stillinger, J. Phys. Chem. B (2001)

Locally jammed : Each particle in the system is individually trapped by its

neighbors, i.e., each sphere has at least d + 1 contacting spheres not all in the

same hemisphere.

Collectively jammed : A locally jammed configuration is one in which no

subset of the particles can be continuously displaced, so th at its members

move out of contact with the remainder set.

Strictly jammed : A collectively jammed configuration that disallows all

uniform volume-nonincreasing deformations.
Boundary conditions matter!
Can show strict jamming implies infinite bulk and shear moduli !
Jamming can be tested rigorously! using linear programming.
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Jamming Categories
Torquato and Stillinger, J. Phys. Chem. B (2001)

Locally jammed : Each particle in the system is individually trapped by its

neighbors, i.e., each sphere has at least d + 1 contacting spheres not all in the

same hemisphere.

Collectively jammed : A locally jammed configuration is one in which no

subset of the particles can be continuously displaced, so th at its members

move out of contact with the remainder set.

Strictly jammed : A collectively jammed configuration that disallows all

uniform volume-nonincreasing deformations.
Boundary conditions matter!
Can show strict jamming implies infinite bulk and shear moduli !
Jamming can be tested rigorously! using linear programming.

Isostaticity
Isostatic packings are those that possess the minimal number of contacts for

a jamming category. Determined by the number of degrees of freedom and

number of constraints . For frictionless spheres,
Local jamming requires that each sphere has at least d + 1 contacts .

Strict jamming requires that the mean contact number Z = 2d.
. – p. 15/35



Jamming Categories

Jamming Animations
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Quantifying Disorder/Order in Condensed Phase Systems

Interesting Spin Configurations
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Quantifying Disorder/Order in Condensed Phase Systems

Interesting Spin Configurations

By a certain measure , the binarized Mona Lisa is 105 times more ordered than the Poisson case .
. – p. 17/35



Quantifying Disorder/Order in Condensed Phase Systems
Ideally, one would like to use order metrics to structurally characterize

condensed matter . For concreteness, consider a many-body system with

configuration r
N ≡ r1, r2, . . . , rN .

Must settle for reduced information. For example, scalar order metrics

ψ1(r
N ), ψ2(r

N ), ψ3(r
N ), . . . that are positively correlated such that

0 ≤ ψi(r
N ) ≤ 1.

It is desirable to devise order metrics that rank orders stru ctures in

accordance with our intuition:

Perfect crystals
Perturbed crystals
Quasicrystals
Highly defective crystals
Correlated random systems (e.g., glasses such as the “maximally random

jammed” state )
Uncorrelated random systems (ideal gases)

Often, ψ is a distance metric with respect to some reference state .

More generally, one can devise tensor order metrics.

. – p. 18/35



Scalar Translational and Bond-Orientational Order Metric s

Figure 1: (a) Bond-orientational order metric Q for the packing of interest (left) contains informa-

tion about the degree to which near-neighbor bonds have regular six-fold coordination ( ei6θ ). Triangular

lattice (right) has perfect orientational order Q = 1. (b) Translational order metric T contains information

about relative spacing of particles (left) relative to that of the densest packing at the same density (right).
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Scalar Translational and Bond-Orientational Order Metric s

Figure 1: (a) Bond-orientational order metric Q for the packing of interest (left) contains informa-

tion about the degree to which near-neighbor bonds have regular six-fold coordination ( ei6θ ). Triangular

lattice (right) has perfect orientational order Q = 1. (b) Translational order metric T contains information

about relative spacing of particles (left) relative to that of the densest packing at the same density (right).

Another Translational Order Metric

T =
1

Rc

Z Rc

0
|g2(r) − 1|dr

Truskett, Torquato & Debenedetti 2000

Local Order Metric for Tetrahedral Liquid

Orientational order in the vicinity of oxygen atom i of a given molecule:

qi = 1 −
3

8

X

j>k

[cos θijk + 1/3]2

where θijk is the angle formed by the lines joining the oxygen atom and th ose of its

nearest neighbor j and k (≤ 4).
Chau and Hardwick (1998) . – p. 19/35



Approaches to Study Jammed Particle Packings

Within the domains of analytical theory and computer
simulations, two conceptual approaches for their study have
emerged:

Ensemble approach - For a given packing protocol, aims to
understand typical configurations and their frequency of
occurrence .
Bernal (1960); Edwards (1994); Liu and Nagel, 1998; OHern et
al. (2003); Parisi and Zamponi (2010)

Geometric-structure approach - Emphasizes quantitative
characterization of single-packing configurations , without
regard to their occurrence frequency in the algorithmic method
used to produce them.

Torquato and Stillinger (2010)

Geometric-structure approach encompasses ensemble approac h.
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Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)
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Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Frictionless Sphere Packings
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Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Frictionless Sphere Packings

Optimal Strictly Jammed Packings

A: Z = 7 MRJ: Z = 6 (isostatic ) B: Z = 12

MRJ state is a prototypical glass in that it is maximally disordered with infinite elastic moduli .
. – p. 21/35



RCP Dramatically Breaks Down in Two Dimensions
Some modern supporters of the RCP concept have attempted to s alvage it by

identifying the most probable packings as the most disordered .
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RCP Dramatically Breaks Down in Two Dimensions
Some modern supporters of the RCP concept have attempted to s alvage it by

identifying the most probable packings as the most disordered .

Standard methods tend to produce jammed 2D packings of identical disks that

are highly crystalline . Thus, these would be identified as RCP states !

Using a new packing algorithm, we have recently shown that MRJ isostatic

jammed states exist .
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Atkinson, Stillinger & Torquato, PNAS (2014) . – p. 22/35



MRJ Particle Packings Possess Quasi-Long-Range Correlations
Such packings of identical spheres have been shown to be hyperuniform with

quasi-long-range (QLR) pair correlations in which h(r) decays as −1/r4

(Donev, Stillinger & Torquato, PRL, 2005 ).
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This is to be contrasted with the hard-sphere equilibrium fluid with

correlations that decay exponentially fast .
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This is to be contrasted with the hard-sphere equilibrium fluid with

correlations that decay exponentially fast .

Apparently, hyperuniform QLR correlations with decay −1/rd+1 are a

universal feature of general MRJ packings in R
d.

Zachary, Jiao and Torquato, PRL (2011) : ellipsoids, superballs, sphere mixtures

Berthier et al., PRL (2011); Kurita and Weeks, PRE (2011); Ho pkins et al. 2013 : sphere mixtures

Jiao and Torquato, PRE (2011) : polyhedra
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MRJ Packings of Nontiling Platonic Solids
Jiao & Torquato, PRE (2011)

Hyperuniform with quasi-long-rang (QLR) pair correlation s (1/r4) and isostatic .
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Figure 2: (a) Structure factor S(k) of the MRJ packings of the nontiling Platonic solids. The ins et

shows that S(k) is linear in k for small k values. (b) Local contacting configurations: from left to ri ght,

tetrahedra, icosahedra, dodecahedra, and octahedra.
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Sphere Packing Problem
For d = 2, triangular lattice: φmax = π/

√
12 ≈ 0.91 (Fejes Tóth, 1940).

For d = 3, Kepler (1606) conjectured that optimal packing is FCC latt ice:

φmax = π/
√

18 ≈ 0.74 (Hales 1998, 2005).

Each dimension has its own distinct properties .

In certain sufficiently low dimensions, optimal packings ar e believed to be

lattice packings . Certain dimensions are remarkably symmetric and dense:

E8 lattice (Viazovska, 2016) and Leech lattice (Cohn et al., 2016) are optimal .

Finding shortest lattice vector for a lattice grows superexponentially with d.

In R
10, the best known arrangement is a non-lattice packing found by Best

(1980)!
. – p. 25/35



Holes ind-Dimensional Lattice Packings

Hypercubic lattice packing becomes unsaturated at d = 4!
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Holes ind-Dimensional Lattice Packings

Hypercubic lattice packing becomes unsaturated at d = 4!

In sufficiently high dimensions, all lattice packings are almost surely

unsaturated .

GENERAL PRINCIPLE : Almost all volume in a high-dimensional particle is

concentrated near the particle surface.

Example: The fraction of the volume of a sphere up to 90% of its radius is

given by (9/10)d, which tends rapidly to zero as d → ∞.
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Minkowski Lower Bound on φmax for Lattice Sphere Packings

Minkowski (1905): The maximal packing density φmax of a lattice packing of

congruent spheres in R
d for d ≥ 2 satisfies

φmax ≥ ζ(d)

2d−1
,

where ζ(d) =
∑

∞

k=1
k−d is the Riemann zeta function.

. – p. 27/35
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. – p. 27/35



Minkowski Lower Bound on φmax for Lattice Sphere Packings

Minkowski (1905): The maximal packing density φmax of a lattice packing of

congruent spheres in R
d for d ≥ 2 satisfies

φmax ≥ ζ(d)

2d−1
,

where ζ(d) =
∑

∞

k=1
k−d is the Riemann zeta function.

Remarks :

1. This is a nonconstructive bound.

2. No one has been able to provide any exponential improvement on the

dominant asymptotic behavior 2−d.

. – p. 27/35



Minkowski Lower Bound on φmax for Lattice Sphere Packings

Minkowski (1905): The maximal packing density φmax of a lattice packing of

congruent spheres in R
d for d ≥ 2 satisfies

φmax ≥ ζ(d)

2d−1
,

where ζ(d) =
∑

∞

k=1
k−d is the Riemann zeta function.

Remarks :

1. This is a nonconstructive bound.

2. No one has been able to provide any exponential improvement on the

dominant asymptotic behavior 2−d.

3. For large d, best lower and upper bounds , respectively, are of the form:

φ ≥ 2d

2d
(Ball, 1992)

φ ≤ 1

20.5990d
(Kabatiansky and Levenshtein, 1978)
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Random Packings Beat Checkerboard Lattice in Relatively Low d.

Torquato and Stillinger, Phys. Rev. E (2006)

Disordered sphere packings exist with g2(r) = Θ(r − 1) and φ = 1/2d
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− 1 for r ≥ 1.

This disordered packing beats the checkerboard lattice Dd for d > 27!
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Z(r) = ρs1(1)

∫ r

1

xd−1g2(x)dx =
rd

d
− 1 for r ≥ 1.

This disordered packing beats the checkerboard lattice Dd for d > 27!

For checkerboard lattice, can show that Zn ∼ d2n, where Zn is # of centers in

nth coordination shell at squared distance n.

At r =
√

3 and d > 6

Z(
√

3)

Z3

∼ 3d/2

4d6/45
(Z(

√
3)/Z3 = 1013 for d = 100)
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Disordered Packings Might Win in High Dimensions

Using test disordered pair correlation functions and a conjecture concerning the existence of

disordered packings , we derived the following conjectural lower bound on φmax for sphere

packings in R
d:

φmax ≥
c(d)

2(0.7786...)d
.

This provides the putative exponential improvement over Minkowski’s 100-year-old bound

(φmax ≥ 1/2d) for lattices.

Torquato and Stillinger, Experimental Math. (2006)
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c(d)

2(0.7786...)d
.

This provides the putative exponential improvement over Minkowski’s 100-year-old bound

(φmax ≥ 1/2d) for lattices.

Torquato and Stillinger, Experimental Math. (2006)

This asymptotic form was shown to be more robust than we previ ously thought - might it be

optimal ?

Scardicchio, Stillinger & Torquato, J. Math. Phys. (2008)

This implies that the entropically favored high-density states are highly degenerate and

disordered in sufficiently high d, eliminating a first-order disorder-order phase transition.

Also implies that the ground states of systems interacting with LJ-like potentials are highly

degenerate and disordered in sufficiently high d.
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Ghost RSA Packing: An Exactly Solvable Model

Torquato and Stillinger, Phys. Rev. E (2006)

The “ghost” random sequential addition (RSA) packing is an exactly solvable

model, i.e., all of the n-particle correlation functions ( g2, g3, etc.) can be

expressed exactly for all allowable densities and in any dim ension d.

1

3

2
3’

4

3

4

The density at any time t is given by φ(t) = [1 − exp(−2dt)]/2d, and the

maximum density is

φ(∞) =
1

2d
,

proving that there is a disordered packing that achieves the Minkowski bound!
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Ghost RSA Packing: An Exactly Solvable Model
At small times or, equivalently, low densities, can show

g2(r; φ) = Θ(r − 1) + O(φ3).

At the maximum density φ(∞) = 1/2d,

g2(r;∞) ≡ lim
t→∞

g2(r; t) =
Θ(r − 1)

1 − α2(r; 1)/2
.
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In the limit d → ∞ and for φ = 1/2d,

gn(r12, . . . , r1n;∞) ∼
n∏

i<j

g2(rij ;∞), and g2(r;∞) ∼ Θ(r − 1).
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A “Nonlinear" Path to Crucial Information: C2
Desire finite set of lower-order functions with high sensitivity

Two-point cluster function: C2(r)

r

. – p. 33/35



A “Nonlinear" Path to Crucial Information: C2
Desire finite set of lower-order functions with high sensitivity

Two-point cluster function: C2(r)

r

(a) (b)

Figure 3: Schematic of set of all microstructures with particular S2 shown as the

region enclosed by the solid contour in both panels. (a) Yell ow region shows set of

all microstructures associated with the same S2 and S3. (b) Smaller yellow region

shows set of all microstructures associated with the same S2 and C2.

Jiao, Stillinger & Torquato, Proc. Nat. Acad. Sci. (2009)
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Existence of Disordered Packings in High Dimensions
Definition: Disordered packing is one in which g2(r) decays to 1 faster than 1/|r|d.
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Existence of Disordered Packings in High Dimensions
Definition: Disordered packing is one in which g2(r) decays to 1 faster than 1/|r|d.

Existence Theorem for Point Processes: A necessary condition for the

existence of a nonnegative pair correlation function g2(r) (nonnegative

tempered distribution) of a translationally invariant poi nt process at some

number (center) density ρ is that S(k) ≡ 1 + ρh̃(k) ≥ 0, where

h(r) ≡ g2(r) − 1 and h̃(k) is the Fourier transform of h(r).

Conjecture: A hard-core nonnegative tempered distribution g2(r) is a pair

correlation function of a disordered sphere packing in R
d at number density ρ

for sufficiently large d if and only if S(k) ≥ 0. The maximum achievable

density is the terminal density φ∗.
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Existence of Disordered Packings in High Dimensions
Definition: Disordered packing is one in which g2(r) decays to 1 faster than 1/|r|d.

Existence Theorem for Point Processes: A necessary condition for the

existence of a nonnegative pair correlation function g2(r) (nonnegative

tempered distribution) of a translationally invariant poi nt process at some

number (center) density ρ is that S(k) ≡ 1 + ρh̃(k) ≥ 0, where

h(r) ≡ g2(r) − 1 and h̃(k) is the Fourier transform of h(r).

Conjecture: A hard-core nonnegative tempered distribution g2(r) is a pair

correlation function of a disordered sphere packing in R
d at number density ρ

for sufficiently large d if and only if S(k) ≥ 0. The maximum achievable

density is the terminal density φ∗.

Decorrelation Principle: Unconstrained spatial correlations in disordered

sphere packings that may be present in low dimensions vanish asymptotically

in high dimensions; and gn for any n ≥ 3 can be inferred entirely (up to some

small error) from a knowledge of the number density ρ and the pair correlation

function g2(r).
• Why? φ vanishes exponentially fast as d → ∞: φmax ≤ 2−0.5990d.

Also, other known necessary conditions only have relevance in very low

dimensions .
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Obtaining Lower Bounds Using Disordered Test Functions

Torquato and Stillinger (2002): Consider a family of test radial tempered

distributions g2(r; a) at density φ, where a denotes a set of parameters.

Now consider the optimization problem
max

a
φ

subject to the constraints
g2(r; a) = 0 on [0, 1],

g2(r; a) ≥ 0 ∀r,

S(k; a) ≥ 0 ∀k.

We call φ∗ ≡ maxa φ the terminal density and note that if such a g2 at φ∗ is

realizable by a packing, then φmax ≥ φ∗.

. – p. 35/35
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distributions g2(r; a) at density φ, where a denotes a set of parameters.

Now consider the optimization problem
max

a
φ

subject to the constraints
g2(r; a) = 0 on [0, 1],

g2(r; a) ≥ 0 ∀r,

S(k; a) ≥ 0 ∀k.

We call φ∗ ≡ maxa φ the terminal density and note that if such a g2 at φ∗ is

realizable by a packing, then φmax ≥ φ∗.

Using this optimization scheme, we can recover the Minkowski and Ball

asymptotic lower-bound forms on φmax for lattices using disordered test g2’s.
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Obtaining Lower Bounds Using Disordered Test Functions

Torquato and Stillinger (2002): Consider a family of test radial tempered

distributions g2(r; a) at density φ, where a denotes a set of parameters.

Now consider the optimization problem
max

a
φ

subject to the constraints
g2(r; a) = 0 on [0, 1],

g2(r; a) ≥ 0 ∀r,

S(k; a) ≥ 0 ∀k.

We call φ∗ ≡ maxa φ the terminal density and note that if such a g2 at φ∗ is

realizable by a packing, then φmax ≥ φ∗.

Using this optimization scheme, we can recover the Minkowski and Ball

asymptotic lower-bound forms on φmax for lattices using disordered test g2’s.

Our optimization problem is the dual of the linear program devised by Cohn

and Elkies (2003) for an upper bound on φmax . The latter involves test pair

potentials .
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