

Main reference on radiation detectors: Glenn F KNOLL, *Radiation Detection and Measurement*

Chapter 14 Slow Neutron Detection Methods		519
I.	Nuclear Reactions of Interest in Neutron Detection	519
II.	Detectors Based on the Boron Reaction	523
III.	Detectors Based on Other Conversion Reactions	532
IV.	Reactor Instrumentation	539
Chapter 15	Fast Neutron Detection and Spectroscopy	553
I.	Counters Based on Neutron Moderation	554
II.	Detectors Based on Fast Neutron-Induced Reactions	562
III.	Detectors That Utilize Fast Neutron Scattering	569

Neutron Detectors

How does one "detect" a neutron?

- Can't directly detect slow neutrons
 —they carry too little energy
- Need to produce some sort of measurable quantitative (countable) electrical signal
- Need to use nuclear reactions to convert neutrons into charged particles
- Then one can use some of the many types of charged particle detectors
 - Gas proportional counters and ionization chambers
 - Scintillation detectors
 - Semiconductor detectors

Challenges in neutron detection

- Neutrons have no charge: they do not produce ionizations or excitations in matter directly; neutrons are difficult to stop.
- Background : main component gamma-rays; discrimination against gamma-rays is not easy.
- High detection rates are often required: usually neutron detectors are used in a regions of high neutron (and gamma-ray) flux
- Cross-sections of neutron reactions on which neutron detectors can be based decrease with increasing neutron energy ⇒ fast neutrons with high efficiency is particulary difficult

Interaction of neutrons with matter

- No electric charge \rightarrow no electromagnetic interaction (or too weak)
- Only strong interaction with the nuclei

Principles of neutron detection: reaction-based detectors

Neutrons are detected through nuclear reactions that produce charged particles:

Some requirements:

- High cross section (\rightarrow high efficiency)
- High Q-value (→kinetic energy of the reaction products ~independent of small energy of the slow neutron; easier discrimination against gamma-rays)
- Ideally, all the energy of the reaction products should be absorbed in the detector

Slow Neutron Detection

- Cross-section for elastic (potential) scattering : $\sigma_e = 4\pi R^2$
- Cross-section for capture reaction follows characteristic 1/v dependence for low neutron energies
- The form can be derived from Breit-Wigner resonance lineshape (single level resonance formula), e.g. neutron capture and capture-independent gamma-ray emission (radiative capture):

$$\sigma_{capture} = \pi \lambda^{2} \frac{\Gamma_{n} \Gamma_{\gamma}}{(E - E_{R})^{2} + (\Gamma/2)^{2}}$$

$$E << E_{R}; \Gamma_{n} \approx v; \lambda = \hbar/mv : E_{R} \text{ Resonance energy}$$
Primary decay is γ emission and independent of neutron $\Rightarrow \Gamma \approx \Gamma_{\gamma}$

$$\Rightarrow \sigma \propto \frac{1}{-1}$$

V

Commonly Used Neutron Reactions

$$\begin{array}{ll} n+{}^{3}\text{He} \rightarrow ({}^{4}\text{He})^{*} \rightarrow p+{}^{3}\text{H}, Q=0.765 \text{ MeV}, \text{target abundance} \sim 1.4 \times 10^{-4} \,\% \,(5.3 \,\,\text{kb}) & (n,p) \\ n+{}^{6}\text{Li} \rightarrow ({}^{7}\text{Li})^{*} \rightarrow {}^{4}\text{He} + {}^{3}\text{H}, Q=4.78 \,\,\text{MeV}, \text{target abundance} \sim 7.5 \% \,(940 \,\,\text{b}) & (n,\alpha) \\ n+{}^{10}\text{B} \rightarrow ({}^{11}\text{B})^{*} \rightarrow {}^{7}\text{Li}^{*} + {}^{4}\text{He}, Q=2.31 \,\,\text{MeV}, 94\% \,\,\text{branch}, \,\,\text{nat. abund.} \sim 20 \,\% \,(3.8 \,\,\text{kb}) & (n,\alpha) \\ \rightarrow {}^{7}\text{Li} + {}^{4}\text{He}, Q=2.79 \,\,\text{MeV}, \,\,6\% \,\,\text{branch} & (114 \,\,\text{Cd})^{*} \rightarrow {}^{114}\text{Cd} + \gamma, Q \sim 8 \,\,\text{MeV}, \,\,\text{target abundance} \sim 12\% \,(21 \,\,\text{kb}) & (n,\gamma) \\ n+{}^{157}\text{Gd} \rightarrow ({}^{158}\text{Gd})^{*} \rightarrow {}^{158}\text{Gd} + \gamma, Q \sim 8 \,\,\text{MeV}, \,\,\text{target abundance} \sim 16\% \,(255 \,\,\text{kb}) & (n,\gamma) \\ n+{}^{235}\text{U} \rightarrow ({}^{236}\text{U})^{*} \rightarrow (\text{fission fragments}), Q \sim 200 \,\,\text{MeV}, \,\,\text{target abundance} \sim 0.7\% & (n,f) \end{array}$$

Cross section vs neutron energy for some reactions of interest in neutron detection (G. Knoll)

Neutron –Induced Fission Reactions

Principles of neutron detection: reaction-based detectors

Rate

Ideally, for a reaction-based detector

and for $E_n << Q$:

NOTE : spectrum does not give any information on the energy of the incident neutron

Large Q \rightarrow better discrimination between neutrons and gammas (pulses due to γ s not represented) Flat plateau allows stable counting operation

op

Flat counting plateau

(ideal case)

Gas Detectors

Gas Proportional Counter

 $\begin{array}{rrr} n+~^{3}He \rightarrow ~^{3}H+~^{1}H+0.76~MeV\\ \sigma ~=~ 5333\,\frac{\lambda}{1.8} & \text{barns} \end{array}$

~25,000 ions and electrons (~4´10⁻¹⁵ coulomb) produced per neutron

Gas Detectors

Ionization tracks in proportional counter gas

Neutron

Electrons drift toward the central anode wire. When they get close, they accelerate sufficiently between collisions with gas atoms to ionize the next atom. A *Townsend avalanche* occurs in which the number of electrons (and ions) increases the number many-fold, about $x10^3$. Separation of these charges puts a charge on the detector, which is a low-capacitance capacitor, causing a pulse in the voltage that can be amplified and registered electronically.

Gas-filled detectors for neutron flux measurement

Regime of operation (i.e. with or without charge amplification)	Ionization chambers Proportional counters
Mode of operation (i.e.wether they measure the integrated	DC (current mode)
current or individual pulses)	AC (pulse mode)

Primary nuclear process in which the detection rely	Nuclear reaction	5keV 10 keV	
	Elastic scattering	∫ Fission (e.g. ²³⁵ ເ (e.g., ⁴He and CH	

The ³He Proportional Counter

dN

dE

•
$$n + {}^{3}He \rightarrow p + {}^{3}H, Q = 764 \text{ keV} ({}^{3}H = \text{triton} (t))$$

Assume E_n<<Q; Q = E_p + E_t; Momentum conservation:

$$\begin{split} m_p v_p &= m_t v_t \\ \Rightarrow \sqrt{2E_p m_p} &= \sqrt{2E_t m_t} \\ \Rightarrow E_p &= \frac{m_t}{m_p} E_t = \frac{m_t}{m_p} (Q - E_p) \\ \Rightarrow E_p &= \frac{m_t}{m_p + m_t} Q \end{split}$$

 \Rightarrow E_p = 573 keV; E_t = 191 keV

- \Rightarrow Range R in Si: $R_p \sim 6\mu m$, $R_t \sim 5\mu m$
- ⇒ Ranges in gas ~1000 x range in solid ~ few mm's ($R\rho$ ~ 0.25 mg/cm² for α in He gas)

The wall effect

Wall effect depends on tube dimensions and gas pressure

Spring 2012

Radiation Detection & Measurements

Pulse Height Discrimination

Pulse Height Discrimination-cont'd

- Can set discriminator levels to reject undesired events (fast neutrons, gammas, electronic noise).
- Pulse-height discrimination can make a large improvement in background.
- Discrimination capabilities are an important criterion in the choice of detectors (³He gas detectors are very good).

³He counters: n/γ discrimination

- Spectrum depends on size and geometry detector
- γ interactions produce small amplitude pulses that can be eliminated by amplitude discrimination
- For counting purposes, the threshold should be set around A

MAPS Detector Bank (at ISIS)

Sizes of Proportional Counters

- PCs come in many sizes.
 - Diameters from ~ 5. mm to 50 mm.
 - Fill gas pressures are highest for small diameters,

up to 40 atm, and lowest for large diameters 2.~ 3. atm.

 Lengths vary from cm to meters; the longer detectors, up to about 3. m long, are typically those of larger diameter. **Detection efficiency**

 $\varepsilon = 1 - exp(-N \sigma d)$

Approximate expression for low efficiency:

 $\varepsilon = N \sigma d$

Here:

s = absorption cross section (energy dependent) N= number density of absorber d= thickness

N= $2.7x \ 10^{19} \text{ cm}^{-3} \text{ per atm for a gas at } 300 \text{ K}.$ For 1-cm thick ³He at 1 atm and "thermal" neutrons, $\varepsilon = 0.13$.

The BF₃ slow neutron detector

$n + {}^{10}B \rightarrow ({}^{11}B)^*$

 \rightarrow ⁷Li^{*} + ⁴He, Q = 2.31 MeV [94%]

K.E. 0.84 MeV + 1.47 MeV

 \rightarrow ⁷Li + ⁴He, Q = 2.79 MeV [6%]

- BF₃ gas, enriched to >90% of ¹⁰B
- Operated as proportional or G-M counter
- However, recombination and formation of negative ions require lower pressure P < 1atm
 - Range of α -particles ~ 10 mm
 - Pronounced wall effect
- As in ³He tube, spectrum reflects response of detector, NOT neutron energy

BF₃ proportional counters

¹⁰B(n, α) reaction is employed in BF₃ proportional tubes where BF₃ gas is the neutron converter and the detector medium simultaneously.

•The BF₃ gas is enriched in ¹⁰B (up to more than 90%) to increase the sensitivity to neutrons (natural B has ~20% ¹⁰B)

•The range of 2.31 MeV alpha-particle @ 1 atm: ~1 cm

wall effect: not all energy deposited in gas

BF₃ counters: properties

- Wall effect are reduced by making the detector larger or rising BF₃ pressure
- Small tubes are acceptable as long as a clear counting plateau is maintained.
- Detection efficiency decreases as neutron energy increases (1/v behavior of cross section)
- Aging (degradation of performance after ~10¹⁰-10¹¹ counts)

• At high flux, multiple γ pulses in short time succession may give a net pulse large enough to be mistaken for a neutron pulse

BF₃ proportional counter construction and operation parameters

- Construction material: often aluminium (it has low neutron interaction crosssections)
- Gas: as BF₃ is not ideal as proportional counter gas, a mixture of Argon + BF₃ is often used → neutron efficiency decreases but sharper peaks → more stable counting plateau
- Gas pressure: ~ 500-1500 torr in order to get a good performance as a proportional gas.
- Geometry: cylindrical; typical anode $\phi \sim 0.1$ mm; typical cathode: a few cm.
- Operating voltages: typically 2000-3000V; higher pressure or larger anode wires require higher applied voltages.

Boron-lined detectors

- Boron deposited on the inner surfaces of the chamber is the target material for conversion of the neutrons into a ⁷Li and an α (¹⁰B(n,α)⁷Li);
- ⁷Li or α (not both) enter the chamber.
- As ⁷Li or α are charged, they are detected in the gas filling the detector

• α -range in boron is ~1mg/cm² \Rightarrow boron plating should be thin \Rightarrow the neutron detection efficiency (~10%) is lower in ³He or BF₃ counters.

Boron-lined Proportional Counters

- interior walls of a conventional proportional counter coated with solid boron.
- use standard proportional gas
- Neutron interactions with ¹⁰B take place in the wall of the counter \rightarrow Only one of the two emitted particles (⁷Li or α) reaches the gas with some fraction of its initial energy

the energy of particles entering the gas and producing pulses varies:

⁷Li: from 0 to 0.84 MeV α : from 0 to 1.47 MeV

As there is no well-defined "valley" to set the threshold in, the count rate plateau curve is ~10%/100V

Comparing Boron-lined with BF3 proportional counters:

- A more suitable proportional gas can be used
- Higher gamma-ray insensitivity (due to lower fill pressure and lower operating pressure)
- Less aging effects
- Can give faster signals (by proper choice of gas)

- worse long-term counting stability
- lower efficiency (~10%)

Fission chambers: principle of operation

Neutron cause fission of the material covering one (or both electrode) of the chamber

The high energy ionising products \rightarrow output pulses of the ionization chamber.

for slow neutrons, the two FF are emitted in oposite directions

Fission fragments (FF) are very energetic (for example ^{235}U : Q~200 MeV \rightarrow FF share about 160 MeV);

 α and γ background also present;

²³⁵U is the most used material; ^{238}U and ^{232}Th are used for fast neutrons

Other fissionable isotopes are ²³⁹Pu, ²³⁷Np, ²³⁴U and ²³³U.

• The most common filling gas is Argon plus 10% methane (or 2% N_2), with filling pressures typically from 1 to 5 atm (pressure depending on the application). At this pressure the range of FF is ~ a few cm.

Fission chambers

Coating thickness should be as large as possible to increase efficiency

BUT

smaller than the range of fission fragments in the coating material (average range of FF from ²³⁵U is ~7 μ m =13mg/cm² coating;

- ➡ Typical coating thickness: 0.02 to 2 mg/cm²
- ➡ Typical efficiency for thermal neutrons: 0.5 -1% (and even lower for fast neutrons)

Fission chambers can operate in pulse mode, DC or MSV mode.

- Pulse chambers are limited to count rates typically $< 10^5$ cps;
- for higher count rate, DC or MSV fission chambers are used.

Fission chambers: pulse mode

- allow direct α and γ discrimination based on amplitude threshold
 - The spectrum depends on the wall coating thickness

•the wall thickness must be thin enough so that the pulses due to any of the fission fragments are greater than the pulses due to α particles (for α **discrimination**)

FF deposited energy >> gammas

Fission chambers have high insensitivity to gammas but limited to count rates < 10⁵ cps

Gamma-sensitivity and neutron efficiency of some neutron detectors

Table 13-3.	. Typical values of efficiency and gamma-ray sensitivity for some common neutron
detectors	(T.W. Crane &M. Baker, Neutron detectors)

Detector Type	Size	Neutron Active Material	Incident Neutron Energy	Neutron Detection Efficiency ^a (%)	Gamma-Ray Sensitivity (R/h) ^b
Plastic scintillator	5 cm thick	l H	1 MeV	78	0.01
Liquid scintillator	5 cm thick	^{1}H	1 MeV	78	0.1
Loaded scintillator	1 mm thick	⁶ Li	thermal	50	1
Hornyak button	1 mm thick	$^{1}\mathbf{H}$	I MeV	1	1
Methane (7 atm)	5 cm diam	^{1}H	1 MeV	1	1
⁴ He (18 atm)	5 cm diam	⁴ He	1 MeV	1	1
³ He (4 atm), Ar (2 atm)	2.5 cm diam	³ He	thermal	77	1
³ He (4 atm), CO ₂ (5%)	2.5 cm diam	³ He	thermal	77	10
BF3 (0.66 atm)	5 cm diam	10 _B	thermal	29	10
BF1 (1.18 atm)	5 cm diam	10 _B	thermal	46	10
¹⁰ B-lined chamber	0.2 mg/cm^2	10 _B	thermal	10	10 ³
Fission chamber	2.0 mg/cm ²	²³⁵ U	thermal	0.5	$10^6 - 10^7$

^aInteraction probability for neutrons of the specified energy striking the detector face at right angles. ^bApproximate upper limit of gamma-ray dose that can be present with detector still providing usable neutron output signals.

A sample of a material with high cross-section for activation by neutrons is exposed to a flux of neutrons for a period of time and then removed so that the induced radioactivity (usually γ or β) may be counted.

For a thin foil irradiated with a contant flux of neutrons, the rate of activated species is:

$$R = \phi \sigma V$$

 ϕ = neutron flux averaged over the foil surface σ = activation cross section averaged over the neutron spectrum V = foil volume

During irradiation the activity of the material:

$$A(t)=R\left(1-e^{-\lambda t}\right)$$

 λ = decay constant of the radioactive species formed under irradiation

$$\lim_{t\to\infty}A(t)=A_{\infty}=R=\phi\sigma V$$

After exposure to the neutron flux during a time t_0 , the foil is transferred to an appropriate radiation counter for measurement of its activity.

C = total number of counts in $t_2 - t_1$,

B = the number of background counts in $t_2 - t_1$,

ε = the overall countingefficiency (including anyself-absorption effects);

• Because the activity is continuously decaying during this stage, careful account must be made of each of the times involved.

• If the counting is carried out over an interval between t_1 and t_2 , **the number of counts**, C,

$$C = \epsilon \int_{t_1}^{t_2} A_0 e^{-\lambda(t-t_0)} dt + B$$

$$A_{\infty} = \frac{\lambda(C-B)}{\epsilon(1-e^{-\lambda t_0})e^{\lambda t_0}(e^{-\lambda t_1}-e^{-\lambda t_2})}$$

from A_∞ the neutron flux can be determined

Element	Isotope (Abundance in Percent)	Thermal Activation Microscopic Cross Section (in 10 ⁻²⁸ m ²)	Induced Activity	Half- Life
Manganese	⁵⁵ Mn (100)	13.2 ± 0.1	⁵⁶ Mn	2.58 h
Cobalt	⁵⁹ Co(100)	16.9 ± 1.5 20.2 ± 1.9	^{60m} Co ⁶⁰ Co	10.4 min 5.28 y
Copper	⁶³ Cu(69.1) ⁶⁵ Cu(30.9)	4.41 ± 0.20 1.8 ± 0.4	⁶⁴ Cu ⁶⁶ Cu	12.87 h 5.14 min
Silver	¹⁰⁷ Ag(51.35) ¹⁰⁹ Ag(48.65)	45 ± 4 3.2 ± 0.4	¹⁰⁸ Ag ^{110m} Ag	2.3 min 253 d
Indium	¹¹³ In(4.23)	56 ± 12 2.0 ± 0.6	^{114m} 1In ¹¹⁴ In	49 d 72 s
	¹¹⁵ In(95.77)	$160 \pm 2 \\ 42 \pm 1$	^{116m} 1In ¹¹⁶ In	54.12 min 14.1 s
Dysprosium	¹⁶⁴ Dy(28.18)	2000 ± 200 800 ± 100	^{165m} Dy ¹⁶⁵ Dy	1.3 min 140 min
Gold	¹⁹⁷ Au (100)	98.5 ± 0.4	¹⁹⁸ Au	2.695 d

Source: K. H. Beckurts and K. Wirtz, Neutron Physics. Copyright 1964 by Springer-Verlag. New York. Used with permission.

Material	Reactions of Interest	Isotopic Abundance (at %)	Half-Life	γ Energy (MeV)	γ Abundance (%)	Threshold (MeV)
F	¹⁹ F(n, 2n) ¹⁸ F	100.0	109.7 min	0.511+	194°	11.6
Mg	$^{24}Mg(n,p)^{24}Na$	78.7	15.0 h	1.368	100	6.0
Al	27 Al(n, α) 24 Na	100.0	15.0 h	1.368	100	4.9
Al	${}^{27}Al(n,p){}^{27}Mg$	100.0	9.46 min	0.84-1.01	100	3.8
Fe	56Fe(n, p)56Mn	91.7	2.56 h	0.84	99	4.9
Co	59 Co(n, α) 56 Mn	100.0	2.56 h	0.84	99	5.2
Ni	⁵⁸ Ni(n, 2n) ⁵⁷ Ni	67.9	36.0 h	1.37	86	13.0
Ni	⁵⁸ Ni(n, p) ⁵⁸ Co	67.9	71.6 d	0.81	99	1.9
Cu	⁶³ Cu(n, 2n) ⁶² Cu	69.1	9.8 min	0.511+	195°	11.9
Cu	⁶⁵ Cu(n, 2n) ⁶⁴ Cu	30.9	12.7 h	0.511+	37.8°	11.9
Zn	⁶⁴ Zn(n, p) ⁶⁴ Cu	48.8	12.7 h	0.511+	37.8°	2.0
In	¹¹⁵ In(n, n') ^{115m} In	95.7	4.50 h	0.335	48	0.5
I	¹²⁷ I(n, 2n) ¹²⁶ I	100.0	13.0 d	0.667	33	9.3
Au	¹⁹⁷ Au(n, 2n) ¹⁹⁶ Au	100.0	6.18 d	0.33-0.35	25-94	8.6
Li	7 Li(n, α n')t	92.58	12.3 y	0-0.019×	100^{\times}	3.8

+Annihilation radiation.

°Yield of annihilation photons assuming all positrons are stopped.

×β particle energy and percent abundance.

Activation foils

as neutron detectors

They are **integrating** detectors \Rightarrow no information on any time variation of neutron flux

- can be small in size
- insensitive to gamma-rays
- low cost
- can be installed in very harsh enviroments regarding temperature, pressure and high radiation fluxes (e.g. the core of a reactor)
- do not require any electrical connections (so they are handy)

They are widely used for mapping the spatial variation of steady-state neutron fluxes in reactor cores

Scintillation Detectors

Some Common Scintillators for Neutron Detectors

- Intrinsic scintillators contain small concentrations of ions ("wave shifters") that shift the wavelength of the originally emitted light to the longer wavelength region easily sensed by photomultipliers.
- ZnS(Ag) is the brightest scintillator known, an intrinsic scintillator that is mixed heterogeneously with converter material, usually Li⁶F in the "Stedman" recipe, to form scintillating composites. These are only semitransparent. But it is somewhat slow, decaying with ~ 10 µsec halftime.
- GS-20 (glass,Ce³⁺) is mixed with a high concentration of Li₂O in the melt to form a material transparent to light.
- Li₆Gd(BO₃)₃ (Ce³⁺) (including ¹⁵⁸Gd and ¹⁶⁰Gd, ⁶Li ,and ¹¹B), and ⁶LiF(Eu) are intrinsic scintillators that contain high proportions of converter material and are typically transparent.

Some Common Scintillators for Neutron Detectors-cont'd

Material	Density of ⁶ Li atoms (cm ⁻³⁾	Scintillation efficiency	Photon wavelength (nm)	Photons per neutron
Li glass (Ce)	1.75x10 ²²	0.45 %	395 nm	~7,000
Lil (Eu)	1.83x10 ²²	2.8 %	470	~51,000
ZnS (Ag) - LiF	1.18x10 ²²	9.2 %	450	~160,000
$Li_6Gd(BO_3)_3$ (C	e), 3.3x10 ²²		~ 400	~40,000
YAP	NA		350	~18,000 per MeV gamma

GEM Detector Module

SNS 2-D Scintillation Detector Module

Shows scintillator plate with all fibers installed and connected to multi-anode photomultiplier mount.

Semiconductor Detectors

⁶Li-loaded semiconductor

 $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 \text{ MeV}$ $\sigma = 940 \frac{\lambda}{1.8} \text{ barns}$

Semiconductor Detectors-cont'd

- ~1,500,000 holes and electrons produced per neutron (~2.4×10⁻¹³ coulomb).
 - The detector acts as a capacitor. The ionization partially discharges the capacitor and can be detected directly without further amplification.
 - However, standard device semiconductors do not contain enough neutron-absorbing nuclei to give reasonable neutron detection efficiency.
 - Put neutron absorber on surface of semiconductor? These exist and are called *surface barrier detectors*.
 - Develop, for example, boron phosphide semiconductor devices? This is a challenge for future development.

Li-based scintillators

n + ⁶Li \rightarrow (⁷Li)* \rightarrow ⁴He + ³H, Q = 4.78 MeV

K.E. 2.05 MeV + 2.74 MeV

- ⁶Li loaded materials:
 - No stable lithium containing gas available
- ⇒ Li-loaded scintillators:
 - Solid LiI(Eu) [similar to NaI(Tl)]
 - 470nm, 51k photons/ MeV
 - No wall effects
 - Small detectors with ~ 100% efficiency ($E_n < 0.5eV$)
 - Single peak at Q-value with continuous γ -background (E_e=4.1MeV ~ E_{CP}=4.8)
 - Liquids: n-γ pulse-shape discrimination possible!

⁶Li-glass: slow and fast neutron detection...

Glass-based scintillation detectors can be implemented as bulk and as long fibers (~ meters)!

Concluding remarks

Detectors must be chosen/DESIGNED for the specific application. Typical application is "counting above threshold"

Requirements to be considered when designing detectors:

- Gamma-ray sensitivity
- Count rate
- Environment (B field, temperature etc)
- Digitize!