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Neutron Imaging 

•  Neutrons penetrate many materials well yet 
remain extremely sensitive to liquid water, 
hydrocarbons and lithium 

•  This allows one to “non-destructively” study 
a wide range of transport related issues 
like: 

–  Liquid water in fuel cells 
–  Lithium in batteries 
–  Multiphase flow in geological rock cores 

Advantages of Neutrons 

x-ray cross section 

H D C O Al Si Fe 

neutron cross section 

Neutron image X-ray image 

A Hot Wheels car (right) 
was imaged with neutrons 
(bottom left) and x-rays 
(bottom right) 
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Brief Historical Backdrop 
•  The first demonstration of neutron radiography was made by Hartmut Kallmann and Ernst Kuhn in the late 

1930s after Chadwick’s 1932 discovery 
•  The first neutron radiographs of reasonable quality were made by J. Thewlis Harwell reactor (UK) in 1955. 
•  Around 1960, Harold Berger (US) and John Barton (UK) began evaluating neutrons for investigating 

irradiated reactor fuel. 
–  Berger worked at Argonne National Lab and later moved to NIST (1975-1981). 

•  1981 First World Conference on Neutron Radiography San Diego 
•  1984 R. Schrack first microchannel plate intensified neutron detector  

–  NIMA, 222, 499 (1984)  
•  1990 boron doped microchannel plate first proposed 

–  Fraser, et al, NIMA, 377,p119 

•  1996 First intensified neutron centroiding detector ND&M  
–  Dietze, et al, NIMA,377,p320 

•  1990’s 
–  Radiography has disappeared at NIST 
–  CCD first used for neutron radiography 
–  Personal  computer processing power sufficient to process images efficiently 

•  1998 First fuel cell imaging experiment published with Richard Bellows Exxon Mobile 
•  2001 – present DOE Fuel Cell Program funds NIST to develop Neutron Imaging for measuring water 

transport in fuel cells 
•  2002 – present General Motors begins collaboration that is formalized in 2006 with a partnership agreement 
•  Second generation of Neutron Radiography Facilities startes at NIST in 2003 
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Pinhole Optics: Standard Neutron Image Formation 

•  Pinhole optics describes 
conventional neutron image 
formation 

•  Neutrons for source defined by 
aperture of diameter d 

•  Fundamental resolution from 
collimation, where “geometric blur” 
is given by: 

 λg ≈ z d / L 
•  Since Flux goes as (d/L)2, Small d 

and/or large L → ∞ Flux → 0  
•  Best resolution obtained when 

object contacts detector due to 
using large apertures (1-10 mm)  

•  No magnification, so improving 
intrinsic detector resolution is the 
only path to higher resolution 
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Neutron CCD/sCMOS Imaging Device 

•  First method used by many to 
capture digital radiographs 

•  Most versatile 
–  Can use standard Nikon lenses 
–  Any light emitting converter 
–  MCP intensified and gated cameras 

for dynamic imaging 
•  Images are high quality except for 

those distorted by the lens 
•  Light collection efficiency is low due 

to distance and lens 
•  Current generations low noise allow 

single photon counting 
•  Readout Time/Frame Rate  

–  CCD 3 s – 5 s or more 
–  EMCCD 10 Hz 
–  sCMOS 100 Hz and more 

CCD/sCMOS 

Scintillator 

Neutrons in 
Green light out 
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m(i, j) =  area mass in grams 
mN = molar mass 

N – numerical density of sample atoms 
per cm3 
I0 - incident neutrons per second per 
cm2 
σ - neutron cross section in ~ 10-24 cm2 

t - sample thickness 

0I tNeII σ−= 0

Sample 

t 

x-ray cross section 

H D C O Al Si Fe 

neutron cross section 

Quantification 
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Calibration and Beam Hardening and Scattering 

0I tNeII σ−= 0

Sample 

t 
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Outline 
•  Neutron Facilities 

–  BT-6 Prototype Neutron Imaging Facility (2002 - 2005) 
–  BT-2 NIST Neutron Imaging Facility (NNIF) (2006-present) 
–  NG-6 Cold Neutron Imaging Instrument (CNII) (2015-present) 

•  Detectors and Scintillators 
–  CCD Detectors and Scintillators 
–  Amorphous silicon detector 
–  Microchannel plate detector 
–  sCMOS  

•  Macroscope 
•  Image intensifier 
•  Centroiding detectors 

•  Imaging Methods 
–  Radiography 
–  Tomography 
–  In situ x-ray imaging 
–  FUTURE: Phase Imaging 
–  FUTURE: Energy Selective Bragg Edge Imaging 
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Proof of Concept Facility to Demonstrate Capability 

•  Began operation in 2003 
•  Located at BT-6 
•  Instrument was small, 

volume 3 m3  
•  Purpose was to support new 

DOE fuel cell imaging 
program 

•  General Motors began 
collaboration with NIST to 
develop fuel cell imaging 
capabilities. 

•  No permanently installed 
support for fuel cell 
experiments Ceased 
operation in December of 
2005 



Neutron Imaging 

•  Fuel cell testing infrastructure was built as part of a partnership between 
–  NIST 
–  Department of Energy (started 2000) 
–  General Motors (started 2002) 

•  These partnerships are still ongoing 
•  Prior to testing at NIST GM would flash freeze cell in LN and disassemble to 

find liquid water distribution 
•  All fuel cells developed by GM must be tested at NIST before use in vehicles 
•  40 U.S. Patents were issued to GM based on their work at the NIST Neutron 

Imaging Facility 

Fuel Cell Partnership 
Jon Owejan Jeff Gagliardo Tom Trabold 
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•  National user facility for neutron imaging 
–  Commissioned in 2016 
–  State-of-the-art in situ fuel cell testing infrastructure  
–  Flexible  

•  Free access for open research 
–  Experiments are proposed by users and selected 

through a peer review process managed by NIST  
–  NIST collaborates with users as needed, data must be 

published 
•  Fee based access for proprietary research 

–  Proprietary users trained to use the beam 

•  User friendly operation 
–  Ample area on beamline for complex setups 
–  Can image automotive PEMFCs with 26 cm dia. beam 
–  Photos shows both 50 cm2 and full size automotive cell 

at the standard sample position 
–  Typical sample position is 6 m from aperture 
–  Can place sample closer to aperture for increased 

intensity, closest approach is 1 m 

BT-2 NIST Neutron Imaging Facility 
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Schematic of BT-2Facility 
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Fuel Cell Testing Infrastructure 

Fluids:  
H2 (18.8 slpm), 
D2 (1.2 slpm), 
N2, Air,  O2, He, 
DI (18 MΩ/cm) 

Large scale test 
stand: 800 W,  
6-1000 A @ 0.2 V 
0 V – 50 V, 
Liquid coolant 
H2/Air: 11/27 slpm 
Contact humidifier 
(dew pt. 35-85 °C). 
Fully supported by 
NIST. 

Small scale test stand: 
Cell area ≤50 cm2, dual 
& liquid temperature 
control, absolute outlet 
pressure transducers 

Environmental Chamber: 
-40 °C – 50 °C 
RH 20-90% above 20 °C 
1 kW cooling at -40 °C 
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NIST Cold Neutron Imaging Instrument 
•  Cold neutron imaging facility  

–  New as of September 2015 
–  Attenuation coefficient 2x larger than thermal 

neutrons 
–  Longer wavelengths more suited to energy selective 

methods using monochromators or velocity 
selectors. 

•  Neutron microscope 
–  NIST, NASA, MIT collaboration 
–  Innovative NASA Wolter optic for x-ray astronomy 
–  Neutron optics are identical to x-ray so design 

transfers. 
–  10x magnification could allow for 1 µm micron 

neutron spatial resolution by 2018 – 2020 timeframe. 

•  Phase imaging  
–  Spatial resolved small angle neutron scattering 
–  Bulk magnetic domain imaging 

•  Bragg edge imaging 
–  Visualize strain with potentially 100 µstrain 

resolution and 10 µm spatial resolution 
–  Advanced manufacturing 

Entrance 

Wolter Optic 

Bragg edge image 

9.75 m flight path 

Detector 

Attenuation Phase Contrast 

Laser welded plates 

+500 µε 

-2500 µε 

12
.5

 m
m
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Cold Neutron Imaging Instrument Interior 
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Cold Neutron Imaging Instrument Interior 
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Cold Neutron Imaging Instrument Interior 
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• High resolution neutron images require strong collimation 
resulting in low flux and long exposures 

• Neutrons are hard to focus, the refractive index (n) is 
small and wavelength (λ[Å]) dependent: n ~ 1 – 10-6 λ2 

• Neutrons are neutral and neutron beams are large, not 
points, many x-ray tricks don’t translate 

• Faint x-ray sources (nebula, etc.) need to be focused for 
good imaging 

• NASA is developing a new fabrication technique to 
create reflective mirror optics from nested Ni-foils– light 
for space telescopes and perfect for neutrons 

• Resolution from the lens not collimation 
• No collimation for 10 µm resolution can yield 100x flux 

increase for imaging with image times ~10 s 
• Magnification of 10x can improve spatial resolution to 1 
µm with image times ~20 minutes 

• Ongoing collaboration with MIT and NASA to further 
develop the technology for fuel cells 

Ni-foil Focused X-ray Solar Imager  

Wolter Optics power CHANDRA 

The Neutron Microscope 
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Geometry of a Neutron Microscope using Wolter Optics 
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6 cm 
3 cm 

• 3 nested Ni mirrors w/ellipsoid and hyperboloid sections 
• Overall focal length of 3.2 m  
• This prototype lens truly formed neutron images with: 

–  1 cm FOV & 4x magnification 
–  75 µm spatial resolution, 5 mm depth of focus 

More work: x100 resolution, x100 flux, x5 depth of 
focus 

2 cm x 2 cm Pinhole 
mask, with 0.1 mm 
diameters on 0.2 mm 
centers 
Left: Contact Image  
Right: Lens Image 

Microscope Proof of Principle Test 



Neutron Imaging 

Fraction of incident flux focused for one shell 

•  Ray tracing of an optic: 
–  paraboloid-paraboloid  
–  total optic length of 20 cm 
–  focal length of 7.5 m 
–  sample 20 cm from the 

guide 
•  Nesting 14 mirrors with 

M=1.2 guide yields 
x100 over BT2 for 10 
µm image resolution 

 



Neutron Imaging 

Prototype microscope tested for characterization data 

Left: The FOXSI optic,  with
7 nested mirrors

Right: 2 parabolic sections
from one FOXSI shell
were used to create a
1:1 prototype neutron
microscope

• Prototype 1:1 microscope lens 
characterized with neutrons March 2014 

• Measured focused intensity agreed with 
design model predictions 

• Expect x50 over BT2 in final form 

•  NIST is providing internal funding to 
develop a cold neutron microscope. 

•  Project timeline (conservative 
estimate): 
2014: 
•  Test a new prototype lens that is targeted for 

neutron imaging 

2015: 
•  Demonstrate 10 µm image resolution 
•  Finalize 1:1 optic design and begin fabrication 

2016: 
•  Begin fuel cell user operation for lens-based 

imaging at 10 µm resolution 
•  Finalize design for 10x magnifying lens 

2018: 
•  Begin fuel cell user operation for 1 µm imaging 

with 10x lens 
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Outline 
•  Neutron Facilities 

–  BT-6 Prototype Neutron Imaging Facility (2002 - 2005) 
–  BT-2 NIST Neutron Imaging Facility (NNIF) (2006-present) 
–  NG-6 Cold Neutron Imaging Instrument (CNII) (2015-present) 

•  Detectors and Scintillators 
–  CCD Detectors and Scintillators 
–  Amorphous silicon detector 
–  Microchannel plate detector 
–  sCMOS  

•  Macroscope 
•  Image intensifier 
•  Centroiding detectors 

•  Imaging Methods 
–  Radiography 
–  Tomography 
–  In situ x-ray imaging 
–  FUTURE: Phase Imaging 
–  FUTURE: Energy Selective Bragg Edge Imaging 
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Neutron CCD/sCMOS Imaging Device 

•  First method used by many to 
capture digital radiographs 

•  Most versatile 
–  Can use standard Nikon lenses 
–  Any light emitting converter 
–  MCP intensified and gated cameras 

for dynamic imaging 
•  Images are high quality except for 

those distorted by the lens 
•  Light collection efficiency is low due 

to distance and lens 
•  Current generations low noise allow 

single photon counting 
•  Readout Time/Frame Rate  

–  CCD 3 s – 5 s or more 
–  EMCCD 10 Hz 
–  sCMOS 100 Hz and more 

CCD/sCMOS 

Scintillator 

Neutrons in 
Green light out 
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NIST Camera Box  
•  Lens/Camera is soft coupled by a flexible 

bellows for light tightness 
•  Lens adjusted by hand or mechanical control 
•  Fine focus by moving camera on a translation 

stage 
•  Lens coupled enables flexibility 
•  CCD has slow readout that limits time 

resolution 
•  Andor Neo sCMOS,  

–  2560 x 2160,  
–  6.5 mm pixels,  
–  30 fps, burst mode 100 fps with on board 4 Gb 

memory 
•  1 e- read noise 

–  Combinations lenses and mirror boxes allow FOVs: 
•  1.66 cm x  1.40 cm  
•  To 26 cm x  26 cm (beam size) 
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Neutron scintillator 
•  Converts neutrons to light 6LiF/

ZnS:Cu,Al,Au 
•  Neutron absorption cross section 

for 6Li is huge (940 barns) 
•  6Li absorbs neutrons, then 

promptly splits apart into energetic 
charged particles 

•  Charged particles from nuclear 
reaction come to rest in 
ZnS:Cu,Al,Au and cause 
scintillation of green light 

•  Brightest scintillator with highest 
light yield 105 photons/neutron 

•  Spatial resolution: 
–  Thick screens necessary for high 

efficiency 
–  light scatters in the screen 

expanding to a blob of diameter 
similar to the size of the screen 

–  Range of charged particles > 
0.025 mm 

6Li + n0 → 4He (2.04 MeV) + 3H (2.75 MeV)  

Scintillator 

Neutrons in 
Green light out 

0.3 mm thick 

20 % efficient 
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High Resolution Scintillators 

•  GadOx (GdO2S2:Tb) 
•  σ(155Gd) = 259,000 barns 
•  n + 155Gd → Gd* → γ-ray spectrum 

→ conversion electron spectrum  
•  n + 157Gd → Gd* → γ-ray spectrum 

→ conversion electron spectrum  
•  Resolution ~25 µm, thermal 

stopping power up to 80% 
•  Potentially 4x better efficiency that 

6Li:ZnS 
•  Lower light yield (103 photons/

neutron) since conversion electrons 
are < 100 keV 

•  Lower light yield results in low signal 
to noise ratio (SNR) therefore, which 
is more important for image 
acquisition time 

Gadox neutron scintillator 
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Flexible Neutron/X-ray Camera 
•  Neutrons or X-rays 

–  Front plate can be scintillator 
–  Objective lens for macroscope configuration 

mounts on the front of the box 

•  sCMOS Camera  
•  Optics standard Nikon camera lenses 

–  50 mm, 60 mm, 85 mm, 105 mm zoom, 200 mm 
zoom 

–  Optional Macroscope setup 

•  System capable of 4x magnification for 
1.625 µm pixels (3.25 µm real resolution) 

•   High resolution scinitillators for neutrons or 
x-rays 

–  P43 (Gd2O2S:Tb) type, 80 % efficient 
• 20 µm (~25 lppm) resolution,  
• 100x lower light output than 6LiF:ZnS:Cu:Al:Au  

•  Single stage image intensifier 
–  25 mm diameter tube 
–  Resolution ~30 lppm 

intensifier 

relay lens 

sCMOS Camera 

ocular lens 

objective lens 
scintillator mirror 

Neutrons 
Or 

X-rays 

flexible bellows 
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Detectors: Real Time / Radioscopy 

•  Amorphous Silicon  
•  Fixed pixel pitch of 127 µm, 25x20cm 

field of view 
•  LiF:ZnS Scintillator placed in contact with 

sensor and avoids light loss present in 
CCD lens box systems 

•  Up to 30Hz frame rate (2x2 binning) 
•  Amorphous silicon sensor is mostly rad 

hard 
•  Non-rad hard readout electronics are 

folded out of the beam 
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Conventional Heat Pipe (CHP) 

•  Invented 1960’s 
•  Currently used to cool CPUs 
•  2 phase system 

–  Working fluid evaporates at heat source 
removing heat and condenses at cold point 

–  Liquid pumped back to evaporator through 
capillary forces 
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Better cooling needed 

•  Electronics miniaturization increasing to the point that the power density 
is too great for CHPs 
–  Pressure from vapor phase overcomes capillary pressure shutting down the 

CHP capillary-phase change cycle. 
•  Currently heat fluxes have reached 10 W/cm2 to 40 W/cm2 with total 

heat power of 10 W to 150 W 
•  Next generation chips expected to hit 80 W/cm2 with 300 W total power 
•  Laser diodes can achieve 500 W/cm2 

•  Silicon chip reliability decreases 10 % for every 2 °C temperature rise 
with a limit of 125 ° C. 

•  55 % of electronics failures are attributed to superheat. 
•  Heat sinks are heavy and fail at 500 W/cm2 due to low thermal 

conductivity. 
•  One technology that could operate at higher energy densities is an 

Oscillating/Pulsating Heat Pipe 
•  1990’s Oscillating/Pulsating Heat Pipes were invented. 
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OHP with thermocouples mounted Thermocouple	
  loca-ons	
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Oscillating Heat Pipe Principles 

•  Channel winds back and forth between 
hot and cold sources 

•  Channel evacuated and filled with 
working fluid 

•  Water – High latent heat 
•  Acetone – Low latent heat 
•  Ammonia -  Low viscosity 
•  Others like ethanol, etc… 

•  Evaporation and condensation create 
pressure differentials that drive fluid 
motion 

•  As fluid flows it leaves a thin film on 
tube walls that evaporates as the vapor 
slug passes 

•  Channel must be small enough to 
support slug flow 
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•  Fluence Rate at L/d = 300, 3.2 x 
107 cm-2 s-1 

•  Frame rate 10 fps or 30 fps using 
Varian Paxscan 2520 detector 

•  Scintillator 300 µm 
6LiF:ZnS(Cu,Al,Au) 

Experimental Configuration 
I. Yoon, H. Peng, R.A. Winholtz, P.F. Pai, 
H.B. Ma, University of Missouri 
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Experimental Configuration 

•  Fluence Rate at L/d = 300, 3.2 x 
107 cm-2 s-1 

•  Frame rate 10 fps or 30 fps using 
Varian Paxscan 2520 detector 

•  Scintillator 300 µm 
6LiF:ZnS(Cu,Al,Au) 

I. Yoon, H. Peng, R.A. Winholtz, P.F. Pai, 
H.B. Ma, University of Missouri 
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Nonlinear Thermo-mechanical Finite Element Model (FEM) 

Model	
  

Lines of constant phase 

Hao Peng, P. Frank Pai, Hongbin Ma, Nonlinear thermomechanical finite-element 
modeling, analysis and characterization of multi-turn oscillating heat pipes, 
International Journal of Heat and Mass Transfer, 69, 424-437, 2014. 
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Acetone OHP, 51 W Heat Input, Steady State Response 
Lines of constant phase 

P
os

iti
on

 

Time (s) 
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Comparison of Model and Experiment 

Parameter Experiment Model 
Heat 
Transfer 

50.8 W 47.6 W 

Frequency 3.1 Hz 0.4 Hz 
Amplitude 6.9 cm  4.3 cm 

Phase	
  shi4	
  	
  
between	
  slugs	
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10µm 

Borated MCP Neutron Detection Mechanism 
 

10B → 7Li + 4He + Q (2.79 MeV) 

Typical MCP structure 

Neutron conversion  
to electron pulse 

~5-10 µm channels 

~25 mm 

Neutron 

E

7Li 
10B 

4He 

Secondary 
Electrons 

e- e- e- 
e- e- 

Secondary 
e- emitting 

channel wall + 

Gnd 

• Berkley Space Sciences Laboratory 
• Sensor Sciences, LLC. 
• NOVA Scientific 
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Apply 1000 -2000 V 
at top surface 

Few volts 
or 

ground 

Single Channel Cross Section within MCP 

Reduced Pb glass  
is weakly conductive, 

often > 10 Mohms 
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•  MCP – Nova Scientific 
•  Detector package Sensor Sciences, LLC. 
•  Max data rate 1-2 Mhz 
•  Spatial resolution 13 µm 
•  New ALD MgO coatings on MCP are 

showing > 10x improvement in lifetime 
(previously 1000 h, practically 1 year). 
–  Developed for Picosecond collaboration 

•  Improved firmware to remove centroiding 
artifacts. 

• Berkley Space Sciences Laboratory 
• Sensor Sciences, LLC. 
• NOVA Scientific 

Advanced High Resolution Neutron Imaging Detector 

Tremsin, et al, NIMA, 604, p140 (2009) 
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Anatomy of a PEM Fuel Cell 

Assembled Cell Flow field and soft goods 

Porous gas diffusion 
layer GDL 

Membrane Electrode 
Assembly MEA 

 3/19 



Neutron Imaging 

Point Source 

Fuel cell 

Imaging Fuel Cells 

Wet Dry 
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Liquid Water Calibration Corrected for Blurring, Beam Hardening 
and Scattering (more details in second talk) 
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Managing Water – One of many Challenges 
•  Water is GOOD: 

–  Product water is only 7% 
more than currently 
produced by internal 
combustion engines 

–  Water is needed by the 
fuel cell membrane for 
proton conduction 

•  Water is BAD: 
–  Ice creates frost heaves 

which are as bad for fuel 
cells as they roads  

–  Water slugs impede 
performance 

–  Trapped water promotes 
degradation 

–  Water also facilitates 
corrosion 

Non-cracked CL
18um Reinforced MEM

Cracked CL, or 35um 
or non-reinforced MEMCatalyst Layer Membrane 

Zawodzinski et al., The Journal 
of Physical Chemistry, 95,  1991 
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Major Factors Influencing the Removal of Water 
•  Flow - Increasing flow rate allows easier 

ejection of water lowering retention of 
water. 

•  Temperature – Increasing temperature 
increases the carrying capacity of the gas 
lowering water retention due to 
evaporation. 

•  Surface Energies – Hydrophilic surfaces 
will attract water and hydrophobic will 
push it away. 

•  Capilary Forces – Tiny porous network 
provides strong forces attracting water or 
pumping water from surfaces 

•  Temperature Driven Flow 
–  Thermo Osmosis 
–  Phase Change Induced Flow 

Gold Coated w/PTFE 
Contact Angle = 93° 

Gold Uncoated  
Contact Angle = 50° 
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Channel Geometries explored 

Triangular X-sect

Rectangular X-sect

94°

1.37 mm 1.45 mm

0.
76

 m
m

1.37 mm 1.45 mm

0.
38

 m
m

X-sect Area = 0.52 mm2

Triangular X-sect

Rectangular X-sect

94°

1.37 mm 1.45 mm

0.
76

 m
m

1.37 mm 1.45 mm

0.
38

 m
m

X-sect Area = 0.52 mm2
Rectangular X-sect

94°

1.37 mm 1.45 mm

0.
76

 m
m

1.37 mm 1.45 mm

0.
38

 m
m

X-sect Area = 0.52 mm2

•  Rectangular channels. 
•  Triangular channels 
•  Hydrophilic untreated gold 

coated aluminum 
•  Hydrophobic treated with PTFE 

Gold Coated w/PTFE 
Contact Angle = 93° 

Gold Uncoated  
Contact Angle = 50° 

Owejan, et al, Int. J. of Hyd. Energy 32 (2007) 4489 – 4502 
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Geometry Comparison 0.5 A/cm2 

Uncoated 
Triangular 

Uncoated 
Rectangular 
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Total Water Mass Tends 
Water Mass Comparison

0
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Flow Field Study Performance Data

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 0.2 0.4 0.6 0.8 1

I (A/cm2)

Vo
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•  Triangular cross-sectional 
geometry accumulates water in 
the corners adjacent to 
diffusion media. The center of 
the channel does not become 
obstructed by stagnant slugs. 

•  Hydrophobic lands and 
channel inhibit water removal 
from the diffusion media 

•  Main impact on performance 
occurs near limiting current 
density 
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Fuel cells produce water... and heat! 

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 0.3 0.6 0.9 1.2 1.5

Current Density (A/cm2)
N

et
 W

at
er

 P
ro

du
ct

io
n 

R
at

e 
(g

/s
) 40°C

80°C

60°C

JMH2O/2F

70°C

•  Waste heat from the fuel cell reaction drives liquid water 
evaporation.   

•  Waste heat effects are more profound at higher temperatures. 
•  In-plane imaging first demonstrated cell dry out and modeling of 

through-plane transport showed importance of vapor transport 
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Additional Water Content Due to Current 
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The highest water content is not always observed at 
the greatest current density.  There is a competition 
between water generation and local heating. 

Δ
V H

2O
 (m

L) 

fractional distance from inlet 

60°C, 100% RH, 2 stoic @ 1.5A/cm2 

Dry 

Wet 

100 mA/cm2 

650 mA/cm2 

1250 mA/cm2 

M. A. Hickner, et al, JECS, 153 (5) A902-A908 2006 
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Small Scale Fuel Cell for High Spatial Resolution 
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Amorphous silicon 
Spatial Resolution: 250 µm 
Field of View: 25 cm x 20 cm 
Frame Rate: 30 frame/s 

MCP 
Spatial Resolution : 13 µm 
Field of View: 3.5 cm x 3.5 cm 
Frame Rate: 10 s – 20 min 

CCD/sCMOS 
Spatial Resolution: 20 µm 
Field of View: 1 cm x 1 cm 
Frame Rate: 100 frame/s 

48/63 
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Anode vs. Cathode 
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Flooding	
  in	
  non-­‐precious	
  cathode	
  catalysts 

OCV	
   0.2	
  A/cm2	
   0.4	
  A/cm2	
  

Cathode:	
  Pt/C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
50-­‐55	
  µm	
  thick	
  

RH100,	
  206kPa,	
  80C	
  

Nafion	
  117,	
  Cloth	
  GDL	
  

3	
  mm	
  0	
  mm	
  

Water	
  thickness	
  

Cathode:	
  NPMC	
  
(PANI)	
  70-­‐80	
  µm	
  thick	
  

RH100,	
  206kPa,	
  80C	
  

Nafion	
  117,	
  Cloth	
  GDL	
  

Water	
  content	
  at	
  OCV	
  and	
  50%	
  RH	
  for	
  
Pt/C	
  vs.	
  PANI-­‐derived	
  catalyst	
  
•  PANI	
  /	
  PEM	
  interface	
  hygroscopic	
  
•  PANI	
  has	
  ~2x	
  water	
  holdup	
  in	
  general	
  
•  Note:	
  component	
  demarca-ons	
  are	
  
for	
  the	
  NPMC;	
  not	
  exact	
  for	
  the	
  Pt.	
  	
  	
  

D.	
  Spernjak,	
  J.	
  Fairweather,	
  P.	
  Zelenay,	
  
G.	
  Wu,	
  M.	
  Rangachary,	
  R.	
  Borup,	
  LANL	
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Simultaneous Water, Current, HFR, and Temperature Measurement  
Correlate temperature effects to ionomer and GDL water content, down-the-channel model validation 

Owejan, et al., J. Electrochem. Soc., 156, B1475-B1483 (2009). 

Cathode inlet Cathode Outlet 

Purge condition: 100 kPa, 33°C, 1 SLPM N2, Dry inlet gas 

GDL water 
Ionomer 

water 

J. Owejan, et al, Journal of Power Sources 209 (2012) 147– 151. 
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Through-plane temperature gradient 

A.Z. Weber, M.A. Hickner, EA 53 (2008) 7668–7674 

•  The waste heat from the 
cathode catalyst results in a 
temperature rise 

•  Near the MEA, the saturation 
pressure is increased  

•  Product water can be 
transported away from the 
MEA via: 
–  Capillary transport 
–  Vapor transport, enhanced by 

gradient 
•  Diffusion medium thermal 

properties can profoundly 
impact the water content in the 
cell and membrane 
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Tuning the GDL Thermal Properties 
Lower thermal conductivity saturation 

@ low temperature (33°C): 

~ But….. 
@ higher temperature (76°C): 

< 
Same water flux, but the 

driving force is 10X higher at 
76°C 

Higher thermal conductivity 
saturation 

Lower thermal conductivity saturation Higher thermal conductivity 
saturation 
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GDL thermal conductivity impact on water accumulation 
Baseline (ksub = 0.3 W/mK)  

GDL A (ksub = 0.3 W/mK)  GDL A anode, Baseline 
cathode 

GDL B (ksub = 0.9 W/mK)  

0.05 A/cm2 

0.2 A/cm2 

0.6 A/cm2 

1.0 A/cm2 

1.2 A/cm2 

Pol Curve Condition:  
200 kPa, 80°C 

A/C stoich = 1.5/2 100% RH 
inlet 

cathod
e flow 

anode 
flow 

0.05 A/cm2 

0.2 A/cm2 

0.6 A/cm2 

1.0 A/cm2 

1.2 A/cm2 
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Optimize Water Content by Tuning GDL Thermal Conductivity 

cathode flow anode flow 
Precondition: 33oC, dry inlet 
gases, 0.4 A/cm2, 2/2 An/Ca 

Stoich, 150 kPa 
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Effect of Graded GDL thermal conductivity 

0.05 A/cm2 

0.2 A/cm2 

0.6 A/cm2 

1.0 A/cm2 

1.2 A/cm2 

cathode flow anode flow 
Baseline Graded Anode GDL B +  Baseline 

Current density (mA cm-2) 

Vo
lta

ge
 (V

) 

By varying GDL properties, a passive water 
management strategy resulted in higher 
performance  
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Model Comparison: Hydrogen Pump Profile 

•  Membrane is 1000 µm thick to 
avoid errors from blurring 

•  Simpler system to model relative 
to fuel cell operation. 

•  Current agreement between model 
and data is 10 % 

•  Technique developed at NIST to 
fully quantify membrane water 
content will eventually be applied 
to realistic systems with the new 
neutron microscope 
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Macroscope setup 
•  Objective lens 50 mm 
•  Ocular lens 200 mm 
•  Single stage microchannel plate image 

intensifier 
–  25 mm diameter tube 
–  Resolution ~30 lppm 

•  sCMOS Camera  
•  System capable of 4x magnification for 

1.625 µm pixels (3.25 µm real 
resolution) 

•   High resolution scinitillator for  
–  P43 (Gd2O2S:Tb) type, 80 % efficient 

• 20 µm (~25 lppm) resolution,  
• 100x lower light output than 

6LiF:ZnS:Cu:Al:Au  

intensifier 

relay lens 

sCMOS Camera 

ocular lens 

objective lens 
scintillator mirror 

Neutrons 
Or 

X-rays 

flexible bellows 
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Modern Version of Schrack’s Detector 
•  Improving acquisition time using 

more efficient detectors for high 
resolution imaging 

•  Current boron doped MCP 
efficiency is ~20 % 

•  Low light, high resolution Gadox 
screens can be improved 
–  20 µm spatial resolution 
–  80 % neutron detection efficiency 
–  100x less signal 

•  Using high resolution image 
intensifier the signal can be 
amplified by 10,000x  

Camera 

Relay lens 
Intensifer Ocular lens 

MCP Intensifier 
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Microchannel Plate (MCP) Intensifier 
•  Glass tubes ~ 6.5 µm diameter 
•  Photocathode generates electrons 

from light 
•  Adjustable high voltage bias 

generates electron avalanche in 
tube 

•  Electron scintillator generates light 
•  Relay lens then focuses image on 

camera 
Relay lens 

MCP HV Supply 
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Outline 
•  Neutron Facilities 

–  BT-6 Prototype Neutron Imaging Facility (2002 - 2005) 
–  BT-2 NIST Neutron Imaging Facility (NNIF) (2006-present) 
–  NG-6 Cold Neutron Imaging Instrument (CNII) (2015-present) 

•  Detectors and Scintillators 
–  CCD Detectors and Scintillators 
–  Amorphous silicon detector 
–  Microchannel plate detector 
–  sCMOS  

•  Macroscope 
•  Image intensifier 
•  Centroiding detectors 

•  Imaging Methods 
–  Radiography 
–  Tomography 
–  In situ x-ray imaging 
–  FUTURE: Phase Imaging 
–  FUTURE: Energy Selective Bragg Edge Imaging 
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Simultaneous X-ray imaging 

•  Installed June 2015 
•  Ample space in sample area 

permits installing an x-ray 
source 

•  X-ray beam oriented 90° to 
neutron beam 

•  Software controls both 
detectors and motion 
controls 

•  Variable resolution based on 
lenses used 
–  Best neutron ~13 µm 
–  Best x-ray ~10 µm 

•  X-ray has variable geometric 
magnification 

•  X-ray microfocus 
•  20 keV – 90 keV 
•  80 W max power 
•  20 µm spot size 
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X-ray Source 

90 keV Oxford Instruments Ultra-bright  
micro-focus (~20 µm) x-ray tube  

with tungsten anode Adjustable 
tungsten 
aperture 

Copper cooling block 
designed by FEM in 

COMSOL 
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Neutron and X-Ray Complementarity 
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Tomography of Concrete Ettringite Phase 

6 cm 

7 
cm

 

•  Ettringite 
–  One of 4 major deterioration mechanisms in 

concrete (Alkali Silica Reaction gel, water/ice and 
rebar corrosion are other 3) 

–  Delayed formation over time after casting by 
hydration to form the following: 
(CaO)3·Al2O3(CaSO4)3·(H2O)32 

–  Expands during formation causing damage 
–  Results in higher hydrogen density than original 

phase so neutrons are sensitive to it 
•  Neutron Beam 

–  L/D = 450 
–  Fluence = 1.3 x 107 cm2 s-1 

•  Image Capture 
–  Pixel Pitch = 25 µm 
–  Rotation step =  0.1° 
–  Range = 180° 
–  Image scan time ~15 sec. 
–  Replicate scans = 3 
–  Total acquisition time = 26 hrs 

R.A. Livingston, A.M. Amde, 
and S. Feuze, Univ. of MD 
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Bright rims around 
aggregates Ca 

S

Al 

O

Tomography of Concrete: Ettringite Phase 
Electron microscopy used at select locations shows 
presence of Ettringite growth 

R.A. Livingston, A.M. Amde, 
and S. Feuze, Univ. of MD 
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Areal Fractions of 
Concrete Phases 

%   
Porosity 14.0 

Aggregates 70.0 

Paste 22.0 

Ettringite 3.0 

Sum 100 

Tomography of Concrete: Ettringite Phase 

R.A. Livingston, A.M. Amde, 
and S. Feuze, Univ. of MD 
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Conclusions 
•  Neutron Facilities 

–  Thermal neutron imaging facility provides state of the art facility to run fuel cells 
and image water formed inside in situ 

–  New cold imaging facility will expand and enhance our neutron imaging capability 
by providing resolution through image magnification approaching 1 µm 

•  Detectors and Scintillators 
–  With 100 µm resolution frame rates ≥ 100 fps are possible 
–  Currently the best neutron spatial resolution is about 20 µm, but could be 

improved to sub 5 µm in the near future. 
•  Imaging Methods 

–  Fuel cell radiography is still an active area of research 
–  Finite element modeling is now taking advantage of 3d tomographic data sets 
–  Multimodal in situ x-ray imaging 
–  Future developments: 

•  Phase Imaging 
•  Energy Selective Bragg Edge Imaging 
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THE END 


