

Projects Overview

2nd Erice School of Neutron Science and Instrumentation
 Designing and Building a Neutron Instrument
 1st-9th of April 2016

Ken Andersen and Ken Herwig

Instrument Groups

Neutron Imaging Facility David Jacobson in San Domenico 1	Claudia Aguirre, Phil Denby, Byoungil Jeon, Premek Beran
Small-Angle Neutron Scattering Andrew Jackson in San Domenico 2	Giuseppe Vitucci, Liam Whitelegg, Brad O'Dell, Luca Silvestrin
Powder Diffractometer Thomas Hansen in San Domenico 3	Mikhail Feygenson, Ji-Myung Ryu, Alexandra Gibbs, Dominic Fortes
Direct Geometry Time-of-Flight Spectrometer Georg Ehlers in San Rocco 1	Adam Aczel, Joseph Guyon Le Bouffy, Lorenzo Di Fresco, Benjamin Davidge, Masako Yamada, Antonio De Bonis
Larmor Labeling Instrument Roger Pynn in San Rocco 2	Alessandro Mazza, Giuseppe Aprigliano, Melissa Sharp, Jose Medeiros

EUROPEAN SPALLATION SOURCE

Work Towards Deliverable: Presentation

- Science Case
- Technical Description of the Instrument
- Project Description
- Conclusion/Summary
- 90 minutes in total, including questions (<60+30)

Science Case

- Why must this instrument be built now?
 - probably presented by one person
- Description of the science that the instrument is optimized to address
- Short description of the technique(s) enabled
- Define the scientific requirements
 - Q-range, Q-resolution, energy/wavelength range and resolution, etc.
 - specialized sample environment, user labs
 - data reduction and analysis software
- User community
 - how large is the current user community?
 - what are the prospects for new communities?
- Complementarity to other instruments

Technical Description

- What does the instrument consist of?
 - presented by several people
- Source chosen and why
 - spallation, reactor, thermal, cold, moderator type, ...
- Instrument resolution
 - analytic description of the instrument (back of the envelope, spread sheet calculations)
 - what are the critical elements that determine resolution?
- Anatomy of the instrument Schematic (PPT) drawing
- Requirements/specifications for critical elements and how these are derived relative to instrument resolution
 - shielding, choppers, guides, sample size & beam divergence, monochromators, analyzers, detectors
- Identify R&D necessary for project success
- Performance estimate Comparison to existing instruments
 - flux on sample, count rate in detectors, time to complete a measurement, ...
- Sample Environment
- Software control, reduction, analysis

Project Description

- How will the instrument be built?
 - probably presented by one person
- Main project deliverables
 - define project completion criteria (how do you know you're done)
 - define performance metrics (flux on sample, measured resolution, ...)
- Work Breakdown Structure (WBS)
 - design, fabricate, install, commission
- High-level schedule
 - 3-month resolution
- High-level cost
- Risk analysis
- Reviews
 - internal & external
- Interaction with user community
 - advisory panels, preparing for friendly users
- Commissioning plan
 - calibration measurements, standard samples, software needs

Conclusion / Summary

- Convince us that we should build the instrument
- Review the key elements
 - probably presented by one person
- Key science addressed by the instrument
- How long it will take to build
- How much it will cost
- Performance estimates