Neutron Optics Methods

"An Introduction to the Joys of Acceptance/Phase Space Diagrams"

David Jacobson NIST

From John R. D. Copley "The Joy of Acceptance Diagrams", Journal of Neutron Research, Vol. 1, No. 2, pp. 21-36, 1993.

Phase Space

 Neutrons generated by the source can be parameterized by p, x, t, etc. This is a large dimensional space that is not possible to fully draw on paper, but consider the following as a useful representation for describing the acceptance of neutrons through slits, collimators, guides, etc.

Liouville Theorem

- Optical devices like mirrors and lenses are constrained by the Liouville theorem such that they can not increase the phase space density.
- Inefficiencies in the optical device can decrease the phase accepted phase space density.

Source

- Let's simplify things a bit more
 - Assume uniform emittance of source at all points in all directions
 - Use θ to describe the trajectory of the neutron
 - Trace rays through the system
 - The phase space is described by position coordinates and angle $\boldsymbol{\theta}$

Assume a square pinhole/slit and source.

Assume a square pinhole/slit and source. Assume small angle approximations are valid.

Assume a square pinhole/slit and source. Assume small angle approximations are valid.

Intensity at a point in the plane of the slit is proportional to the solid angle subtended with the source.

> $\Delta \Omega = (2W/L_1)^2$ B =d⁴ ϕ /dAd Ω dtd λ Fluence Rate = B* $\Delta \Omega$

Assume a square pinhole/slit and source. Assume small angle approximations are valid.

Intensity at a point in the plane of the slit is proportional to the solid angle subtended with the source.

> $\Delta \Omega = (2W/L_1)^2$ B = d⁴\phi/dAd \Omegadtd\lambda Fluence Rate = B*\Delta\Omega

V

General rules

 Propagating in real space produces a shear of the phase space diagram but does not change the area of phase space diagram nor does it increase the phase space density.

Case B – Soller collimator

General rules

- Propagating in real space produces a shear of the phase space diagram but does not change the area of phase space diagram nor does it increase the phase space density.
- Guide dimension cuts the phase space distribution, and the mirror flips that section by 180°.

General rules

- Propagating in real space produces a shear of the phase space diagram but does not change the area of phase space diagram nor does it increase the phase space density.
- Guide dimension cuts the phase space distribution, and the mirror flips that section by 180°.
- Never flip a section of phase space onto another as this would violate the Liouville theorem.

- Divergence quickly becomes very large
- Large critical angle is required in focusing section
- Rule of thumb:
- Focusing factor = Ratio of critical angles
- End up with "several beams"
- Liouville: focus in real space, defocus in divergence space

- Avoid direct line-ofsight
 - Avoid gammas
 - Avoid fast neutrons
 - Reduce background

- Blue reflecting from both sides
- Red garland reflections
- Green exceeds critical angle

Fewer neutrons along inside face - quantify

$$\frac{R - (w/2 - x)}{R} = \frac{\cos\theta_0}{\cos\theta}$$

For
$$\theta_0$$
, $\theta \ll 1$,
2x - w = R($\theta^2 - \theta_0^2$)

neutrons "just" reach inside face when $\theta = 0$ for x = -w/2:

 $\theta_0^* = \sqrt{2w/R}$

General rules

- Propagating in real space produces a shear of the phase space diagram but does not change the area of phase space diagram nor does it increase the phase space density.
- Guide dimension cuts the phase space distribution, and the mirror flips that section by 180°.
- Never flip a section of phase space onto another as this would violate the Liouville theorem.

The End