

Outline

- 1 An Overview
 - CANS: What they are and how they play a role in the neutron S&T
 - The community: The Union for Compact Acceleratordriven Neutron Sources (UCANS)
 - Facilities currently in operation or under development
- 2 The CANS accelerator structure
 - ♦ Cost-effectiveness
 - An ideal front-end for supporting neutron instrumentation R&D and user training
- **3** Applications
 - The multidisciplinary nature and diverse utilization

Neutron Production Mechanisms

	Reactions	Neutron Production Examples
	Fission	$^{235}\text{U} + n \longrightarrow \text{A*} + \text{B*} + \text{x}n; < \text{x} > \sim 2.5$
	Spallation	$p + {}^{184}W \longrightarrow A^* + B^* + xn, \sim 20$
	Fusion	$d + t \longrightarrow \alpha(3.5 \text{MeV}) + n(14.1 \text{MeV})$ $d + d \longrightarrow \alpha(0.866 \text{MeV}) + n(2.4 \text{MeV})$
	Photoproduction	$\gamma + {}^{181}\text{Ta} \longrightarrow {}^{180}\text{Ta} + n, \ \odot + {}^{2}\text{H} \longrightarrow {}^{1}\text{H} + n$
	Charged-particle reaction	${}^{9}\text{Be} + p \longrightarrow {}^{9}\text{B} + n, {}^{2}\text{H} + {}^{3}\text{H} \longrightarrow {}^{3}\text{He} + n$
	(n,xn)	$^{9}\text{Be} + n \longrightarrow ^{8}\text{B}^* + 2n$
	Excited-state decay	$^{13}C^{**} \longrightarrow ^{12}C^{*} + n, ^{130}Sn^{**} \longrightarrow ^{129}Sn^{*} + n$
neutron U-235	U-235 energy U-235	Atomic Processes +''Spallation''+ Inter-Nuclear onization Southering Cascade Tra-Nuclear Fission) Low-Energy Particles Watanabe 2003 0.001 000 0.001 000 0.001 000 0.001 000 0.001 0
		Spallation 0.0001 0.0001 0.000 300 400 500 100 energy (MeV)

More Neutron Producing Reactions

Reaction types	Examples
(p,n)	³ H(p,n) ³ He, ⁶ Li(p,n) ⁶ Be, ⁷ Li(p,n) ⁷ Be, ⁹ Be(p,n) ⁹ B, ¹⁰ Be(p,n) ¹⁰ B, ¹⁰ B(p,n) ¹⁰ C, ¹¹ B(p,n) ¹¹ C, ¹² C(p,n) ¹² N, ¹³ C(p,n) ¹³ N, ¹⁴ C(p,n) ¹⁴ N, ¹⁵ N(p,n) ¹⁵ O, ¹⁸ O(p,n) ¹⁸ F, ³⁶ Cl(p,n) ³⁶ Ar, ³⁹ Ar(p,n) ³⁹ K, ⁵⁹ Co(p,n) ⁵⁹ Ni
(d,n)	² H(d,n) ³ He, ³ H(d,n) ⁴ He, ⁷ Li(d,n) ⁸ Be, ⁹ Be(d,n) ¹⁰ B, ¹¹ B(d,n) ¹² C, ¹³ C(d,n) ¹⁴ N, ¹⁴ N(d,n) ¹⁵ O, ¹⁵ N(d,n) ¹⁶ O, ¹⁸ O(d,n) ¹⁹ F, ²⁰ Ne(d,n) ²¹ Na, ²⁴ Mg(d,n) ²⁵ Al, ²⁸ Si(d,n) ²⁹ P, ³² S(d,n) ³³ Cl
(t,n)	¹ H(t,n) ³ He
(α,n)	3 H(α ,n) 6 Li, 7 Li(α ,n) 10 B, 11 B(α ,n) 14 N, 13 C(α ,n) 16 O, 22 Ne(α ,n) 25 Mg

Drosg et al. (2002)

Source Characteristics (Bauer01, Clausen08, Mank et al.01, Zager et al. 05, Nakai et al.10, Elizondo-Decanini et al12)

Reactions	Neutron Yield	Neutron Production*	Heat Release (MeV/n)	Remarks
Spallation	17-27n/p	10 ¹⁴ (n/s/cm ²)	30-55	Expensive, complex, adamant usage
Fission	1 n/fission	10 ¹³ -10 ¹⁵ (n/s/cm ²)	180	Expensive, complex, adamant usage
Giant laser inertial fusion	1 n/D-T pair	> 10 ¹⁶ (n/s/cm ²)	Re-stockable D-T pellets	Unattainable?
⁹ Be(D,n) ¹⁰ Be ⁹ Be(p,xn)	1 n/D 5x10⁻³ n/p	10 ¹³ -10 ¹⁵ (n/s/cm ²)	1000 2000	Moderate cost, flexible operation, multipurpose
Photonuclear e- bremsstrahlung	5x10 ⁻² n/e	10 ¹³ (n/s/mA)	2000	Moderate cost, flexible operation, multipurpose
Neutron Generators (D,D) (D,T)	10 ⁷ -10 ⁸ n/µC	10 ⁸ -10 ¹⁰ (n/s)	3500-10000	Transportable, affordable for tailored commercial applications, need higher flux
Table-top-laser photonuclear	10 ⁶ -10 ⁸ n/J	10 ⁸ -10 ¹⁰ (per shot)	Ultra-short pulsed lasers	Many debris, neutronics not yet matured
Neutristors solid-state, (D,D) chips	?	?	?	~\$2000, tiny, implantable medically, to be developed

*need quantification of neutron spectral distribution and time structure

Neutron Sources

Compact Accelerator-Driven Sources

Neutron Sources

7

Neutron Sources: Past, Present, & Future

Figure 1. History of development of neutron sources in terms of the effective thermal neutron flux. Carpenter & Lander 2010

This is not the whole story!

Neutron Energy Spectrum & Time Structure

... and More ...

Union for Compact Accelerator-driven Neutron Sources (UCANS) Established in 2008

Collaborative & Complementary: Capability vs Capacity

interaction w/ big sources	+ 1	1 + 2	8
ו sources ural heritage astrophysics, nuclear data	ng, detectors cal. neutron interrogation laser-driver cult	polarization irradiation, imagii medi	r
G + sources + science	+ 1	2 + 6	tardet/moderato
members (12)	+ +	1 + 2	8
iven sources I heritage	ng, detectors cal. neutron interrogation laser-circultura	polarization irradiation, imagi medi	
sources + science	+ 1	2+6	
	 ction w/ big sources members (11) 	t +	8
	ig, detectors cal. neutron interrogation	irradiation, imagin	- Lee
sources + science	+ existing & prospective :	A the second sec	Construction of the second sec
	lg ction w/ big sources bers	polarization irradiation, imagin c + (10)	8
	ng & prospective sources	existin	
2044	- 1014	Source Reutronics & instrumen members (8)	8 extant
UCANS-V 2015 Padova, Italy	UCANS-IV 2013 Sapporo, Japan UCANS-III 2012	Bilbao, Spain UCANS-II 2011 Bloomington, IN USA	UCANS-I 2010 Beijing, China

This slide needs to be checked and brought up to date

Compact Accelerator-driven Neutron Sources (CANS) Currently in Operation or under Development

There is an active CANS community

The Low-Energy Neutron Source (LENS)

Indian University, Bloomington, USA

The Hokkaido University Neutron Source (HUNS)

Sapporo, Hokkaido, Japan

Electron linac

Target station

35 MeV, 30 μA (50 ps) 1kW Short pulse, width 10ns-3μs 50 or 100 Hz

(e, X), (X,n) water/coupled methane 1.6x10¹² n/s Major activities Radiation effects, imaging Detector/device/moderator R&D Education Small-to-wide angle diffraction

The Bariloche Electron-linac-based Neutron Source

Bariloche, Argentina LINAC Bunker Experimental room Sample changer Detector bank Scattering Experiments WATER Electron linac Target station Major activities Total cross section measurements (e, X), (X,n) 25 MeV, 25-30 μA Diffraction, DINS Short pulse, width $1.4 \mu s$ PE/mesitylene@77K Device/moderator R&D $\sim 6x10^{11} \text{ n/s}$ up to 100 Hz Education

Peking University Neutron Imaging Facility (PKUNIFTY) Beijing, China

RFQ linac	Target station	Major activities
Deuterons, 2 MeV, 40mA (peak) Long pulse, width 0.015-0.8 ms for <10-40 Hz; Normal operation 20Hz, width 0.6ms	$Be(d,n)$ $PE + H_2O$ $3x10^{12} n/s$	Imaging, cross section measurements Education

The Compact Pulsed Hadron Source (CPHS) Tsinghua University, Beijing, China

.... (g) C (c) (b) (e) Major activities **Droton \mathbf{PEO} \pm 1.1i** Torget station

Proton RFQ + 1 linac	Target station	wajor activities
3MeV(initial) 13 MeV(final), 16KW 50 mA (peak), 1.25 mA (average) Long pulse, width 0.5 ms, 50 Hz	Be(p, n) PE(initial), Solid methane (final) ~5x10 ¹³ n/s	Imaging, SANS Detector/device R&D Education

RIKEN Accelerator-driven Neutron Source (RANS) Tokyo, Japan

Neutron Bear Neutron detector, sample box	on P	roton 7MeV Proton Linac' 7MeV Q DTL RFQ
Proton RFQ + 1 linac	Target station	Major activities
7 MeV, 16KW 10 mA (peak), 100 μA (average) Long pulse, width 0.5 ms, 20 Hz	Be(p, n) PE(initial), cold mesitylene (final) $\sim 1 \times 10^{12}$ n/s	Imaging, industrial applications Fast neutron interrogation

The KIGAM, MC-50, & PAL-PNF Facilities

Kyoto University Accelerator-driven Neutron Source (KUANS) Kyoto, Japan

Proton RFQ (AccSys Tech. Inc.)	Target station	Major activities
3.5 MeV, 16KW 10 mA (peak), 100 μA (average) Long pulse, width 0.03-0.2 ms, 20-200 Hz	Be(p, n) PE, ambient ~1x10 ¹¹ n/s (calc.)	Imaging, detector development, education

The Geel Electron LINear Accelerator Facility (GELINA)

7-MV de Graaff accelerator	Target Station	Major activities
Li(p,n), T(p,n), D(d,n), & T(d,n) 30 mA(max), 0.1-10 &13-21 MeV 3 x 10 ⁸ n/s @ 2MeV, 30μA Short pulse, width < 1ns, rep. time 330ns	140 MeV, rotating U target, 4.7–75 μ A water moderator Short pulse, width 1ns, 50-800 Hz $1.6 \times 10^{12} - 2.5 \times 10^{13}$ n/s	Total & partial cross section measurements Inelastic scattering, transmission, capture Nuclear data

Belgium

The ESS-Bilbao Project

Bilbao, Spain

The Frankfurt Neutron Source (FRANZ)

Stern-Gerlach-Zentrum, Germany

The NEPIR Facility of LNL

Proton cyclotron	Target station	Major activities
35-70 MeV, up to 500μA CW (can be converted to Pulsed mode)	X(p,n), X=Li. Be, Pb, W, & Ta Neutron energies 1-200 keV $10^{5} - 10^{6}$ n/cm ² /s or $10^{13} - 10^{14}$ n/s	Fast neutron irradiation, SEES tests Cross section measurements, nuclear data for ADS Imaging, materials analysis

Italy

The Legnaro NeutrOn Source (LENOS)

Prospective CANS Projects Elsewhere

- > The Neutron Time-of-Flight (NTOF) facility located at CERN Geneva, Switzerland
- > The Gaerttner Linear Accelerator (LINAC) Laboratory at RPI, USA
- DANCE (<u>http://wnr.lanl.gov/dance/</u>), Los Alamos
- > The Oak Ridge Electron Linear Accelerator (ORELA)
- Frascati Neutron Generator, ENEA-Frascati
- Neutron time-of-flight experiments at ELBE
- keV-neutron capture cross sections at TIT, Japan
- **TSL**, the Uppsala (n,p) facility
- Frascati Neutron Generator (FNG), Italy
- > IThemba neutron source, South Africa
- > The *Tiara neutron source*, Japan
- THE ELBE-Project AT Dresden-Rossendorf

Education and Mentoring

- 1 Exchange of scientists, engineers and students
- 2 Include CANS in neutron schools and workshops
- 3 Books about CANS:

Neutron Scattering Applications and Techniques (Springer) Series Editors: Ian Anderson, Alan Hurd, & Robert McGreevy

Upcoming volumes:

Compact Accelerator Driven Neutron Sources: Physics, Technology and Applications

Editors: David V. Baxter (Indiana U), Michihiro Furusaka (Hokkaido U), & Chun Loong

Neutron Experimental Methods in Cultural Research

Editors: Nikolay Kardjilov (Helmholtz-Zentrum Berlin) and Giulia Festa (U Rome)

How Do CANSs work?

Accelerator Structures

Accelerators: Electron Versus Ions

e-linac: acceleration to $v \approx c$ achieved near the injection entrance, remaining accelerator structures are identical \rightarrow simple

p (and ion) accelerators: need different accelerator structures to maximize the energy transfer to the particles from the accelerating fields (condition of synchronicity) → tricky & costly

Another important distinction is *synchrotron radiation* emitted by an ultrarelativistic particle (along a bent orbit); it affects an electron beam much more than a proton beam ($\sim m_0^{-4}$).

CANS has a merit of avoiding the complex and expensive accelerator structures (and shielding). Here, only consider ion sources, and the basic linear accelerator components.

Electron Cyclotron Resonance Ion Sources (ECRIS)

There are many kinds of ion sources. ECRIS makes use of a guiding microwave power to transfer energy to electrons which ionize the fed-in gas atoms, forming a plasma. A magnetic field *B* is applied to maintain a resonance condition for the confinement of the charges *q* at the angular cyclotron frequency $\omega = qB/\gamma m_0$

2.45 GHz microwave (*B*=0.0875 T) is chosen for the compact setup. ECRIS forms the basis for **neutron** generators using the D-T & D-D reactions: $d+t \longrightarrow \alpha(3.5 \text{MeV}) + n(14.1 \text{MeV})$

 $d + d \longrightarrow \alpha(0.866 \text{MeV}) + n(2.4 \text{MeV})$

Emittance

The motion of a bunch of 10^6-10^{10} particles is represented in 6D-phase space: (*x*, $p_x=x'$, *y*, $p_y=y'$, *z*, $p_z=z'$). We are interested in the projection of the hyper-ellipsoid on the longitudinal and transverse planes.

Liouville theorem

Emittance is conserved under conservative forces (including non-linear forces); it depends only on the geometrical dimensions of this phase space. The Liouville theorem works against you if you want to inject more particles, say protons, into a phase space of the same beam such as in a storage ring. This is circumvented by injecting H^{-} ions on top of the proton beam and then convert H^{-} to p by stripping off its electrons.

Emittance of a Real Beam: N Particles in Each Bunch

The emittance represents the phase-space volume occupied by the particles in a bunch of the beam. The higher the emittance, the lower the capacity to transport the beam parallel over a long distance and to focus it to a small size.

$$\langle w \rangle = \frac{1}{N} \sum_{i=1,N} w_i, \quad w = \{x, y, z\}$$
 average position

$$\langle w' \rangle = \frac{1}{N} \sum_{i=1,N} w_i', \quad w' = \{x', y', z'\}$$
 average slope

$$\tilde{w} = \sqrt{\frac{1}{N} \sum_{i=1,N} (w_i - \langle w \rangle)^2}; \quad \tilde{w}' = \sqrt{\frac{1}{N} \sum_{i=1,N} (w_i' - \langle w' \rangle)^2}$$
 rms size and divergence

$$\tilde{\varepsilon}_w = \sqrt{\tilde{w}^2 \tilde{w}'^2 - \langle (w - \langle w \rangle) \cdot (w' - \langle w' \rangle) \rangle^2}$$
 rms emittance, dimension ~ surface in the (w, w') space

$$\tilde{\varepsilon}_{wn} = \beta \gamma \tilde{\varepsilon}_w$$
 normalized rms emittance due to longitudinal acceleration
Comparing the *twiss parameters* (derived from $\tilde{\varepsilon}_{wn}$) with the *Courant - Snyder parameters*: **Beam matching**

For low-E, high current beams – normally the case for CANS, the space charge *forces* – Coulomb repulsion between particles within a bunch, if not restrained, will lead to defocusing of the beam. Furthermore, a low-E beam cannot take advantage of the *phase damping effect* – the shortening of bunching length in the longitudinal plane that occurs to a relativistic beam.

The job of an accelerator is to effectively provide controlled manipulations of the beam so as to achieve the designated energy (and time structure) in conjunction with an acceptable emittance. Pichoff (2005) CERN Acc. School
Low β Structure: Radio Frequency Quadrupole (RFQ)

Kapchinski & Teplyakov (1970). An RFQ linac provides combined functions of *electric fc* :*using*, *buncning*, and

Accelerate protons from ~50 keV to ~3 MeV over ~3m.

Technology: precision machining of copper or copper plated parts, furnace brazing, welding and gasket mounting,...

Low β Drift Tube Linacs

In a cavity of cylindrical geometry, particles drift inside Faraday tubes and accelerate cross the gaps, driven by constant frequency (f) RF power supply under an optimized TM_{mnp} mode.

> High RF frequency → compact structure, high efficiency but demanding high precision & cost, and strong focusing condition

Technology: High-power, high-frequency RF amplifiers.

Gerigk (2010), CERN Acc. School

Conclusions about CANS Accelerators

- ♦ The attribute of compactness and low energy of CANS leads to significant saving in construction and operation costs.
- The entire architecture is amenable to prototyping, multiplexing, and reconfiguration for proof-of-principle to specialized R&D.
- The accelerator technology of compact neutron sources is mature and relatively straightforward.
- The linac-based structure implies a long-pulse time structure (except for *e*-linac machines). Bunch compression for low-E beams may be challenging.
- CANS shares the target-moderator design and beamline instrumentation common to all pulsed sources thereby offering collaborative R&D opportunities to the overarching community.

Neutron Applications of CANS

Examples of Interdisciplinary Research

Small-Angle Scattering (SANS): Well Suited for CANS

Small-Angle Scattering (SANS): Well Suited for CANS

Imaging & Radiography: Beyond Conventional Approaches

Fig. 1. Schematic view of experimental setup.

Segawa 2009

Imaging & Radiography: Beyond Conventional Approaches

Combine imaging with crystal diffraction: Rietveld imaging transmission spectra (RITS) Allow concurrent analysis of crystal structures, crystalline phases, crystallite sizes, texture, and strain

Imaging & Radiography: Beyond Conventional Approaches

10

15

20

10

15

20

25

Combine imaging with epithermal neutron resonance capture analysis (NRCA): Allow elemental analysis, significant to archaeometry: high sensitivity to Cu, Sn Zn, As, Sb, Ag, Au, Pb,...

Original belt mount Hungarian National Museum, Budapest

Andreani 2012

Magnetic Structures: Beyond Conventional Approaches

Combine imaging with polarization analysis of magnetic diffraction using polarized neutrons Allow fundamental studies of quantum criticality, magnetic inhomogeneity in single crystals by depolarization imaging

Schulz 2010

Neutron SEE is a Serious Threat at High Altitude & at Sea Level

Neutron Impact on Industry and Life

Single Event Effects (SEE): A single energetic particle (neutron) strikes sensitive regions of an electronic device, e.g., logic or support circuitry, memory cells, registers, etc., disrupting its normal function, usually causing non-destructive soft errors.

.....R. Baumann, IEEE-TDMR, 2005

Frost 2011

A Single Event Effect (SEE) is when a highly energetic particle present in the environment, strikes sensitive regions of an electronic device disrupting its correct operation

Erice Science & Technology Facilities Council

Measurements of Soft-Error Counts in Electronics At HUNS

🛣 HOKKAIDO UNIVERSITY

Neutron Interrogation of Concealed Substances: Explosive

Desirable capabilities

- Remote detection
- ♦ Non-intrusive
- High sensitivity (chemical density, 3D volumetric rendering)
- Materials specific (precise, minimize false alarms)
- ♦ Rapid
- Flexible (portable, on-site deployment,...)
- ♦ Automatic

Chemical Composition of Different Materials

Aim to be More Quantitative Than N/C Ratio Detection

	Materials	С	н	Ν	0	Ρ	F	CI	S	N/H	N/C
Explosives	C4	21.9	3.6	34.4	40.1	0	0	0	0	10	2
	TNT	37	2.2	18.5	42.3	0	0	0	0	8	1
	PETN	19	2.4	17.7	60.8	0	0	0	0	7	1
	AN	0	5	35	60	0	0	0	0	7	∞
Benign Chemical	Sarin	34.3	7.1	0	22.9	22.1	13.6	0	0	0	0
	VX	49.5	9.7	5.2	12	11.6	0	0	12	1	0
	CA	44.5	3.7	51.8	0	0	0	0	0	14	1
	HD B	30.2	5	0	0	0	0	44.6	0	0	0
	Phosgene	12.1	0	0	16.2	0	0	71.7	0	NA	0
	Water	0	11.1	0	88.9	0	0	0	0	0	0
	Paper	44	6	0	50	0	0	0	0	0	0
	Plastic	86	14	0	0	0	0	0	0	0	0
	Salt	0	0	0	0	0	0	60	0	NA	NA

Explosives are rich in N and O but poor in H and C

Gozani 2005

"Neutron in Gamma Out" Methods (1)

Thermal Neutron Analysis (TNA): In TNA the object is irradiated by slow (thermal) neutrons, which produce gamma-rays in reactions of radiative capture with the nuclei of chemical elements constituting ES. e.g. N: 10.8 MeV H: hydrogen 2.23 MeV CI: 7.50 and 6.11 MeV, etc. *Fast Neutron Analysis (FNA):* The object is irradiated with a continuous flux of fast neutrons with energy above 8 MeV, which produce characteristic gamma-rays in inelastic scattering reactions with nuclei of C: 4.44, O: 6.13,.. N: 5.1 MeV. Detection of these secondary gamma-rays provides information about relative concentrations of carbon, oxygen and nitrogen in molecules of the inspected substance.

Neutron Resonance Attenuation (NRA): A neutron radiography technique measuring the areal density (density times thickness) of elements present in the interrogated object.

"Neutron in Gamma Out" Methods (2)

Pulsed Fast Neutron Analysis (PFNA): Use pulsed neutron flux (with pulse duration of several nanoseconds) to irradiate the inspected object. This allows one to use time of flight information to determine the location of the ES inside the inspected volume. By using collimators for the neutron beam one can get a 3D distribution of carbon, oxygen and nitrogen in the investigated object.

Pulsed Fast and Thermal Neutron Analysis (*PFTNA*): PFTNA is a combination FNA and TNA.

Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT): Use $d(t,\alpha)n$ to produce fast neutrons in portable neutron generators, mono-energetic neutrons (E = 14 MeV) and α -particles (E = 3 MeV) are emitted simultaneously in opposite directions. Tag *n* with α to discriminate secondary γ . Background γ -rays that are not correlated in time with "tagged" neutrons are rejected by the data acquisition system. Use of position sensitivity of the α -detector and time-of-flight analysis allow one to obtain 2D spatial distribution of chemical elements in the examined object.

Gozani 2005

Associated-Particle Imaging (API)

Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT): Use d(t, α)n to produce fast neutrons in portable neutron generators, mono-energetic neutrons (E = 14 MeV) and α -particles (E = 3 MeV) are emitted simultaneously in opposite directions. Tag *n* with alpha to discriminate secondary γ . Background γ -rays that are not correlated in time with "tagged" neutrons are rejected by the data acquisition system. Use of position sensitivity of the γ -detector and time-of-flight analysis allow one to obtain 2D spatial distribution of chemical elements in the examined object.

Mulhauser

First Commercial Scanner – Nuctech AC6015XN

PTB Automated Cargo-Container Inspection System

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Landmine Detection: An Ongoing Effort

Civil Engineering: Inspection of Large Infrastructure

A Goal to be Fulfilled: Neutron Interrogation Using CANS, To Complement Other Methods

Otake (2013)

27

2015/5/20

Otake (2015), UCANS-V

Need Compact & Durable Neutron Sources for Well Logging

□The multipurpose RST service. Car-

bon-oxygen ratio, inelastic and

capture spectra, sigma, borehole holdup, porosity.

water and oil

velocities, and borehole salinity are some of the

measurements that can be made with

RST equipment.

The Many Facets of Pulsed Neutron Cased-Hole Logging

Nuclear Instruments and Methods in Physics Research A254 (1987) 563-569 North-Holland, Amsterdam

Advanced neutron generator design and fast, efficient gamma ray detectors combine to make a reservoir saturation tool that is capa of detailed formation evaluation through casing and more. Lithology determination, reservoir saturations and flow profiles are some of the comprehensive answers provided by this multipurpose tool.

MOLECULAR SPECTROSCOPY OF n-BUTANE BY INCOHERENT INELASTIC NEUTRON SCATTERING

William B. NELLIGAN and David J. LePOIRE Schlumberger – Doll Research, Ridgefield, CT 06877, USA

Chun-Keung LOONG and Torben O. BRUN IPNS and MST, Argonne National Laboratory, Argonne, IL 60439, USA

Sow Hsin CHEN Nuclear Engineering Department, MIT, Cambridge, MA 02139, USA

Received 24 July 1986

SPWLA 53rd Annual Logging Symposium, June 16-20, 2012

A NEW CAPTURE AND INELASTIC SPECTROSCOPY TOOL TAKES GEOCHEMICAL LOGGING TO THE NEXT LEVEL

R. J. Radtke, Maria Lorente, Bob Adolph, Markus Berheide, Scott Fricke, Jim Grau, Susan Herron, Jack Horkowitz, Bruno Jorion, David Madio, Dale May, Jeffrey Miles, Luke Perkins, Olivier Philip, Brad Roscoe, David Rose, and Chris Stoller, Schlumberger

Success of observation difference of steel bar in the concrete

Hole Steel 3 ch. detector Φ18mm bars

Insert ion bars into concrete 0, 1, 2, 3

<u>comparison with the experimental results</u> and simulation by GEANT4.

26

Otake (2015), UCANS-V

Neutron Therapy: Superior Biological advantage & Selectivity

Table 1. Characteristics of four charged-particle reactions considered for accelerator-based boron neutron capture therapies Blue et al. (2003) J. Neuro-Oncology 62, 19.

Reaction	Bombarding energy (MeV)	Neutron production rate (n/min-mA)	Calculated average neutron energy at 0° (MeV)	Calculated maximum neutron energy (MeV)	Target melting point (°C)	Target thermal conductivity (W/m-K)
⁷ Li(p,n)	2.5	5.34×10^{13}	0.55	0.786	181	85
⁹ Be(p,n)	4.0	6.0×10^{13}	1.06	2.12	1287	201
⁹ Be(d,n)	1.5	$1.3 \times 10^{13^*}$	2.01	5.81	1287	201
¹³ C(d,n)	1.5	1.09×10^{13}	1.08	6.77	3550	230

*Varies by a factor of three in the literature; this value was determined by comparing simulation and experimental values.

Weekly Asahi, Special Issue on new treatment

ちは、

日々、

挑戦的な治療に臨んでいる。

夏

√小書は、村上20一郎、チェードンス、●本員町、ロット来の標準治療の現場を歩いた。

日本務子

散程

8

構成

第二日第

最新は

一最良

だとは限らない

Modalities (0ct,2010) issued on top page

中

性子

捕捉

75 法

にだけ

いがん治療

が「ホウ素中性子摘提療法」だ。

この病気の治療に期待がかか っとも悪性度が高いとされて

治療を実施す 取射線が発生

医前 重

(鉄油

第の中性子捕捉療法で 剤や照射法を 対性の一つの指標になら

実験 ü (X線では21

した最生

研究段時だが、 h これており、

肝臓が

Ą

何によっては対象と

なる

ますが、

20院周羽院長)

ţ

15 57

%という結果

実施支

次世代のがん治療 肺がんなどに 東頭部が

世界から注日

れてい

る

³⁄₆

が出ています」

オーマ、▶1921)の中で 重は筋筋筋の一種。

起こり、 뒿

がん細胞を標的にして強力

ą

神経部

ら発生

マセた中

惇

重節に昭 à

効果的な治療法が期待されて などでは再発例が

目の照射が可能。

し度目の治療が

粮や同子線(▼

0、)だった場

te

ない

ż.

たらないため、再発した場合も

線がほと

N

おい

2

その後、

防視員身直

るとホウ素化合物との核反応が

ます。 ð, 胞 いるので、

この病気ではっ

思考の体内にあらかじめがん細胞

「毘芽腫は脳の中に深く入り込んで

見 新治療は実験的な側面がある。だから、 取新治 療2 しかし、 「患者を苦しみから解放したい」と熱い志を持った医師た ま

Matsumura

新福度」の最新治療 2011 6

Sample cases of BNCT Treatment (High effectiveness & preservatoin of normal tissue) Prof.Kato,Osaka University

Recurrent Parotid Cancer Pre BNCT

Recurrent tumor after Surgery, Chemotherapy and Radiotherapy. Skin erosion and infection is evident

After 2nd BNCT

Marked shrinkage of the tumor and regeneration of the skin 5M after 3rd BNCT

Complete cure by BNCT. The patient was alive 5 yrs without cancer recurrence

Corutsey of Kawasaki Medical University

6M after BNCT

Malignant Melanoma at foot

3M after BNCT

Fast Neutron Therapy (FNT)

- Fast neutrons damage cells through high linear-energy-transfer (HLET); kill cancer cells by cutting both cords of the chromosome helix.
- ♦ HLET reduces the numbers of treatment by >50% compared with other LLET therapies.
- Under hypoxic conditions (reduced oxygen supply) at the tumor tissue neutrons are more effective than x-rays.
- Currently FNT is only available at a handful facilities in Germany, Russia, USA and South Africa, mainly based on cyclotrons and reactors. Reactors need special beamlines to extract fast neutrons from the reactor core.

After

The Neutron-related Needs Identified

major s-process requests

- AGB model tests: 16 *s*-only isotopes ± 1% -20 unstable isotopes ± 5%
- massive stars:Fe Kr region± 3-5%
- presolar grains: 75 isotopes ± 1%
- bottle neck nuclei: 15 n-magic nuclei
- neutron poisons: C, N, O, Ne, Mg
- neutron sources: ${}^{13}C(\alpha, n)$ and ${}^{22}Ne(\alpha, n)$
- thermally excited el. and inel. scattering states:

CANS provides neutrons of energies (~MeV) comparable to the temperatures of the sun and supernova explosion.

Reciprocity Theorem

GELINA

7 MV Van de Graaff atLNL3 MHz pulsed protonbeam, 300 nA

Mastinu (2015), UCANS-V

Mastinu (2015), UCANS-V

Temperature-tuned Maxwell–Boltzmann neutron spectra for *kT* ranging from 30 up to 50 keV for nuclear astrophysics studies

G. Martín-Hernández^{a,*}, P.F. Mastinu^b, J. Praena^c, N. Dzysiuk^b, R. Capote Noy^d, M. Pignatari^e

Mastinu (2015), UCANS-V

Other Applications: Isotope Production

Supply Problem of ^{99M}Mo/⁹⁹Tc Isotope for Medical Use

FIG. VII-1: Global supply chain of ⁹⁹Mo and subsequent utilization schematics. Source: <u>www.covidien.com</u> (October 2009)

Table 2. Comparison of the two methods (Fission and Neutron) of ⁹⁹ Mo production	
²³⁵ U(n , f) ⁹⁹ Mo	⁹⁸ Mo(n , γ) ⁹⁹ Mo
Produces high specific activity 99Mo	Produces low specific activity ⁹⁹ Mo
Requires enriched ²³⁵ U target	Requires highly enriched 98Mo target
Complex chemical processing	Simple chemical processing
Requires dedicated processing facility	Requires high flux neutron source
High-level radioactive waste	Minimal waste
Modified from S. Mirzadeh, Oak Ridge National Laboratory [32]	

Conclusions about CANS Applications

CANSs are cost-effective for development of neutronic instrumentation and enhancement of applied research across a broad spectrum of disciplines.

Examples not shown here include continuing studies & testing of *target & moderator design concepts* and neutron *beamline instrumentation* in collaboration with large, highpower neutron sources.

- So far CANS plays a strong role in education and in training users for preparing materials characterization studies at large user facilities, as demonstrated by the Japan Collaboration of Accelerator-driven Neutron Sources (JCANS).
- ♦ Expanding CANS' capabilities may be one of the options to maintain the growth of the user community in the neutron field.

Thank You

Questions