

Neutron Optics Technologies

3rd April 2016

Ken Andersen

- Social Dinner Monday 4/4 at 20:30 at ULISSE
 - Couscous and other Sicilian specialities
- Excursion Tuesday 5/4 to SEGESTA
 - 13:00 Bus Departure
 - 13:45 Arrival at Segesta
 - 14:00 Lunch
 - 15:30 Visit to Archeological Site
 - 17:30 Bus Departure
- Join SoNS facebook group

Slow Neutrons vs Light

	light	neutrons							
λ	< µm	< nm							
E	> eV	> meV							
n	1→4	0.9997→1.0001							
θ _c	90°	1 °							
В	10¹⁸ p/cm²/ster/s (60W lightbulb)	10 ¹⁴ n/cm ² /ster/s (60MW reactor)							
spin	1	1/2							
interaction	electromagnetic	strong force, magnetic							
charge	0	0							

Neutron Optics

- Absorption
- Reflection
 - from surfaces: Snell's law
- Diffraction
 - from multilayers and crystals: Bragg's law
- Refraction
 - from materials and magnetic fields

Collimation

EUROPEAN SPALLATION SOURCE

Reducing divergence

- improving resolution
- reducing background
- reducing flux

Soller collimator

Pin-holes separated by distance

Neutron Optics

- ess
- EUROPEAN SPALLATION SOURCE

- Absorption
- Reflection
 - from surfaces: Snell's law
- Diffraction
 - from multilayers and crystals: Bragg's law
- Refraction
 - from materials and magnetic fields

EUROPEAN SPALLATION SOURCE

Wavevector:

Diffraction: Bragg's Law

Wavevector:

Diffraction: Bragg's Law

EUROPEAN SPALLATION SOURCE

$$\vec{k}_i = \vec{k}_f + \vec{Q}$$
$$\Rightarrow \vec{Q} = \vec{k}_i - \vec{k}_f$$

$Q = 2k\sin\theta$

EUROPEAN SPALLATION SOURCE

 $Q = 2k\sin\theta$ $\lambda = 2d\sin\theta$

 $k = \frac{2\pi}{\lambda}$

 $Q = 2k\sin\theta$ $\lambda = 2d\sin\theta$ $k = \frac{2\pi}{\lambda}$

Bragg's Law:

 2π Q

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of tota
reflection θ_c

$$\begin{array}{l} \cos\theta_{\rm c} = n'/n = n' \\ n' = 1 - \frac{N\lambda^2 b}{2\pi} \\ \cos\theta_{\rm c} \approx 1 - \theta_{\rm c}^2/2 \end{array} \right\} \Rightarrow \theta_{\rm c} = \lambda \sqrt{Nb/\pi}$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\begin{array}{l} \cos\theta_{\rm c} = n'/n = n' \\ n' = 1 - \frac{N\lambda^2 b}{2\pi} \\ \cos\theta_{\rm c} \approx 1 - \theta_{\rm c}^2/2 \end{array} \end{array} \Rightarrow \theta_{\rm c} = \lambda \sqrt{Nb/\pi} \begin{array}{l} \text{for natural Ni,} \\ \theta_{\rm c} = \lambda [\text{\AA}] \times 0.1^{\circ} \\ Q_{\rm c} = 0.0218 \text{ \AA}^{-1} \end{array}$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\begin{array}{l} \cos\theta_{\rm c} = {\rm n'/n} = {\rm n'} \\ {\rm n'} = 1 - \frac{{\rm N}\lambda^2 {\rm b}}{2\pi} \\ \cos\theta_{\rm c} \approx 1 - \theta_{\rm c}^2/2 \end{array} \end{array} \xrightarrow{} \begin{array}{l} \Rightarrow \theta_{\rm c} = \lambda \sqrt{{\rm Nb/\pi}} \\ \hline {\rm Definition:} \\ Q = 4\pi \sin\theta/\lambda \end{array} \begin{array}{l} {\rm for \ natural \ Ni,} \\ \theta_{\rm c} = \lambda [{\rm \mathring{A}}] \times 0.1^{\circ} \\ Q_{\rm c} = 0.0218 \ {\rm \mathring{A}}^{-1} \end{array}$$

EUROPEAN SPALLATION SOURCE

 \rightarrow

Courtesy of J. Stahn, PSI

Courtesy of J. Stahn, PSI

Courtesy of J. Stahn, PSI

State-of-the-art Supermirrors

State-of-the-art Supermirrors

Neutron Guides

What are guides used for?

E55

- Transport divergence
 - large m-numbers needed for short wavelengths
 - ballistic geometry required for supermirror guides
- Create space
 - build instruments far from neutron source
- Improve TOF resolution
- Reduce background
 - transport only "good" neutrons
- Focusing
 - increased divergence: increased flux

Ballistic guides

Ballistic guides

- Used to transport neutrons over long distances
- Minimise number of reflections
- Minimise reflection angles
- Increase width slowly to decrease divergence adiabaticity - reversible

Ballistic guides

- Used to transport neutrons ove long distances
- Minimise number of reflections
- Minimise reflection angles
- Increase width slowly to decrease divergence adiabaticity - reversible

Ballistic guides

EUROPEAN SPALLATION SOURCE

WISH @ ISIS: ballistic (elliptical) guide

Time-of-flight (TOF) resolution

t[ms] = L[m] × λ [Å] / 3.956 distance $\Rightarrow \Delta \lambda [\text{Å}] = \Delta t [\text{ms}] \times 3.956 / L[\text{m}]$ time

- Avoid direct line-of-sight
- Avoid gammas
- Avoid fast neutrons
- Reduce background

- Blue reflecting from both sides
- Red garland reflections
- Green exceeds critical angle
- Fewer neutrons along inside face - quantify

EUROPEAN SPALLATION SOURCE

H. Maier-Leibnitz and T. Springer, React. Sci. Technol. 17, 217 (1963)

Focusing

EUROPEAN SPALLATION SOURCE

samples $< 1 \text{ cm}^2$

Focusing

EUROPEAN SPALLATION SOURCE

	θ dsinθ	
	d-spacing	
Germanium 333	1.089 Å	
Copper 200	1.807 Å	
Silicon 111	3.135 Å	
Graphite 002	3.355 Å]

1 1

Copper 200

Focusing Monochromators

Focusing Monochromators

EUROPEAN SPALLATION SOURCE

Powder Diffractometer Optimization: G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instr. Meth 3, 223 (1958) A.W. Hewat, Nucl. Instr. Meth. 127, 361 (1975)

61

Focusing Monochromators

Г																	

Bent Perfect Crystal Monochromators

1. d-spacing varies with depth 2. orientation varies with depth

Summary

- Bragg's Law
- Neutron Guides
 - how they work
 - what they do
- Crystal Monochromators
- tools for calculating how they work ...

Thank you!

and the second

EUROPEAN SPALLATION SOURCE

5th June 2015