

Neutron Imaging Instruments Applications and Principles of Instrumentation

Michael Schulz

T. Reimann, B. Schillinger, P. Schmakat, D. Bausenwein, P. Böni

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Outline

- Neutron Interaction
- The principle of neutron imaging
- Motivation: Examples
- Pinhole camera geometry: details
- Instrumentation / Main Components

images by M. Mühlbauer, KIT

Comparison neutrons & x-rays

Top: www.psi.ch Right: M.Strobl, J. Phys. D, **42**, 243001 (2009) x-rays

The Principle of Neutron Imaging

© F. Piegsa, ETH Zurich

Analytical description of the transmission process

Transmission

$$T = \frac{I}{I_0} = e^{-\Sigma \cdot d} = e^{-\sigma \cdot N \cdot d}$$

and inverted ...

$$\boldsymbol{\Sigma} \cdot \boldsymbol{d} = \boldsymbol{ln}(\frac{I_0}{I})$$

- Several hundred single projections are required
- A reconstruction algorithm delivers the 3D structural data
- A visualization tool delivers slices and views at arbitrary positions

from E. Lehmann, PSI

Tomography Result: Virtual Reality

Outline

- Neutron Interaction
- The principle of neutron imaging
- Motivation: Examples
- Pinhole camera geometry: details
- Instrumentation / Main Components

images by M. Mühlbauer, KIT

Stroboscopic imaging

- Electrically driven engine at 600rpm
- Time window 1ms
- Observation area could be varied by displacement of the full set-up.

Dynamic radiography of the engine, with oil filled horizontal pressure tubes and vertical backflow tubes,

and oil blob within the oil jet to the piston bottom

Vapour transport in Wood Based Composites

- Mixture of fibres & resin
- Fabrication of panels by cold & hot pressing
- How does vapour move during hot pressing?
- Theories predict wavefront-like movement

Sodium metal halide battery

2 NaCl + M \rightarrow MCl₂ + 2 Na [M = Fe, Ni]

Operating temperature: 270 °C - 350 °C

(special AI furnace for neutron measurements)

Cell setup:

Cathode: Fe,Ni/ Ni_{1-x}Fe_xCl₂/ NaCl

NaAlCl₄ (liquid electrolyte)

Cathode current collector

- Electrolyte reservoir (porous graphite)
- β"-alumina (separator, conducts Na+)
- Anode: liquid sodium
- Steel case (anode current collector)

Tomography

cathode electrolyte reservoir current collector

discharged

charged

Tympanic Hearing and bone-conduction hearing

Synapsid evolution

The origin of tympanic hearing

Massetognathus (Cynodontia), approx. 230 million years old

inner ear of Massetognathus

The origin of tympanic hearing

- short, tube-like cochlea in the cynodont therapsid *Massetognathus*
- 3,9 mm long
- enhanced sensitivity to high-frequency air-borne sound
- small stapedial footplate area (1,69 mm²)

More complex: Polarized Neutron Imaging

Neutron Depolarisation

$$P = P_0 \exp\left(-\frac{1}{3}\gamma^2 \mu_0^2 M^2 \frac{d\delta}{v^2}\right)$$

Stray Field of Ring Magnet

Setup for Depolarisation Imaging

Outline

- Neutron Interaction
- The principle of neutron imaging
- ✓ Motivation: Examples
- Pinhole camera geometry: details
- Instrumentation / Main Components

images by M. Mühlbauer, KIT

Pinhole camera geometry in detail

Resolution

Distance source-pinhole

- Flux only depends on source brilliance and collimation same L/D is always same flux at a given source!
- Fully illuminated area increases when pinhole is closer to source

Collimator instead of pinhole

Outline

- ✓ Neutron Interaction
- The principle of neutron imaging
- ✓ Motivation: Examples
- ✓ Pinhole camera geometry: details
- Instrumentation / Main Components

images by M. Mühlbauer, KIT

Why was ANTARES rebuilt?

The new ANTARES beamline

ANTARES Beam Line Concept

- 3 chambers
- Beam accessible along flight path
- High flexibility
- New & light shielding material (only 500t)
- Plenty of space available for experiments & sample environment

Main Components of a NI beamline

ICON @ PSI

ODIN CAD drawings

B (1:50)

D (1:50)

G (1:50)

actica

ing an imaging instrument

<u>cuva</u>

Talk to people who have already built an inst

Beam size of 25 x 25 cm is sufficient for 98% of san

-150ects of build

Take as much space as you can

You can never have enough holes for cables / media supp

You need space for sample storag

Consider availability of crane

Some works can only be done during shutdown

k about disposal before you build your instrument

Removal of old ANTARES collimators

- Very close to reactor core (flux: 10¹²n/cm²s)
- Highly activated (~1Sv/h)
- Remote controlled removal through massive shielding

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung Technische Universität München

Old ANTARES shutter block

Activation to ~100µSv/h along beam channel
 Disposal as radioactive waste

Packaging for ultimate storage

- Cutting time: several days!
- Price: ~150k€

Shutters

- Stop full beam for access of cave
- Must be fail-safe
- Additional fast shutter (B₄C) to reduce sample activation (closed after each
 - image)

Collimators

- Massive for beam tube instruments to stop background
- Different pinhole sizes selectable
- Material with low activation (i.e. borated steel)
- Machined by spark erosion

detectors for neutron imaging

from E. Lehmann, PSI

Detectors – Camera Based Systems

- General principle: scintillator camera – mirror
- Cooled scientific CCD / CMOS for reduced / negligible dark current
- Surface mirror with > 99% reflectivity
- High end optics: SLR or custom made

Detectors - Scintillators

2. Phosphorescence

Limitations:

- Smearing ~ proportional to thickness
- Detection efficiency for 100μm ~20%
 σ_{abs} (⁶Li)=940barn
- Use Gd as neutron absorber: Gd_2O_2S , σ_{abs} (Gd)=49700barn

Flight Tubes

- Intensity loss in air ~8% per m
- Flight Tubes with thin AI windows
- Penumbra must not touch the tubes
- He filled or evacuated (danger!)
- Flexible arrangement

Beam Limiters

- Absorb most of the unused beam area before the sample position
- Reduced background at sample position
- Neutron absorber: BN or B₄C (low gamma energy ~500keV)

Motorized Stages

10kg

- High precision / high load capacity
- X,y,phi, (+ optional goniometers)

500kg

Additional things...

Additional things...

- Racks for electronics
- Safety access control
- IT: (File server, Computers for reconstruction / visualization / Instrument control)

Additional things...

IP camera in bunker

Rail system

Neutron velocity selector

Monochromator

What you should remember

- Neutron imaging is a valuable method for nondestructive testing
- The principle is simple but you can still make many mistakes when building an instrument
- Talk to people who have already made these mistakes
- Think about activation and disposal of the components when you design them

