

DESIGNING AND BUILDING A NEUTRON INSTRUMENT XIV School of Neutron Scattering Francesco Paolo Ricci (SoNS) Erice, 1-9 April 2016

Me and "my" instrument

Thomas Hansen Institut Laue-Langevin - Diffraction Group D20 high intensity powder diffractometer responsible

High pressure synthesis of oxomercurates

- Chemistry, Kiel, Germany
 - Hk. Müller-Buschbaum, Inorganic Chemistry
- Mercury oxides at high pressure of oxygen
 - 600°C,
 - 8 days,
 - 6 kbars O₂

 $Ba_2Hg_3Pd_7O_{14}$

1 April 2016

T.Hansen: Introduction

© Institut Max von Laue - Paul Langevin

PhD

Structure determination from powder

- Post-Doc with A. Le Bail in Le Mans, France
 - Continuing on mercurates, starting on ruthenates, "wet" chemistry
- ab initio structure solution from powder since 1990
- Indexing problem
 - high resolution data needed
- Intensity extraction
 - overlapping reflections!?
- Direct methods
 - X-rays often better, due to contrast
 - however, neutrons locate light atoms ...
 - … and, of course, magnetic moments

b 9.3Å

c 5.5Å a 7.1Å

b 9.3Å

Post-Doc

 Aq_2RuO_4

c 5.5Å

a 7.1Å

b 9.3Å

ILL instrument scientist

Versatility

High Intensity

4 Monochromators

NEUTRONS FOR SCIENCE

5.3 take-off angles

D20

Soller Collimators, slits

Resolution Q range Intensity Wavelengths Crystallography Kinetics Magnetism Disordered systems

0.82 to 2.51 Å

Detecting maximum of neutrons: Large PSD, 160°, definition 0.1°

> Very high flux at sample: Position in the reactor

> > Soller Collimators Monochromators

variable takeoff

Position Sensitive Detector

1 April 2016

T.Hansen: Introduction

© Institut Max von Laue - @auhstatge Wax von Laue - Paul Langevin SoNS, Erice

NEUTRONS FOR SCIENCE

FOR SCIENCE

•

ILL instrument scientist Micro-strip gas chamber PSD

- New technology:
 - Precise and stable geometry
 & high stability
 - High gaseous amplification with low high voltage
 - Fast cation evacuation
 & high counting rates
- Micro-strip plates
 - 2 anodes/cathodes per cell
 - 32 cells per plate
 - 48 plates in Al-housing of PSD

anodes (1200V)

ILL Scientist

Monte-Carlo instrument simulation

- McStas on D20 ... or any other 2-axis diffractometer
 - Quantitative description of the source and incident optics
 - Realistic treatment of monochromator crystals
 - Finite thickness: reflectivity from structure factor
 - Multiple scattering: asymmetrical shift of neutron beam
 - Monochromators in transmission geometry
 - Complete description of sample
 - Contribution of sample environment
 - Multiple scattering
 - Incoherent scattering
 - Radial oscillating collimator
 - Gas chamber PSD, multi-detector bank
- What's the use?
 - Optimisation of new components and preparation of experiments

0.4 -

- Observation of inaccessible information about the neutron beam

FOR SCIENCE

And Address of the owned

26°

1 April 2016

T.Hansen: Introduction

FOR SCIENCE

120°

1 April 2016

T.Hansen: Introduction

ILL instrument scientist Available resolution and d-spacing

FOR SCIENCE

FOR SCIENCE

High intensity powder diffraction!

Parametric diffraction (in situ)

- time-resolved diffraction: I(20,t)
- variation of temperature: **thermodiffractometry**: I(20,T)
- variation of pressure: I(20,p), magnetic field: I(20,H), etc.
- variation of stoichiometry: I(20,x) (many samples)
- texture: many sample orientations: $I(2\theta,\chi,\phi)$
- Small samples or small signal from sample
 - realization of extreme conditions:
 - high pressure or homogenous high temperature
 - limited availability:
 - expensive isotopes for isotope exchange experiments
 - difficult (reproducible) synthesis, e.g. in high pressure cells
 - biomaterials (bones)
 - high absorption (boron, hydrogen, cadmium, europium, gadolinium, ...)
- Precise intensity
 - differential experiments: weak peak intensity in magnetism or physisorption
 - disordered systems: liquids and amorphous materials

NEUTRONS

Hydrothermal Crystallization of BaTiO₃

NEUTRONS

ILL local contact Self-propagating High-T Synthesis (SHS)

Titanium silicon carbide Ti₃SiC₂

OR SCIENCE

- Self-propagating High-temperature Synthesis (SHS)
 - Riley, Kisi et al.: 3 Ti : 1 Si : 2 C, 20 g pellet in furnace
 - Heating from 850 C to 1050 C at 100 K/min
 - Acquisition time 500 ms (300 ms)
- Hot isostatic pressing expensive

Industrial processes

flue gas desulphurisation & magnetic roasting

1 April 2016

NEUTRONS FOR SCIENCE

•

T.Hansen: Introduction

© Institut Max von Laue - Paul Langevin

SoNS, Erice

ILL local contact

High Pressures at D20

NEUTRONS

Sabbatical

Scientific Output: blockbusters, ...

Fields by a quick look at the most cited papers 2005-10

Magnetism

NEUTRONS FOR SCIENCE

- low-dimensional systems
- frustrated systems -
- mesoporous systems
- nano-particles -
- perovskites -
- pnictides
- high pressure phases
- Solid state chemistry
 - SHS
 - Electrochemical oxidation -
 - Lithium ion conductors

- Physical chemistry •
 - Carbon nanotubes
 - physisorption
 - amorphous polymor
 - confined systems
 - metallic melts -
 - correlations in polym -
 - Geosciences
 - contaminant uptake of water
 - gas-hydrates
 - Materials science
 - fatigue processes
 - shape-memory alloys

T.Hansen: Introduction

A workhorse instrument ...

A workhorse does a lot of quite different heavy duty things ...
... but one thing it is not, it is ... not sexy at all!

???