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Outline

 What do we try to measure with neutron scattering?

— Introduction to nuclear and magnetic neutron scattering
— Elastic and inelastic scattering

— Coherent and incoherent scattering

— Introduction to correlation functions in space and time
— Real space and reciprocal space

 How do we make the measurement?
— Scattering triangles and kinematic constraints
— CW and TOF approaches
— Review of some typical neutron scattering instruments
— Why are there so many different types of neutron instrument?

 What are the obstacles?



Why do Neutron Scattering”?

To determine the positions and motions of atoms in
condensed matter

1994 Nobel Prize to Shull and Brockhouse cited these areas

Neutron advantages:

Wavelength comparable with interatomic spacings

Kinetic energy comparable with that of atoms in a solid

Penetrating => bulk properties are measured & sample can be contained

Weak interaction with matter aids interpretation of scattering data

Isotopic sensitivity allows contrast variation

Neutron magnetic moment couples to B => neutron “sees” unpaired electron spins

Neutron Disadvantages

Neutron sources are weak => low signals, need for large samples etc
Some elements (e.g. Cd, B, Gd) absorb strongly
Kinematic restrictions (can’ t access all energy & momentum transfers)



The 1994 Nobel Prize in Physics — Shull & Brockhouse
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Historical accomplishments of Neutron Scattering

* Antiferromagnetic Structures
*Rare earth spirals and other spin structures
*Spin wave dispersion

*Our whole understanding of the details of exchange
interactions in solids

*Magnetism and Superconductivity

*Phonon dispersion curves in crystals; quantum crystals and
anharmonicity

Crystal fields

*Excitations in normal liquids
*Rotons 1n superfluid helium
*Condensate fraction in helium



More Recent Applications of Neutrons

Quantum Phase Transitions and Critical points

Magnetic order and magnetic fluctuations in the high-Tc cuprates
Gaps and low-lying excitations (including phonons) in High-Tc
Magnetic Order and spin fluctuations in highly-correlated systems
Manganites

Magntic nanodot/antidot arrays

Exchange bias

Proton motion in carbon nanotubes

Protein dynamics

Glass transition in polymer films

Protonation states in biological macromolecules from nuclear
density maps

Studies of protein diffusive motion in hydrated enzymes



Interaction Mechanisms
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* Neutrons interact with atomic nuclei via very short range (~fm) forces.

 Neutrons interact with unpaired electrons via magnetic dipole interaction.
 X-rays interact with electrons via an electromagnetic interaction



Thermal Neutrons, 8 keV X-Rays & Low Energy
Electrons:- Penetration in Matter

Note for neutrons:
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Types of Neutron-Material Interactions

* Neutrons interacting with nuclei
— Absorption by nuclei

* Cross section (i.e. absorption probability) for thermal neutrons usually ~1/v,
with resonances at high energy (> keV)

— Scattering by nuclei
« Coherent scattering — scattering from different nuclei add in phase

 Incoherent scattering — random phases between scattering from different
nuclei

* Neutrons interacting with magnetic fields

— Magnetic dipolar interaction

 Scattering from magnetic field (B) due to unpaired electrons — coherent



Neutron Scattering Complements
Other Techniques in Length Scale....
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......and Time Scale
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The Neutron has Both Particle-Like and Wave-Like Properties

« Mass: m, =1.675 x 10?7 kg

« Charge =0; Spin =%

« Magnetic dipole moment: n, =-1.913 py

» Nuclear magneton: py = eh/40m; = 5.051 x 102" J T

« Velocity (v), kinetic energy (E), wavevector (k), wavelength (| ),
temperature (T).

E =m.v22 =kgT = (hk/20)22m,; k =2 0/ = m,v/(h/20)

Energy (meV) Temp (K) Wavelength (nm)
Cold 0.1-10 1-120 0.4-3
Thermal 5-100 60 — 1000 0.1-0.4
Hot 100 — 500 1000 -6000 0.04-0.1

L (nm)=395.6/v (m/s)
E (meV) =0.02072 k? (kin nm)



Advantages & Disadvantages of Neutrons

 Advantages &
— A similar to interatomic spacings
— Penetrates bulk matter
— Strong contrast possible
— Energy similar to that of elementary excitations (phonons, magnons etc)
— Scattering strongly by magnetic fields
— Data interpretation 1s direct

 Disadvantages ::
— Low brilliance of neutron sources
— Some elements absorb neutrons strongly
— Kinematic restrictions on Q for large energy transfers
— Difficult to study excitations at high (eV) energies

— Provides statistical averages rather than real space pictures



A Typical Scattering Experiment

Incident Radiation Q 2k

Wavevector =k, (or k,) Detector

k|=2rn/A
Energy = £,

Polarization = p, Scattered Radiation

Wavevector=£k, (ork')

Energy = £,

—

Wavevector Transfer, Q =k, — k.

1

Energy Transter, AE =hv=hw=FE, - E,
For x-rays: AE << E, or E; s0 Q =2k, sin6

Polarization= p,

Polarization, p, —> p,

Notice that the finite size of the detector and sample imply uncertainty
in the direction of the wavevectors



Cross Sections

Direction

0.6
ds /

Incident - k 3
—— | > A
neutrons

® = number of incident neutrons per cm” per second
o = total number of neutrons scattered per second / ®

do _ number of neutrons scattered per second into dQ2

dQ) ® dQ2
d’c _ number of neutrons scattered per second into dQ2 & dE
dQdE ® dQQ dE

cross section

The effective area presented by a nucleus

to an incident neutron. One unit for cross
section is the barn, as in “can’t hit the side of
a barn!”

f measured in barns:
1 barn = 1024 cm?

Attenuation = exp(-N ( t)
N = # of atoms/unit volume
t = thickness



Neutron Scattering by a Single (fixed) Nucleus

« range of nuclear force (~ 1fm)
1s << neutron wavelength so

. . (13 . . ”
K scattering 1s = point-like
""" T A" scattered Giroulr * energy of neutron is too small

W -b ikr
= T =° to change energy of nucleus &
neutron cannot transfer KE to a
fixed nucleus => scattering is
elastic
Scattering Center . .
Incident at r=0 « we consider only scattering far
Plane Wave e’
from nuclear resonances where

neutron absorption is negligible

> <

/
N

If v 1s the velocity of the neutron (same before and after scattering), the number of neutrons
passing through an area dS per second after scattering is :

vdSly. I =vdSbr? =vb?dQ

Wscat

Since the number of incident neutrons passing through unit areasis: ® =v ?

do vb’dQ ,
0 oda " 70 @

l//incident =V

= 47b° (note units)



Intrinsic Cross Section: Neutrons
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Adding up phases at the detector of the
wavelets scattered from all the scattering
centers 1n the sample:




Adding up Neutrons Scattered by Many Nuclei

At a scattering center located at R. the incident wave is e o R,

. T
so the scattered wave at 7 is ¥ = Ze’ ok | i o R
i
2

do vdSly..| ds
T dQ vdQ dQ

(using defn. from earlier VG)

- ] Cr s
ik'.r i (ky—k").R;
b.e E —e

If we measure far enough away so that r >> R we can use dQ = dS/r* to get

do Z ik —k").(R—R.) 2 ~i0.(R-R))
0 A j) ) J

l,j i,j

—

where the wavevector transfer Q is defined by Q= k'—k

Note: we have assumed the scattering centers don’ t move



The Scattering Triangle

« The wavevector transfer, variously denoted Q or q, is
defined by:

« The scattering triangle defines the vector relationship
between these quantities




Coherent and Incoherent Scattering of Neutrons

The scattering length, b, , depends on the nuclear isotope, spin relative to the
neutron & nuclear eigenstate. For a single nucleus:

b, = <b> +0b, where ob, averages to zero

bb, =(b) +(b)(Sb, + b,)+ 5b,Jh,

but <5b> =0 and <ébiéb J.> vanishes unless1 = |
(07) = (b, = (B)) = (8) - (o)

. do <b>2ze—ié.(1§i—1§j) +(<b2>—<b>2)N

Coherent Scattering Incoherent Scattering
(scattering depends on the (scattering is uniform in all directions)

direction & magnitude of Q)

Note: N = number of atoms in scattering system



Nuclear Spin Incoherent Scattering

Consider a single isotope with spin /. The spin of the nucleus - neutron
systemcanbe (/+1/2)or (1 —-1/2).

The number of states with spin (/ +1/2)1s2(/ +1/2)+1=21+2

The number of states with spin (/ —1/2)1s2(/ —1/2)+1=21

If the neutrons and the nuclear spins are unpolarized, each spin state has

the same a priori probability.
The frequency of occurence of b” stateis f = (21 +2)/(41 +2)
The frequency of occurence of b state1s f~ = (21)/(41 + 2)

Thus () = ﬁ (7 + 15" + 16| and (v?) = ﬁ (7+ 1)) + 1)’



* Difference between H and D used in experiments with soft matter (contrast variation)

Values of [, and [,

Nuclide | ., (. |Nuclide| [, [inc
H 1.8 | 80.2 V 0.02 | 5.0
2H 5.6 2.0 Fe 11.5 0.4
C 5.6 0.0 Co 1.0 5.2
o) 4.2 0.0 Cu 7.5 0.5
Al 1.5 0.0 Ar | 249 | 0.0

* Al used for windows

 V used for sample containers in diffraction experiments and as calibration for energy

resolution

» Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections

* Find scattering cross sections at the NIST web site at:
http://webster.ncnr.nist.gov/resources/n-lengths/




Coherent Elastic Scattering measures the Structure
Factor S(Q) i.e. correlations of atomic positions

<b>2 N.S (Q) for an assemblyof similaratomswhere S (Q) = ]1]<Ze@ RR, )>
ensemble

i,j

do _
dQ

NowZe‘iQ‘Rf = de.e‘@'? D S(F —R)= jd?.e‘@‘? oy (F) wherep, is thenuclear number density

S0 S(0) = %<U di.e™% py,(F) 2>
or S(O) = [ [ .62 p, (P, ) = [dR[ ey (P)p, - B)
ic S(0) =1+ [dR.{g(R) - p}.c **

where| g(R) = Z<5(1§ — R + f?o)> isa function of R only.

i#0

g(R) is known as the static pair correlation function. It gives the probability that there is an
atom, 1, at distance R from the origin of a coordinate system, given that there is also a
(different) atom at the origin of the coordinate system at the same instant in time.



Six)

S(Q) and g(r) for Simple Liquids

Note that S(Q) and g(r)/) both tend to unity at large values of their arguments
The peaks in g(r) represent atoms in “coordination shells”
g(r) is expected to be zero for r < particle diameter — ripples are truncation

errors from Fourier transform of S(Q)

Fig. 5.1 The structure factor S(k) for **Ar at 85 K. The curve through the
experimental points is obtained from a molecular dynamics calculation of
Verlet based on a Lennard-Jones potential. (After Yarnell et al., 1973.)
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Fig. 5.2 The pair-distribution function g(r) obtained from the experimental
results in Fig. 5.1. The mean number density is p =2.13 X 10?® atoms m™>.
(After Yarnell et al., 1973.)
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Neutrons can also gain or lose energy in the scattering process: this is
called inelastic scattering

(a) Elastic Scattering (k'= k) a‘.\@/ -
5% 5"
o
K a
_ Incident_ 20 4
Direction k

. ar
sin 6 = =
Q- 2ksing = 22902

inelastic scattering

Scattering in which exchange of energy and
momentum between the incident neutron and
the sample causes both the direction and the
magnitude of the neutron’s wave vector to
change.

Neutron Loses Energy Neutron Gains Energy
(k'< k) (k'>k)




The Elastic & Inelastic Scattering Cross
Sections Have an Intuitive Similarity

* The intensity of elastic, coherent neutron scattering is proportional to the
spatial Fourier Transform of the Pair Correlation Function, G(r) l.e. the
probability of finding a particle at position r if there is simultaneously a
particle at r=0

« The intensity of inelastic coherent neutron scattering is proportional to
the space and time Fourier Transforms of the time-dependent pair
correlation function function, G(r,t) = probability of finding a particle at
position r at time t when there is a particle at r=0 and t=0.

« Forinelastic incoherent scattering, the intensity is proportional to the
space and time Fourier Transforms of the self-correlation function, G.(r,t)
|.e. the probability of finding a particle at position r at time t when the
same particle was at r=0 at t=0




Diffraction from a Frozen Wave

2
Z eiQ.Fk

k

- 1
Recall that S(Q):F @ ’ ’ o—0—0—0

a

We know that for a linear chain of “atoms” along the x axis, S(Q,) is just a
series of delta function reciprocal lattice planes at Q, = n2n/a, where a is the
separation of atoms

What happens if we put a "frozen" wave in the chain of atoms so that the

atomic positions are x , = pa +u coskpa where p is an integer and u is small?

2 2

S(Q) _ ZeiQpaeiQucoskpa ~ ZeiQpa (1+Z-Qu[eikpa _I_e—ikpa])

p p

2
= ZeiQpa +iQule" TP 4 1O | ‘ L ‘ L ‘ L ‘ |

p
so that in addition to the Bragg peaks we get weak satellitesat 9 =Gtk



What Happens if the Wave Moves?

If the wave moves through the chain, the scattering still occurs at
wavevectors G + k and G — k but now the scattering is inelastic

For quantized lattice vibrations, called phonons, the energy change of
the neutron is 7@ where | is the vibration frequency.

In a crystal, the vibration frequency at a given value of § (called the
phonon wavevector) is determined by interatomic forces. These
frequencies map out the so-called phonon dispersion curves.

r A= X
m[—.--—r—.—w-r-r—--—,— o

Different branches of the dispersion
curves correspond to different types
of motion

phonon dispersion in 36Ar



A Phonon is a Quantized Lattice Vibration

« Consider linear chain of particles of mass M coupled by
springs. Force on n’ th particle is

F=au, +a,  +u, )+o,u, ,+u, ,)+..

o\ "\\
First neighbor force constant displacements

« Equation of motion is . =Mu,
. . i(gna—w : 4 . 1
» Solution is: u,() =4, withw) =——> a,sin*(Cwga)

q:()’iz_ﬂ.,i4—ﬂ-, ...... iEZ—ﬂ. 0
L L 2 L 7
.QDQQQOQOOOJ_“

b

—dak— —

Phonon Dispersion Relation:
Measurable by inelastic neutron scattering
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Atomic Motions for Longitudinal & Transverse Phonons
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Transverse Optic and Acoustic Phonons
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General Expression for d2 (/dQdE

Squires (egn 2.59) derives the following expression:

o0

d°oc k1 | ~i0.R.(0) i0.R.(1)\ —iw
dQdE'  k 27h ;b"b e et e dr

where R (¢) 1s a Heisenberg operator 1.€.
e ORI = QN mOR HHU R ihere H is the Hamiltonian of the scatterer

and < > denotes a thermal average over the possible states, A, of the

scatterer - - 1.e. for any operator, <A> = Z P, </1‘A‘/1>
A

Note that, because of the operators and the average over the states of
the system, this expression is not easy to evaluate in the general case

Note also that the exponential operators do not commute — each
contains H and therefore p, and p and R do not commute.



Correlation Functions

—

- 1 1 —iO'F —iQ".R.(0) iQ".R,(1)
Suppose we define: G(7,t) = e <e 0 1 () IOV R, >d '
pp (F.0 =5 NJ > 0

JsJ'

and S(0,w) = LJ‘ G(#,0)e'C""™di dt  then we find
27th

dQdE' "k
Squires (eqn 4.14 to 4.17) shows that

G(F,t) = %Z | <5{?'—1§ A(0)}5 '+~ R j(t)}>d17'

2 '
[ d’o ] =b’ ENS(Q, w) provided there is only one type of atom
coh

« Note again that the operators do not commute. If we ignore this fact, we
can do the integration and obtain

Gt (Fa0) = S (81 = R (04 R, (O)})

JsJ




Correlation Functions (cont’ d)

1

G ussicat(Fo1) =— > (S{F = R () + R .(0)}
N “~—

We expressed the coherent scattering cross section in terms of G(r,t)

If we use the classical variant given above, there is a clear physical
meaning — G(r,t) is the probability that if particle j’ is at the origin at
time zero, particle j will be at position r at time t.

We can do the same thing with the incoherent scattering and express
it in terms of a self-correlation function whose classical version is

Gl o (Fo1) = (S(F = R, (1) + R, (0)})
This says that the incoherent scattering is related to the probability
that if a particle is at the origin at time zero, the same particle will be
at position r at time t.



Inelastic Neutron Scattering Measures Atomic Motions

In term of the pair correlation functions, one finds

d’c k' ~
[a’Q s = bczoh ;NS (0, w) (h/20)Q & (h/20)) | are the momentum &
' coh energy transferred to the neutron during the
4’ ' ~ scattering process
2 :biic_NSs(Q’a))
dQ.dE ) k
where

A . 1 - i(0.F—ot) 3= A . 1 - i(Q.F—at) 3=
S©Q.@)=- [[G(#.0)e drdi and 5,(0,0)=—— [[G,G.0e drdt

* Inelastic coherent scattering measures correlated motions of different

atoms
* Inelastic incoherent scattering measures self-correlations e.g. diffusion



Much of the Scientific Impact of Neutron Scattering Has Involved
the Measurement of Inelastic Scattering

10000
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Energy & Wavevector Transfers accessible to Neutron Scattering



The Accessible Energy and Wavevector
Transfers Are Limited by Conservation Laws

* Neutron cannot lose more than its initial kinetic energy &
momentum must be conserved

hw i E. ;

'4

elastic
scattering
Q2
00
& Intersection of the dynamical
20 = range surface (paraboloid) with
407 180° a (rotationally symmetric) dis-
60° 160° persion surface. The projection
140° of the lines of intersection

800 =3
100 0 . :
e into the Q-plane are different

for energy gain and energy loss



The Kinematic Approximation

Note that the approximation we have just seen ignores
— Depletion of the incident beam by scattering or absorption
— Multiple scattering

l.e. energy is not conserved

This so-called “kinematic approximation” is OK for weak
scattering, very small crystals or “bad” crystals

It is usually used for interpreting diffraction experiments, though
“extinction corrections” are often needed with single crystals

— Ifit’ s not adequate, use dynamical theory



Magnetic Properties of the Neutron

The neutron has a magnetic moment of -9.649 x 1027 JT-
Hy = —YHUNO
where = % 1s the nuclear magneton,
p
m,, = proton mass, e = proton charge and y =1.913
o 1is the Pauli spin operator for the neutron. Its eignevalues are + 1

Note that the neutron’ s spin and magnetic moment are antiparallel
Because of its magnetic moment, the neutron feels a potential given by:

v, (F)=—p,.B(F) where B(F)= uopuH (F) = o[ H (F)+ M (F)]

Thus the neutron senses the distribution of magnetization in a material

Homework problems: What is the Zeeman energy in meV of a neutron in a 1 Tesla field?
At what temperature is the Boltzmann energy equal to this Zeeman energy? What is the
effective scattering length of a “point” magnetic moment of one Bohr magneton?



Magnetic Scattering of the Neutron

For nuclear scattering, the matrix element that appears in the expression

. . . iIQ.R;
for the scattering cross section is: ije e
J

The equivalent matrix element for magnetic scattering is:

| R :
Y24 o.M | (Q) where uz = e is the Bohr magneton (9.27 x 10* JT™)
2/uB 2me
2
and 7, = #0 € s classical radius of the electron (2.818 x 10° nm)

4z m,

Here J\;ll (Q) is the component of the Fourier transform of the
magnetization that is perpendicular to the scattering vector O . This
form arises directly from the dipolar nature of the magnetic interaction.

Unlike the neutron-nucleus interaction, the magnetic interaction of the
neutron with a scattering system specifically depends on neutron spin



The Magnetic Scattering Cross Section

Development of the magnetic scattering cross section follows the same
formalism as for the nuclear cross section, with nuclear matrix element
replaced by the magnetic interaction matrix element given above

Need to keep the explicit dependence on neutron spin (or average over
neutron spin states for an unpolarized neutron beam).

— Magnetic scattering may cause a change in the neutron’ s spin state

General expressions tend to be complicated, so specific expressions are
obtained for various contributions to sample magnetization e.g. unpaired
electron spins

The form of the magnetic cross section implies that neutrons are only
sensitive to components of the magnetization that are perpendicular to Q.



Scattering by lons with Unpaired Electrons

* Including only magnetization due to unpaired electron spins and assuming
an unpolarized incident neutron beam:

d’c  (m)’ kK o R
dQdE  27h k;(%’ 0,0p) ) Fo(Q)F, (0)

ldl'd'

’ T t{exp {~iQ.Ryg(0)} exp{iQ.Ria()] ){ SFi (0)S ()™

where F4(Q) is the Fourier transform of the electron spin density around
atom d, often called the atomic form factor; S¢ is the ¢ component of the
electron spin and |,d labels an atom d in unit cell |

* This expression can be manipulated to give the scattering cross sections
for elastic magnetic scattering inelastic magnetic scattering and magneto-
vibrational scattering



What Happens to a Neutron’ s Spin When the
Neutron is Scattered?

« The cross section for magnetic scattering that takes the neutron spin state
from o->c’ and the scattering system from A->\" is:

2 2 '
dQdE) 2w )

« One can show (see Squires) that if |u>

2
>\ S(E, — EA'+ho)

v)are the neutron spin eigenstates:
< ‘UMJ_‘ > M, ; <v‘5.ML‘v> =M, ,; <V‘5-M¢‘ > M, +iM,,; <u‘5.ML‘v> =M, —iM |,

so, sample magnetization parallel to the neutron’ s magnetic moment (z)
does not change the neutron spin, whereas perpendicular components of
magnetization ‘flip” the neutron’ s spin

Homework: show that for a paramagnet (where <S Sﬁ> E5 0,58(S+1) for spins i and j)
— If z 1s parallel to Q, the scattering is entirely spin flip
— If z 1s perpendicular to Q, half the scattering is spin flip



Inelastic Magnetic Scattering of Neutrons

* In the simplest case, atomic spins in a ferromagnet
precess about the direction of mean magnetization

H=>J(0 ~1"S,.5,=H,+> hopb, 11 t i 2441
Ll q t 4 BEEE
N SEEESERER

Heisenberg interaction spin waves (magnons) ::II:iff I
. ERSEE1E
with 1T§+f+ff
I't¥+#+f

AR U B B B A

ho,=25(J,—J,)  where J = Zj(j)eié.i
[

ho, = Dq® is the dispersion relation for a ferromagnet Fluctuating spin is
A P perpendicular to mean
spin direction

YYYYTPIYYYY Y

Spin wave animation courtesy of A. Zheludev (ORNL)




Diffraction

Neutron (or x-ray) diffraction is used to measure the differential cross
section, d (/dA in the static approximation i.e. integrated over k' — measures
G(r,0)

— Crystalline solids (elastic scattering — G(r,0))

» Unit cell size; crystal symmetry; atomic arrangement
and thermal motions (ellipsoids)

— Liquids and amorphous materials
— Large scale structures

g

Y

I

é

(A
(A
4 3
|
Wi |
%
(IO

M1

|

 Depending on the scattering angle,

structure on different length scales, d,
IS measured:

''''''''''

27/Q=d=2/2sin(0)

« For crystalline solids & liquids, use
wide angle diffraction. For large structures,

e.g. polymers, colloids, micelles, etc.
use small-angle scattering




Diffraction by a Lattice of Atoms

I,j

S(Q)=;<Ze@'(ﬁ’ﬁf)> withR =i +ii, wherei is the equilibriun position

of atomiandu;, is any displacemant (e.g.thermal)from the equilibrium position.

Ignoringthermalvibratiors, S(Q)1s only non - zero for Q's such that Q (i—j)=2Mr.
In a Bravaislattice, we can write i =m, 4, + m,,a, + m,d, where d,,d,,d, are
the primitivetranslation vectorsof the unit cell.

2T : :
Definea, =—a, A a, and cyclicpermutatians.

0
—-* -
Thena; .a, =270o,.

If 0=G,, =hi +ki, +la, then Q.G — j)=2Mrn.

So scatteringfroma (frozen)latticeonly

unit cell
occurs when thescatteringwavevecta, Q, e

1s equal to a reciprocallattice vector,G,,,.




Direct and Reciprocal Lattices

In a Bravais lattice, we can write R, = my;a, + m,;a, + my,a; where a,,a,,a; are

the primitive translation vectors of the unit cell (see previous viewgraph).

, f, _.*_272'_. . _,*_272'_. — _.*_27Z'_. -
Let'sdefinea, =—a, xa a, =——d, Xa a, =—a, Xa
1 2 XAz, djp 3 Xdp, 3 1 Xdy
V, V V.
0 0 0

where V, =a,.(a, xa;) =the volume of the unit cell.

The Zi: have the dimensions of (length)” and the property that Zz: a; =21y, 1.e. a, is

perpendicular to the plane defined by @, and a; etc.

If we choose a vector G, defined by G, = hd, +kd, +1d; then G, .(R, - R )=2Mn.

i.e| G,,, is normal to sets of planes of atoms spaced 277/ G,,, apart

Scattering from a lattice of atoms occurs only when Q = G

A

G

The vectors G,,, define a lattice of points called the |reciprocal lattice

Homework: verify that Bragg' s (A= 2 d sin0) follows from the above

v

=



2D

a*

Reciprocal

.\b cos(30 )a

Reciprocal
Lattice:

V =51°(52X53)

e 2w
Ve

d, =—d, x4

V.
R A
a, =—a, xa,
V.



Reciprocal Space — An Array of Points (hkl)
that is Precisely Related to the Crystal Lattice

Gy = 2m/dpy (hk1)=(260)

a* = 200(b x c)/V, etc.

A single crystal has to be aligned precisely to record Bragg scattering



Notation
(Ehkl Is called a reciprocal lattice vector (node denoted hkl)
h, k and | are called Miller indices

(hkl) describes a set of planes perpendicular to th,,
separated by 2[1/G,

{hkl} represents a set of symmetry-related lattice planes
[hKI] describes a crystallographic direction

<hkl> describes a set of symmetry equivalent crystallographic
directions



For Periodic Arrays of Nuclei, Coherent Scattering Is Reinforced Only in
Specific Directions Corresponding to the Bragg Condition:
L =2d,,sin(\)or2ksin(\) = G, (where Gy, = 21/d,)




Atomic Vibrations

The formalism on the previous slide works fine if the atoms are stationary:
in reality, they are not

i,j

Remember that S(Q)—N<E e >
ensemble

We average over the (fluctuating) atomic positions by introducing a
probability that an atom will be at given position. Instead of the Fourier
Transform of ™functions, this gives the FT of the ™functions convolved
with a spread function. The result is that S(Q) is multiplied by the FT of the
spread function i.e. by eXp—Q2<u2>/3 if we use a Gaussian spread function

Ll o h —ANARAAND

Atomic vibrations cause a decrease in the intensity of Bragg scattering.
The “missing” scattering appears between Bragg peaks and results in
inelastic scattering



Key Points about Diffraction

A monochromatic (single | ) neutron beam is diffracted by a single crystal
only if specific geometrical conditions are fulfilled

These conditions can be expressed in several ways:
— Laue’ s conditions: Q.Zzl = h; Q.Zzz =k; Q.Zz3 =1 with h, k, and 1 as integers
— Bragg' s Law2d,;, sind =1
— Ewald’ s construction

see http://www.matter.org.uk/diffraction/geometry/default.htm

Diffraction tells us about:;

_ . . Incident
— The dimensions of the unit cell neutrons
— The symmetry of the crystal
— The positions of atoms within the unit cell Exald Sphere

— The extent of thermal vibrations of atoms

1n various directions




Bragg Scattering from Crystals

Working through the math (see, for example, Squires' book), we find :

do . Qry A_ 3
(d_ﬂj =N 200~ G Q)

where the unit - cell structure factor is given by
A . i0.d _-W,
F,.,(0)= Zbde “le
d

and 7, 1s the Debye - Waller factor that accounts for thermal motions of atoms

« Using either single crystals or powders, neutron diffraction can be used to
measure F? (which is proportional to the intensity of a Bragg peak) for
various values of (hkl).

« Direct Fourier inversion of diffraction data to yield crystal structures is not
possible because we only measure the magnitude of F, and not its phase =>
models must be fit to the data

« Neutron powder diffraction has been particularly successful at determining
structures of new materials, e.g. high T_materials



The Structure Factor

The intensity of scattering at reciprocal lattice points is given by the

square of the structure factor F,(0)=) b, o0 W
d

Crystallography attempts to deduce atomic positions and thermal
motions from measurements of a large number of such “reflections”

— (Reciprocal) distance between diffraction “spots” => size of unit cell

— Systematic absences and symmetry of reciprocal lattices => crystal
symmetry (e.g. bcc htk+1=2n)

— Intensities of “spots” => atomic positions

and thermal motions

Laue diffraction pattern
showing crystal symmetry



(a) (b)

If we could measure
the complex quantity
F,,; we could figure
out the positions of all
atoms. But we only
measure | F, ., 2. In
fact, we would be
better off i1f diffraction
measured phase of
scattering rather than
amplitude!
Unfortunately, nature
did not oblige us.

(c) (d)

The Phase Problem

A graphic illustration of the phase problem: (a) and (b) are the
original images. (c) is the (Fourier) reconstruction which has the Fourier
phases of (a) and Fourier amplitudes of (b); (d) is the reconstruction with
the phases of (b) and the amplitudes of (a).

Picture by courtesy of D. Sivia



Object A Object B

Professor Sinha’s demonstration of the
“Phase Problem’ is much more memorable



Fourier Reconstruction with Fourier Reconstruction with
phases of object A and amplitudes phases of object B and amplitudes
of Object B of Object A

.

PHASE tells us where the different parts of the object are located!



Now that we know what the scattering cross
section means, how do we measure it?

Incident Radiation

Wavevector = &, (or k,) Detector
k|=2r/A

Energy = £,

Scattered Radiation

Polarization = p,

—_

Wavevector =k, (or k "

—

= - Energy =E,
Wavevector Transfer, O =k , — &,

1

Energy Transter, AE =hv=hw=FE, - E,
For x-rays: AE << E, or E; s0 Q =2k, sin6

Polarization= p,

Polarization, p, —> p,

Notice that the finite size of the detector and sample imply uncertainty
in the direction of the wavevectors



Specifying the magnitude of the wavevector:
CW or TOF?

Two types of neutron source: continuous and pulsed

Two (principal) methods of making neutrons: fission &
spallation

The magnitude of a neutron wavevector (i.e. the neutron
velocity) can be specified in two ways:
— Using Bragg scattering from a single crystal (or an array of crystals)
— Using time-of-flight for a pulsed beam



Nuclear Fission & Spallation are the Methods of Choice
to Produce Neutrons for Scattering

| Thick target spallation

Artist’ s view of spallation

J neutron
/ fission
& product
/ neutron
9o ~J .
neutron
target \ - .
nucleus \ ﬁ fission Spallatlon
product
J neutron

Nuclear Fission



The Energy Cost of Various Neutron Sources

For high-power sources the driving issue is heat removal =>
use spallation for high power sources
— ~ 190 MeV per neutron for fission
— ~25 MeV per neutron for spallation with protons (threshold at E ~ 120 MeV)
— ~ 1500 MeV per neutron for (n,p) on Be using 13 MeV protons

— ~ 3000 MeV per neutron for electrons

Driving issue for low-intensity sources is cost (electric power,
regulatory, manpower etc)

— Cost has to be kept “low” (i.e. construction ~$10-20M)

— Cost/benefit is still the metric

— Spallation and fission cost too much (absent a “killer app  money maker)

— Use Be (p,n) or electrons on Ta



Relative Performance of CW and pulsed
neutron sources

« Be very careful.....
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Neutron Monochromators

A simple, vertically focusing A vertical and horizontally focusing

monochromator produced by Riso monochromator fabricated by a Johns
National Lab in Denmark comprised Hopkins team for the NCNR.

of 15 single crystals



Simultaneously Using Neutrons With Many Different Wavelengths
Enhances the Efficiency of Neutron Scattering Experiments

Neutron
Source Spectrum

|
K 1 B Ao = Ahpy |
>

Hq— Ay o T

kf I
Mres a AT
A
|

A

Potential Performance Gain relative to use of a Single Wavelength
Is the Number of Different Wavelength Slices used




Time of Flight

At pulsed neutron sources (or with a chopped beam at a reactor), the

neutron’ s TOF is used to determine it’ s spe
wavelength)

ed (and, hence,

For elastic scattering (diffraction, SANS, reflectometry) no neutron

monochromatization is needed

A

4

fast slow,

. detector

Distance from neutron source

Frame length, T

L  Pulse length, AT

AL (nm) = 0.4AT (ms)/ L(m)

res

Ay, (nm) = 0.4T (ms)/ L(m)

—> time

AT



Powder — A Polycrystalline Mass

All orientations of

%@ F R crystallites possible

o
53 @?% Typical Sample: 1cc powder of
B B

10um crystallites - 10° particles

If 1um crystallites - 1012 particles

Single crystal reciprocal lattice
- smeared into spherical shells



Powder Diffraction gives Scattering on

Debye-Scherrer Cones
(220)

Incident beam
X-rays or neutrons

(200)

Bragg’s Law | = 2dsin\
Powder pattern —scan 2\ or |




Measuring Neutron Diffraction Patterns with a
Monochromatic Neutron Beam

/ Shielding

7 Use a continuous beam
Moderated

- Neutron Of mono-energetlc

———— e T Beam

e neutrons.

Monochromator

Sample
Monochromator
Scattering
Angle Moveable
Beam Stop
Focused
Monochromatic
Neutron Collimators
Beam and 3He
Neutron
Detector Detectors
Support
Track -
POWDER DIFFRACTION AT A REACTOR SOURCE %
Since we know the neutron wavevector, k,
the scattering angle gives Gy, directly: o A . LJULJ
thl = 2 k Sin 6 120 1:'ao 1;:0 150
Scattering Angle, 26 (degrees)

A POWDER DIFFRACTION PATTERN RECORDED AT A REACTOR



Neutron Powder Diffraction using Time-of-Flight

L,=9-100m
Sample
7
7/
g »
Pulsed I1 L’ 2\ - fixed
source e L, ~1-2m
/7
d | =2dsin\
Detector ’ Measure scattering as
bank a function of time-of-

flight t = const.



Time-of-Flight Powder Diffraction

Sample
Argon-filled Position
Flight Path

®Shiiing. Use a pulsed beam with a
broad spectrum of neutron
energies and separate
different energies (velocities)

by time of flight.

Detector
Bank

\ Moderated

Beam | Neutron

POWDER DIFFRACTION AT A SPALLATION SOURCE

Neutron Intensity

L 1 1 1
05 0.6 0.7 0.8
d-spacing (A)

A POWDER DIFFRACTION PATTERN RECORDED AT A SPALLATION SOURCE



A ~ 30 X 20 m? Hall at the ILL Houses About 30 Spectrometers of
different shapes and colors




Brightness & Fluxes for Neutron &
X-Ray Sources

Brightness dE/E Divergence Flux

(st m?stert) (%) (mrad®) (st m?)
Neutrons 10" 2 10 x 10 10"
Rotating 10" 3 0.5 x 10 5x10"7
Anode
Bending 10%* 0.01 0.1x5 5x10"
Magnet
Wiggler 10%° 0.01 0.1x 1 10"
Undulator 10% 0.01 0.01 x 0.1 10%*
(APS)

Flux = brightness * divergence; brilliance = brightness / energy bandwidth



Why are there so many types of neutron instrument?

« Uncertainties in the neutron
wavelength & direction of travel
imply that Q and E can only be
defined with a certain precision

* When the box-like resolution
volumes in the figure are convolved,
the overall resolution width is the
quadrature sum of the box sizes.
Small “boxes” give good resolution.

* The total signal in a scattering
experiment is proportional to the product of the “box” sizes

The better the resolution, the lower the count rate



Examples of Specialization of Spectrometers:
Optimizing the Signal for the Science

« Small angle scattering [Q = 40 sinB/A; (5Q/Q)2 = (M. /1 )2 + (cotB d8)]

— Small diffraction angles to observe large objects => long (20 m) instrument

— poor monochromatization (™ /. ~ 10%) sufficient to match obtainable angular
resolution (1 cm? pixels on 1 m? detector at 10 m=>™ ~ 103 at\ ~ 10-2))

« Back scattering [\=/2; A=2dsin ;™M 1 =cot\ +..]

— very good energy resolution (~neV) => perfect crystal analyzer at \ ~ /2




The NIST 30m SANS Instrument Under Construction




Two Views of the Components of a Typical
Reactor-based SANS Diffractometer

collimator direct beam
stopper

neutron

(mechanicq[) = q 2_-—.dirnensionc||
velocity selector B position sensitive

26 de’re|c’ror-

Note that SANS, like other
diffraction methods, probes
material structure in the
direction of (vector) Q




Where Does SANS Fit As a Structural Probe?

Crystallography

Structure

Size (meters)

 SANS resolves structures
on length scales of 1 — 1000
nm

» Neutrons can be used with
bulk samples (1-2 mm thick)

* SANS 1s sensitive to light
elements suchas H, C & N

* SANS is sensitive to
isotopes such as H and D



The Fermi Pseudo-Potential for Neutrons

dall

=— W . where the sum is over probabilities of all transitions
a0 ®dO - P
2
. I e 2 S\ 27 R F
By Fermi's Golden Ru e';;Z:TWE%' —7,0];, <k >‘ ——pk IV(r)e
'in dQ

where p. 1s # of momentum states in d€2, per unit energy, for neutrons in state k'

Using standard " box normalization", the volume per k state is (277)° /Y where Y = box volume

27142 271 '
Final neutron energy is E'= Ik = dE'= Ik dk SO

2m m
p.dE'=number of wavevector states in volume k"°dk' dQ = ( 2Y)3 k" dk'dQ

7T
: number of wavevector states Y . m
Le. pp = = sk'—
dE' (27) &

Further, ® =incident flux =density x velocity = %zk Fermi pseudopotential
m

( m
7h?

dG Ym 1 27 Y 27h?

dQ  k hdQ h 2n) o

dQ‘

bS(F)

so| V(r)=

9

2 - 2
j ‘ [v@)e = ar




Use V(r) to Calculate the Refractive Index for Neutrons

2
27 bo(r) for asingle nucleus.

The nucleus - neutron potential is givenby : V() =

2
So the average potential inside the mediumis: V = 270 p© where p = ! Zbl.
m volume <
used for SANS & reflectometry

Scattering Length Density (SLD) +

p 1s called the nuclear

272

The kinetic (and total) energy of neutron in vaccuum s £ = h2 ky

m
272 .
Inside the medium the total energy 1s 5 +V

m
. . 272 272 . 272 2 2
Conservation of energy gives Why WK K, 2 p or k;—k’=4np
2m  2m 2m m

Since k/k, = n = refractive index (by definition), and p is very small (~ 10° A?) we get

n=1-1Vp/2x
Since generally n < 1, neutrons are externally reflected from most materials.




Why do we Care about the Refractive Index?

 When the wavevector transfer Q is small, the phase factors
In the cross section do not vary much from nucleus to
nucleus & we can use a continuum approximation

 We can use all of the apparatus of optics to calculate
effects such as:

External reflection from single surfaces (for example from guide surfaces)
External reflection from multilayer stacks (including supermirrors)
Focusing by (normally) concave lenses or Fresnel lenses

The phase change of the neutron wave through a material for applications
such as interferometry or phase radiography

Fresnel edge enhancement in radiography



Remember 4% _ b, <Ua’r.e"'Q"7 Mo (7)

Scattering Length Density

)

dQ

What happens if Q is very small?
— The phase factor will not change significantly between neighboring atoms
— We can average the nuclear scattering potential over length scales ~2[1/10Q
— This average is called the scattering length density and denoted o(r)

How do we calculate the SLD?
— Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html

By hand: let us calculate the scattering length density for quartz — S10,

Density is 2.66 gm.cm; Molecular weight is 60.08 gm. mole’!

Number of molecules per A3 =N = 10-24(2.66/60.08)*N,,,,040 = 0.0267 molecules per A3
SLD=%b/volume = N(bg. + 2b,) = 0.0267(4.15 + 11.6) 105 A2 =4.21 x10-6 A2

A uniform SLD causes scattering only at Q=0; variations in the SLD cause
scattering at finite values of Q



SLD Calculation

« www.ncnr.nist.gov/resources/sldcalc.html
* Need to know chemical formula

and densit
y — > Compound
Enter
— Density (g/cmA3)
Not relevant for SLD Wavelength (A)

Neutron SLD

— Cu Ka SLD

X-ray values
— » Mo KaSLD

Background — 5 Neutron Inc. XS
Neutron Abs. XS
Determine best sample thickness,

Neutron 1/e length

C6H12

0.86

-3.07E-7 (AA-2)
8.34E-6 +9.36E-9i (AA-,
8.33E-6 +2.08E-9i (AA-,
5.93; 33.4 (cmA-1)
0.0823 (cmA-1)

0.166 (cm)

Note units of the cross section — this is cross section per unit volume of sample



Typical SANS/SAXS Applications

* Biology
— Organization of biomolecular complexes in solution

— Conformation changes affecting function of proteins, enzymes, protein/DNA
complexes, membranes etc

— Mechanisms and pathways for protein folding and DNA supercoiling

* Polymers
— Conformation of polymer molecules in solution and in the bulk
— Structure of microphase separated block copolymers
— Factors affecting miscibility of polymer blends

* Chemistry

— Structure and interactions in colloid suspensions, microemeulsions,
surfactant phases etc

— Mechanisms of molecular self-assembly in solutions



Instrumental Resolution for SANS/SAXS

2 o) 5 5
0= 4_7Z-Sin 0 = 5_Q2 _ % 4 COS 92,59
A 0 A sin” @

2 2
~ 5% and @ 1s small, so <5—Q > =0.0025 + <£>

For SANS, (S4/4)

rms

0> PE
For equal source - sample & sample - detector distances of L and equal

apertures at source and sample of h, 60,,,, = J5/12h/L.

The smallest value of @ is determined by the direct beam size : 26, ~1.54/L
At this value of 8, angular resolution dominates and

0Q s ~ (00,1170 10 )Qin ~ OO0, 47w /A~ Qr/ A)h/ L

The largest observable object 1s ~ 272/0Q ., ~ AL/ h.

This achieves a maximum of about 5 g#m at the ILL 40 m SANS instrument using
15 A neutrons.

Note that at the largest values of &, set by the detector size and distance from the

sample, wavelength resolution dominates.



SANS Measures Particle Shapes and Inter-particle Correlations

Z—é:(bﬁ | @ [d@n,(Fny (7).

space space

2

(p=py) [dxe®

particle

= [ @R [dR (n,(Ryn,(R))e* "™

space space

orientation

do = |2 =GR
5= (P=P ) [FQ) VN, [d'RG(R).*"

where G, is the particle - particle correlation function (the probability that there

space

is a particle at R if there's one at the origin) and [F(Q i 1s the particle form factor :
p

2

J‘d3x.eiQ.x

particle

FOf -

P

orientation

These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering 1s no longer from point-like particles



Scattering from Independent Particles

1 do
Scattered intensity per unit volume of sample = [/ = —— )7 d >
yp ple= 10) =% = ([ p(re ar|

For identical particles

p particle

2
Vi, pomatix
p seattering density

‘\ &x homogeneous particle O

1(Q) = —(pp Po)” ,f<

/

contrast factor

with scattering density, Pp

particle form factor |r©)|

Note that 7(0) = %(PP - p,)° sz

Particle concentration ¢ = NV, /V and particle molecular weight M, = pV N,

where p 1s the particle mass density and N ,1s Avagadro's number

M : : :
so 1(0)= ¢ NW (o, - p,)° provides a way to find the particle molecular weight

A




Scattering for Spherical Particles

2

The particle form factor ‘F (Q)‘2 = 1s determined by the particle shape.

J‘d’—;eié.?
v

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

sin OR — QR cos QR} _ 3V,

Fppere (Q) = 3%{ (ORY =08 7, (OR) -V, atQ=0

Thus, as Q — 0, the total scattering from an assembly of uncorrelated spherical

particles[i.e. when G(r) — o(T)]is proportional to the square of the particle volume

times the number of particles. 1
For elliptical particles T 0.8
3j,(x)/x
replaceR by : 06|
R — (a®sin’9+b*cos® 3)"? o4l
where 4 is the angle between
0.2 | x —

the major axis (a) and Q




Radius of Gyration Is the Particle “Size” Usually
Deduced From SANS Measurements

If we measure 7 from the centroid of the particle and expand the exponential

in the definition of the form factor at small Q :

FO)= [ <, +y/r__j<gr> &re..

I

COS 6’sm«9d«9! rdr

2
9%
2

Id3r

Vo

]zsin 0.do
0

where r, is the radius of gyrationis 7, = Ide r/ I d’r. Itis usually obtained from a fit

to SANS data at low Q (in the so - called Guinier region) or by plotting In(Intensity) v Q”.

The slope of the data at the lowest values of Q 1s rg2/3. It 1s easily verified that the

expression for the form factor of a sphere is a special case of this general result.



Shape Determination for Dilute, Randomly
Oriented, Uniform Particles
J-eiéjdf

2
_—(Pp £o) <J- 07 g ’7_‘- >
v, v, v,

N i0.(F=F") 7= = SN iO.R 175
1(O) =7(pp po)2<Je Q=7 -7 )Vp> =(p, p0)2<_[y(R)e QRdR>
orientation

Vo

1(0) = %(pp —po)?

VP
Dmax . Q

Sin OJr
1Q)=(py = )4 [rPy(n=F

0

dr

where P(r) = 42y (1) is the probability of finding two points in the particle separated by r

If I(Q) is measured over a wide enough Q range then the inverse
transform can be computed

P(r) = 4m°y(r) == [ 1(Q)sin(0r)d0



P(r) for Simple Models
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Contrast & Contrast Matching
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* Chart courtesy of Rex Hjelm

Both tubes contain borosilicate beads +
pyrex fibers + solvent. (A) solvent
refractive index matched to pyrex;. (B)
solvent index different from both beads
and fibers — scattering from fibers
dominates
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Using Contrast Variation to Study Compound Particles

LQ =(p - p) Fi

LQ) =(p - p1) F3

1(Q) - {—lr Q) le{Q)

=2{p1 —Pn){,gz —Pa}Fle SE(J(%M
% I: 4

=0 atQ=7/R,,

Ap, J.eiQ'F dr, + Ap, J.eiQ'F dr,
4 £

Examples include nucleosomes
(protein/DNA) and ribosomes
(poteins/RNA)
2
N

1(Q)= V< >
10 = 82 (R @ )+ 403 {|Fo(@)7 )+
sin(QR,,)
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Ap Apy|FL (O F, (O)

Viewgraph from Charles Glinka (NIST)



Porod Scattering

Let us examine the behavior of ‘F(Q)‘2 (OR)" at large values of Q for a spherical

particle (i.e. Q >> 1/R where R is the sphere radius)

sin OR — QOR.cos OR

(OR)’

—9V?*cos” ORas Q —>

=9)* /2 on average (the oscillations will be smeared out by resolution)
o: 2xd

2(0R)" O

i 4 arr2| SINOR
}(QR) _94 OR

‘F(Q)‘Z(QRf = 9V{ —COS QR}

Thus ‘F ( Q)‘2 —> where A is the area of the sphere's surface.

This 1s Porod's law and holds as Q — oo for any particle shape provided the particle
surface is smooth.
Another way to obtain it is to expand G(r) = 1-ar + br” +..[with a = A/(27V)] at small r

and to evaluate the form factor with this (Debye) form for the correlation function.



Scattering From Fractal Systems

« Fractals are systems that are “self-similar” under a change of scale l.e. R -> CR

» For a mass fractal the number of particles within a sphere of radius R is
proportional to RP where D is the fractal dimension

Thus
4nR’dR.G(R) = number of particles between distance R and R + dR = cR”"'dR
.. G(R)=(c/47)R""

and S(0) = [dRe**G(R) = %’ [dR R.sin OR (c/ 4m)R""

const
D

= %éjdx.x”z.sinx =

const

5 which reduces to the Porod

For a surface fractal, one can prove that S(Q) o

form for smooth surfaces of dimension 2.



Typical Intensity Plot for SANS From Disordered
Systems

Zero Q intercept - gives particle volume 1f

t / concentration 1s known

«~~ Guinier region (slope = -r,%/3 gives particle
g g /98 p

“size”)

_— Mass fractal dimension (slope =-D)

In(T)

\ . .
Porod region - gives surface area and

surface fractal dimension
{slope = -(6-D,)}

»
»

In(Q)



General References

Introduction to the Theory of Thermal Neutron Scattering
by G. L. Squires

Neutron Scattering: A Non-Destructive Microscope for Seeing Inside Matter
by Roger Pynn
Available on-line at http://www.springerlink.com/content/978-0-387-09415-1

Elements of Modern X-Ray Physics
by Jens Als-Nielsen and Des McMorrow

John Wiley and Sons: ISBN 0471498580

Elementary Scattering Theory For X-ray and Neutron Users
by D.S. Sivia
Oxford University Press

International Neutron Scattering Instrumentation School (INSIS)
http://neutrons.ornl.gov/conf/insis2012/



SANS References

A website of SANS tutorials

— www.ncnr.nist.gov/programs/sans/tutorials

SANS data can be simulated for various particle shapes using the
programs available at:

— www.ncnr.nist.gov/resources/simulator.html

To choose instrument parameters for a SANS experiment at NIST go to:
— www.ncnr.nist.gov/resources/sansplan.html



END



Derivation

The B field at distance R from a magnetic moment M is Z—O§A( IERJ :—'Z—OﬁA(MAV(l/R))
T R T

o0

0 1 . P
Since J. %exp(i@R)dé =2r J. dqjexp(iqR cosd)d(cosO) =4r J. sin(¢R) dg = 27"
4 0 -l

OqR R

- [ MAR 1 1 - (- -\
VA =—— | —VAMAV{expig.R} kg
( R3 ) 272_2 q2 ( )d

But MAV{expig.R} =iMAgGexpig.R and VAMAGexpig.R = iGAMAG expig.R

- MAR 1 1 (- - I s
50 VA[ p j:z 2 j _GA(VIAG fexpig Rydg = — j M, (G)iexpig.R)dq
-9 q 2



Neutron Scattering Instrumentation is Designed
to Compromise between Intensity & Resolution

1 —;mv2 / kT

Maxwellian distribution of neutron velocities ~ P(v)~——e¢
T

Liouville’ s theorem — the (6-dimensional) phase space density of non-
interacting particles cannot be increased by conservative forces

— Brighter sources => colder moderators or non-equilibrium neutron production

We can only increase scattered intensity at a given ((3,E) by increasing
the phase space volume

Design instruments to have good resolution in the direction of (Q,E)
space that is important for the science

Neutron optics & instrumentation is designed to:
— Maintain neutron brightness R
— Provide good resolution in a chosen direction in (Q,E) space
— Simultaneously measure as many resolution elements [i.e. (Q,E) points] as is useful



The Intermediate Scattering Function

Another function that is often useful is the Intermediate Scattering
Function defined as

1(0,t) = j G(7,t)e'%" d7

This is the quantity measured with Neutron Spin Echo (NSE)

It is not possible to derive exact expressions for |, G or S except for
simple models. It is therefore useful to know the various analytical
properties of these functions to ensure that models preserve them.
Squires shows:

1(0,1) = I *(0,~1); 1(0,0) = 1(-0,~t +ih/ k,T)
G(#,t) = G*(-F,-1); G(7.t) = G(-F,-t +ih/k,T)
S(0,w) = S*(0,); S(0,w) =" S(-0,~w)

There are also various sum & moment rules on these quantities that
are sometimes useful (see Squires for details)



