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Outline

• What do we try to measure with neutron scattering?
– Introduction to nuclear and magnetic neutron scattering
– Elastic and inelastic scattering
– Coherent and incoherent scattering
– Introduction to correlation functions in space and time
– Real space and reciprocal space

• How do we make the measurement?
– Scattering triangles and kinematic constraints
– CW and TOF approaches
– Review of some typical neutron scattering instruments
– Why are there so many different types of neutron instrument?

• What are the obstacles?



Why do Neutron Scattering?

• To determine the positions and motions of atoms in 
condensed matter
– 1994 Nobel Prize to Shull and Brockhouse cited these areas 

• Neutron advantages:
– Wavelength comparable with interatomic spacings
– Kinetic energy comparable with that of atoms in a solid
– Penetrating => bulk properties are measured & sample can be contained
– Weak interaction with matter aids interpretation of scattering data
– Isotopic sensitivity allows contrast variation
– Neutron magnetic moment couples to B => neutron “sees” unpaired electron spins

• Neutron Disadvantages
– Neutron sources are weak => low signals, need for large samples etc
– Some elements (e.g. Cd, B, Gd) absorb strongly
– Kinematic restrictions (can’t access all energy & momentum transfers)



The 1994 Nobel Prize in Physics – Shull & Brockhouse
Neutrons show where the atoms are….

…and what the atoms do.



Historical accomplishments of Neutron Scattering

•Antiferromagnetic Structures
•Rare earth spirals and other spin structures 
•Spin wave dispersion
•Our whole understanding of the details of exchange                  
interactions in solids
•Magnetism and Superconductivity
•Phonon dispersion curves in crystals; quantum crystals and      
anharmonicity
•Crystal fields
•Excitations in normal liquids
•Rotons in superfluid helium
•Condensate fraction in helium



More Recent Applications of Neutrons
• Quantum Phase Transitions and Critical points
• Magnetic order and magnetic fluctuations in the high-Tc cuprates
• Gaps and low-lying excitations (including phonons) in High-Tc
• Magnetic Order and spin fluctuations in highly-correlated systems
• Manganites
• Magntic nanodot/antidot arrays
• Exchange bias 
• Proton motion in carbon nanotubes
• Protein dynamics
• Glass transition in polymer films
• Protonation states in biological macromolecules from nuclear 

density maps
• Studies of protein diffusive motion in hydrated enzymes



Interaction Mechanisms

• Neutrons interact with atomic nuclei via very short range (~fm) forces.
• Neutrons interact with unpaired electrons via magnetic dipole interaction.
• X-rays interact with electrons via an electromagnetic interaction



Thermal Neutrons, 8 keV X-Rays & Low Energy 
Electrons:- Penetration in Matter

Note for neutrons:

• H/D difference

• Cd, B, Sm

• no systematic Z    
dependence

For x-rays:

• decreasing      
penetration as Z 
increases



Types of Neutron-Material Interactions

• Neutrons interacting with nuclei
– Absorption by nuclei 

• Cross section (i.e. absorption probability) for thermal neutrons usually  ~1/v, 
with resonances at high energy (> keV)

– Scattering by nuclei
• Coherent scattering – scattering from different nuclei add in phase
• Incoherent scattering – random phases between scattering from different 

nuclei

• Neutrons interacting with magnetic fields
– Magnetic dipolar interaction

• Scattering from magnetic field (B) due to unpaired electrons – coherent 
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Neutron Scattering Complements
Other Techniques in Length Scale…. 
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The Neutron has Both Particle-Like and Wave-Like Properties

• Mass: mn = 1.675 x 10-27 kg
• Charge = 0; Spin = ½
• Magnetic dipole moment: n = - 1.913 N
• Nuclear magneton: N = eh/4�mp = 5.051 x 10-27 J T-1

• Velocity (v), kinetic energy (E), wavevector (k), wavelength ( ), 
temperature (T).     

• E = mnv2/2 = kBT = (hk/2�)2/2mn;  k = 2 �/ = mnv/(h/2�)

Energy (meV) Temp (K) Wavelength (nm)
Cold 0.1 – 10 1 – 120 0.4 – 3 
Thermal 5 – 100 60 – 1000 0.1 – 0.4
Hot 100 – 500 1000 – 6000 0.04 – 0.1

 (nm) = 395.6 / v (m/s)
E (meV) = 0.02072 k2 (k in nm-1)



Advantages & Disadvantages of Neutrons

• Advantages
– λ similar to interatomic spacings
– Penetrates bulk matter
– Strong contrast possible
– Energy similar to that of elementary excitations (phonons, magnons etc)
– Scattering strongly by magnetic fields
– Data interpretation is direct

• Disadvantages
– Low brilliance of neutron sources
– Some elements absorb neutrons strongly
– Kinematic restrictions on Q for large energy transfers
– Difficult to study excitations at high (eV) energies
– Provides statistical averages rather than real space pictures



A Typical Scattering Experiment
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Notice that the finite size of the detector and sample imply uncertainty 
in the direction of the wavevectors
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measured in barns:
1 barn = 10-24 cm2

Attenuation = exp(-Nt)
N = # of atoms/unit volume
t = thickness



Neutron Scattering by a Single (fixed) Nucleus
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• range of nuclear force (~ 1fm)
is << neutron wavelength so
scattering is “point-like”

• energy of neutron is too small
to change energy of nucleus &
neutron cannot transfer KE to a 
fixed nucleus => scattering is 
elastic

• we consider only scattering far
from nuclear resonances where
neutron absorption is negligible





Adding up phases at the detector of the
wavelets scattered from all the scattering
centers in the sample:



Adding up Neutrons Scattered by Many Nuclei

Note: we have assumed the scattering centers don’t move



The Scattering Triangle

• The wavevector transfer, variously denoted Q or q, is 
defined by:

• The scattering triangle defines the vector relationship 
between these quantities
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Coherent and Incoherent Scattering of Neutrons

The scattering length, bi , depends on the nuclear isotope, spin relative to the 
neutron & nuclear eigenstate. For a single nucleus:
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Coherent Scattering
(scattering depends on the 
direction & magnitude of Q)

Incoherent Scattering
(scattering is uniform in all directions)

Note: N = number of atoms in scattering system



Nuclear Spin Incoherent Scattering
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Values of coh and inc

Nuclide coh inc Nuclide coh inc

1H 1.8 80.2 V 0.02 5.0

2H 5.6 2.0 Fe 11.5 0.4

C 5.6 0.0 Co 1.0 5.2

O 4.2 0.0 Cu 7.5 0.5

Al 1.5 0.0 36Ar 24.9 0.0

• Difference between H and D used in experiments with soft matter (contrast variation)
• Al used for windows
• V used for sample containers in diffraction experiments and as calibration for energy

resolution
• Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections
• Find scattering cross sections at the NIST web site at: 

http://webster.ncnr.nist.gov/resources/n-lengths/



Coherent Elastic Scattering measures the Structure 
Factor S(Q) i.e. correlations of atomic positions
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g(R) is known as the static pair correlation function. It gives the probability that there is an
atom, i, at distance R from the origin of a coordinate system, given that there is also a 
(different) atom at the origin of the coordinate system at the same instant in time.



S(Q) and g(r) for Simple Liquids

• Note that S(Q) and g(r)/ both tend to unity at large values of their arguments
• The peaks in g(r) represent atoms in “coordination shells”
• g(r) is expected to be zero for r < particle diameter – ripples are truncation 

errors from Fourier transform of S(Q)



Neutrons can also gain or lose energy in the scattering process: this is 
called inelastic scattering



The Elastic & Inelastic Scattering Cross 
Sections Have an Intuitive Similarity

• The intensity of elastic, coherent neutron scattering is proportional to the 
spatial Fourier Transform of the Pair Correlation Function, G(r) I.e. the 
probability of finding a particle at position r if there is simultaneously a 
particle at r=0

• The intensity of inelastic coherent neutron scattering is proportional to 
the space and time Fourier Transforms of the time-dependent pair 
correlation function function, G(r,t) = probability of finding a particle at 
position r at time t when there is a particle at r=0 and t=0.

• For inelastic incoherent scattering, the intensity is proportional to the 
space and time Fourier Transforms of the self-correlation function, Gs(r,t)
I.e. the probability of finding a particle at position r at time t when the 
same particle was at r=0 at t=0



Diffraction from a Frozen Wave

• Recall that

• We know that for a linear chain of “atoms” along the x axis, S(Qx) is just a 
series of delta function reciprocal lattice planes at Qx = n2/a, where a is the 
separation of atoms
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What Happens if the Wave Moves?

• If the wave moves through the chain, the scattering still occurs at 
wavevectors G + k and G – k but now the scattering is inelastic

• For quantized lattice vibrations, called phonons, the energy change of 
the neutron is        where  is the vibration frequency.

• In a crystal, the vibration frequency at a given value of q (called the 
phonon wavevector) is determined by interatomic forces.  These 
frequencies map out the so-called phonon dispersion curves.

• Different branches of the dispersion
curves correspond to different types
of motion



phonon dispersion in 36Ar



A Phonon is a Quantized Lattice Vibration

• Consider linear chain of particles of mass M coupled by 
springs. Force on n’th particle is

• Equation of motion is  
• Solution is:
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Atomic Motions for Longitudinal & Transverse Phonons

Transverse phonon Longitudinal phonon
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Transverse Optic and Acoustic Phonons
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General Expression for d2/dΩdE

• Squires (eqn 2.59) derives the following expression:

• Note that, because of the operators and the average over the states of 
the system, this expression is not easy to evaluate in the general case

• Note also that the exponential operators do not commute – each 
contains H and therefore p, and p and R do not commute.
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Correlation Functions

• Note again that the operators do not commute. If we ignore this fact, we 
can do the integration and obtain
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Correlation Functions (cont’d)

• We expressed the coherent scattering cross section in terms of G(r,t)

• If we use the classical variant given above, there is a clear physical 
meaning – G(r,t) is the probability that if particle j’ is at the origin at 
time zero, particle j will be at position r at time t. 

• We can do the same thing with the incoherent scattering and express 
it in terms of a self-correlation function whose classical version is

• This says that the incoherent scattering is related to the probability 
that if a particle is at the origin at time zero, the same particle will be 
at position r at time t.
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Inelastic Neutron Scattering Measures Atomic Motions

In term of the pair correlation functions, one finds

dtrdetrGQSdtrdetrGQS

QNS
k
kb

dEd
d

QNS
k
kb

dEd
d

trQi
ss

trQi

sinc
inc

coh
coh

















  





















).().(

2
2

2
2

),(
2

1),(    and  ),(
2

1),(

where

),('
.

),('
.













• Inelastic coherent scattering measures correlated motions of  different
atoms

• Inelastic incoherent scattering measures self-correlations e.g. diffusion

(h/2�)Q & (h/2�) are the momentum & 
energy transferred to the neutron during the
scattering process



Much of the Scientific Impact of Neutron Scattering Has Involved 
the Measurement of Inelastic Scattering
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Energy & Wavevector Transfers accessible to Neutron Scattering



The Accessible Energy and Wavevector 
Transfers Are Limited by Conservation Laws

• Neutron cannot lose more than its initial kinetic energy & 
momentum must be conserved 



The Kinematic Approximation

• Note that the approximation we have just seen ignores
– Depletion of the incident beam by scattering or absorption
– Multiple scattering

i.e. energy is not conserved

• This so-called “kinematic approximation” is OK for weak 
scattering, very small crystals or “bad” crystals

• It is usually used for interpreting diffraction experiments, though 
“extinction corrections” are often needed with single crystals
– If it’s not adequate, use dynamical theory



Magnetic Properties of the Neutron

• The neutron has a magnetic moment of -9.649 x 10-27 JT-1

• Note that the neutron’s spin and magnetic moment are antiparallel
• Because of its magnetic moment, the neutron feels a potential given by:

• Thus the neutron senses the distribution of magnetization in a material
• Homework problems: What is the Zeeman energy in meV of a neutron in a 1 Tesla field? 

At what temperature is the Boltzmann energy equal to this Zeeman energy? What is the 
effective scattering length of a “point” magnetic moment of one Bohr magneton?
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Magnetic Scattering of the Neutron
• For nuclear scattering, the matrix element that appears in the expression 

for the scattering cross section is:

• The equivalent matrix element for magnetic scattering is:

• Here               is the component of the Fourier transform of the 
magnetization that is perpendicular to the scattering vector       . This 
form arises directly from the dipolar nature of the magnetic interaction.

• Unlike the neutron-nucleus interaction, the magnetic interaction of the 
neutron with a scattering system specifically depends on neutron spin
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The Magnetic Scattering Cross Section

• Development of the magnetic scattering cross section follows the same 
formalism as for the nuclear cross section, with nuclear matrix element 
replaced by the magnetic interaction matrix element given above

• Need to keep the explicit dependence on neutron spin (or average over 
neutron spin states for an unpolarized neutron beam).
– Magnetic scattering may cause a change in the neutron’s spin state

• General expressions tend to be complicated, so specific expressions are 
obtained for various contributions to sample magnetization e.g. unpaired 
electron spins

• The form of the magnetic cross section implies that neutrons are only 
sensitive to components of the magnetization that are perpendicular to Q.



Scattering by Ions with Unpaired Electrons

• Including only magnetization due to unpaired electron spins and assuming 
an unpolarized incident neutron beam:

where Fd(Q) is the Fourier transform of the electron spin density around 
atom d, often called the atomic form factor; S is the  component of the 
electron spin and l,d labels an atom d in unit cell l

• This expression can be manipulated to give the scattering cross sections 
for elastic magnetic scattering inelastic magnetic scattering and magneto-
vibrational scattering
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What Happens to a Neutron’s Spin When the 
Neutron is Scattered?

• The cross section for magnetic scattering that takes the neutron spin state 
from ->’ and the scattering system from ->’ is:

• One can show (see Squires) that if              are the neutron spin eigenstates:

so, sample magnetization parallel to the neutron’s magnetic moment (z) 
does not change the neutron spin, whereas perpendicular components of 
magnetization ‘flip’ the neutron’s spin

• Homework: show that for a paramagnet (where                                         for spins i and j)
– If z is parallel to Q, the scattering is entirely spin flip
– If z is perpendicular to Q, half the scattering is spin flip
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Inelastic Magnetic Scattering of Neutrons
• In the simplest case, atomic spins in a ferromagnet 

precess about the direction of mean magnetization
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spin waves (magnons)

tferromagne afor relation  dispersion  theis   2Dqq  Fluctuating spin is 
perpendicular to mean 
spin direction

Spin wave animation courtesy of A. Zheludev (ORNL)

Heisenberg interaction



Diffraction
• Neutron (or x-ray) diffraction is used to measure the differential cross 

section, d/d in the static approximation i.e. integrated over k’ – measures 
G(r,0)
– Crystalline solids (elastic scattering – G(r,∞))

• Unit cell size; crystal symmetry; atomic arrangement
and thermal motions (ellipsoids)

– Liquids and amorphous materials
– Large scale structures

• Depending on the scattering angle,
structure on different length scales, d,
is measured:

• For crystalline solids & liquids, use
wide angle diffraction. For large structures,
e.g. polymers, colloids, micelles, etc.
use small-angle scattering
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Diffraction by a Lattice of Atoms
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Direct and Reciprocal Lattices
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Homework:  verify that Bragg’s (λ= 2 d sinθ) follows from the above





Reciprocal Space – An Array of Points (hkl)
that is Precisely Related to the Crystal Lattice

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

a*

b*
(hkl)=(260)

Ghkl

a* = 2�(b x c)/V0, etc.

O
Ghkl = 2/dhkl

k0
k

A single crystal has to be aligned precisely to record Bragg scattering



Notation

• Ghkl is called a reciprocal lattice vector (node denoted hkl)

• h, k and l are called Miller indices

• (hkl) describes a set of planes perpendicular to Ghkl, 
separated by 2�/Ghkl

• {hkl} represents a set of symmetry-related lattice planes

• [hkl] describes a crystallographic direction

• <hkl> describes a set of symmetry equivalent crystallographic 
directions



For Periodic Arrays of Nuclei, Coherent Scattering Is Reinforced Only in 
Specific Directions Corresponding to the Bragg Condition:
 = 2 dhkl sin( ) or 2 k sin( ) = Ghkl (where Ghkl = 2�/dhkl)



Atomic Vibrations

• The formalism on the previous slide works fine if the atoms are stationary: 
in reality, they are not

• Remember that

• We average over the (fluctuating) atomic positions by introducing a 
probability that an atom will be at given position. Instead of the Fourier 
Transform of functions, this gives the FT of the functions convolved
with a spread function. The result is that S(Q) is multiplied by the FT of the 
spread function i.e. by                          if we use a Gaussian spread function

• Atomic vibrations cause a decrease in the intensity of Bragg scattering. 
The “missing” scattering appears between Bragg peaks and results in 
inelastic scattering

ensemble,

).(1)(  
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• A monochromatic (single  ) neutron beam is diffracted by a single crystal 
only if specific geometrical conditions are fulfilled

• These conditions can be expressed in several ways:
– Laue’s conditions:                                                         with h, k, and l as integers 
– Bragg’s Law: 
– Ewald’s construction

see http://www.matter.org.uk/diffraction/geometry/default.htm

• Diffraction tells us about:
– The dimensions of the unit cell
– The symmetry of the crystal
– The positions of atoms within the unit cell
– The extent of thermal vibrations of atoms 

in various directions

   .     ;.    ;. 321 laQkaQhaQ 


 sin2 hkld

Incident
neutrons

Key Points about Diffraction



Bragg Scattering from Crystals

• Using either single crystals or powders, neutron diffraction can be used to 
measure F2 (which is proportional to the intensity of a Bragg peak) for 
various values of (hkl).

• Direct Fourier inversion of diffraction data to yield crystal structures is not 
possible because we only measure the magnitude of F, and not its phase => 
models must be fit to the data

• Neutron powder diffraction has been particularly successful at determining 
structures of new materials, e.g. high Tc materials
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The Structure Factor

• The intensity of scattering at reciprocal lattice points is given by the 

square of the  structure factor

• Crystallography attempts to deduce atomic positions and thermal 
motions from measurements of a large number of such “reflections”

– (Reciprocal) distance between diffraction “spots” => size of unit cell

– Systematic absences and symmetry of reciprocal lattices => crystal 
symmetry (e.g. bcc h+k+l=2n)

– Intensities of “spots” => atomic positions 

and thermal motions

dWdQi

d
dhkl eebQF 

 .)(

Laue diffraction pattern
showing crystal symmetry



If we could measure 
the complex quantity 
Fhkl we could figure 
out the positions of all 
atoms. But we only 
measure | Fhkl |2 . In 
fact, we would be 
better off if diffraction 
measured phase of 
scattering rather than 
amplitude!
Unfortunately, nature 
did not oblige us.

Picture by courtesy of D. Sivia

The Phase Problem



Professor Sinha’s demonstration of the
“Phase Problem” is much more memorable

Object A Object B



Fourier Reconstruction with 
phases of  object A and amplitudes 
of Object B

Fourier Reconstruction with 
phases of object B and amplitudes 
of Object A

PHASE tells us where the different parts of the object are located! 



Now that we know what the scattering cross 
section means, how do we measure it?
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Notice that the finite size of the detector and sample imply uncertainty 
in the direction of the wavevectors



Specifying the magnitude of the wavevector:
CW or TOF?

• Two types of neutron source: continuous and pulsed

• Two (principal) methods of making neutrons: fission & 
spallation

• The magnitude of a neutron wavevector (i.e. the neutron 
velocity) can be specified in two ways:
– Using Bragg scattering from a single crystal (or an array of crystals)
– Using time-of-flight for a pulsed beam



Nuclear Fission & Spallation are the Methods of Choice 
to Produce Neutrons for Scattering

Nuclear Fission

Spallation

Artist’s view of spallation



The Energy Cost of Various Neutron Sources

• For high-power sources the driving issue is heat removal => 
use spallation for high power sources
– ~ 190 MeV per neutron for fission
– ~ 25 MeV per neutron for spallation with protons (threshold at Ep~ 120 MeV)
– ~ 1500 MeV per neutron for (n,p) on Be using 13 MeV protons
– ~ 3000 MeV per neutron for electrons

• Driving issue for low-intensity sources is cost (electric power, 
regulatory, manpower etc)
– Cost has to be kept “low” (i.e. construction ~$10-20M)
– Cost/benefit is still the metric
– Spallation and fission cost too much (absent a “killer app” money maker)
– Use Be (p,n) or electrons on Ta



Relative Performance of CW and pulsed 
neutron sources

• Be very careful…..



Neutron Monochromators

A simple, vertically focusing 
monochromator produced by Riso
National Lab in Denmark comprised
of 15 single crystals

A vertical and horizontally focusing
monochromator fabricated by a Johns
Hopkins team for the NCNR.



Simultaneously Using Neutrons With Many Different Wavelengths 
Enhances the Efficiency of Neutron Scattering Experiments

Potential Performance Gain relative to use of a Single Wavelength
is the Number of Different Wavelength Slices used
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Neutron
Source Spectrum



Time of Flight
• At pulsed neutron sources (or with a chopped beam at a reactor), the 

neutron’s TOF is used to determine it’s speed (and, hence, 
wavelength)

• For elastic scattering (diffraction, SANS, reflectometry) no neutron 
monochromatization is needed
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Powder – A Polycrystalline Mass

All orientations of 
crystallites possible

Typical Sample: 1cc powder of 
10m crystallites - 109 particles
if 1m crystallites - 1012 particles

Single crystal reciprocal lattice 
- smeared into spherical shells



Incident beam
x-rays or neutrons

Sample
(111)

(200)

(220)

Powder Diffraction gives Scattering on 
Debye-Scherrer Cones

Bragg’s Law       = 2dsin
Powder pattern – scan 2 or 



Measuring Neutron Diffraction Patterns with a 
Monochromatic Neutron Beam

Since we know the neutron wavevector, k,
the scattering angle gives Ghkl directly:
Ghkl = 2 k sin 

Use a continuous beam
of mono-energetic
neutrons.



Neutron Powder Diffraction using Time-of-Flight

Sample

Detector
bank

Pulsed
source

Lo= 9-100m

L1 ~ 1-2m

2 - fixed

 = 2dsin
Measure scattering as 
a function of time-of-
flight t = const*





Time-of-Flight Powder Diffraction

Use a pulsed beam with a
broad spectrum of neutron
energies and separate 
different energies (velocities)
by time of flight.



A ~ 30 X 20 m2 Hall at the ILL Houses About 30 Spectrometers of 
different shapes and colors



Brightness & Fluxes for Neutron & 
X-Ray Sources

Brightness
(s-1 m-2 ster-1)

dE/E
(%)

Divergence
(mrad2)

Flux
(s-1 m-2)

Neutrons 1015 2 10 x 10 1011

Rotating
Anode

1016 3 0.5 x 10 5 x 1010

Bending
Magnet

1024 0.01 0.1 x 5 5 x 1017

Wiggler 1026 0.01 0.1 x 1 1019

Undulator
(APS)

1033 0.01 0.01 x 0.1 1024

Flux = brightness * divergence; brilliance = brightness / energy bandwidth



Why are there so many types of neutron instrument?

• Uncertainties in the neutron 
wavelength & direction of travel
imply that Q and E can only be 
defined with a certain precision

• When the box-like resolution 
volumes in the figure are convolved,
the overall resolution width is the 
quadrature sum of the box sizes.
Small “boxes” give good resolution. 

• The total signal in a scattering 
experiment is proportional to the product of the “box” sizes 

The better the resolution, the lower the count rate



Examples of Specialization of Spectrometers: 
Optimizing the Signal for the Science

• Small angle scattering [Q = 4� sinθ/λ; (Q/Q)2 = (  )2 + (cotθ dθ)2]
– Small diffraction angles to observe large objects  => long (20 m) instrument
– poor monochromatization (  ~ 10%) sufficient to match obtainable angular 

resolution (1 cm2 pixels on 1 m2 detector at 10 m =>  ~ 10-3 at  ~ 10-2))

• Back scattering [ �/2; λ = 2 d sin  ;   = cot  +…]
– very good energy resolution (~neV) => perfect crystal analyzer at  ~ π/2
– poor Q resolution => analyzer crystal  is very large (several m2)



The NIST 30m SANS Instrument Under Construction



Two Views of the Components of a Typical 
Reactor-based SANS Diffractometer

Note that SANS, like other
diffraction methods, probes
material structure in the
direction of (vector) Q



Where Does SANS Fit As a Structural Probe?

• SANS resolves structures 
on length scales of 1 – 1000 
nm

• Neutrons can be used with 
bulk samples (1-2 mm thick)

• SANS is sensitive to light 
elements such as H, C & N

• SANS is sensitive to 
isotopes such as H and D 



The Fermi Pseudo-Potential for Neutrons
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Fermi pseudopotential



Use V(r) to Calculate the Refractive Index for Neutrons

materials.most  from reflected externally are neutrons 1,ngenerally  Since
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Why do we Care about the Refractive Index?

• When the wavevector transfer Q is small, the phase factors 
in the cross section do not vary much from nucleus to 
nucleus & we can use a continuum approximation

• We can use all of the apparatus of optics to calculate 
effects such as:
– External reflection from single surfaces (for example from guide surfaces)
– External reflection from multilayer stacks (including supermirrors)
– Focusing by (normally) concave lenses or Fresnel lenses
– The phase change of the neutron wave through a material for applications 

such as interferometry or phase radiography
– Fresnel edge enhancement in radiography



Scattering Length Density

• Remember

• What happens if Q is very small? 
– The phase factor will not change significantly between neighboring atoms
– We can average the nuclear scattering potential over length scales ~2�/10Q 
– This average is called the scattering length density and denoted

• How do we calculate the SLD?
– Easiest method:  go to www.ncnr.nist.gov/resources/sldcalc.html
– By hand: let us calculate the scattering length density for quartz – SiO2
– Density is 2.66 gm.cm-3; Molecular weight is 60.08 gm. mole-1

– Number of molecules per Å3 = N = 10-24(2.66/60.08)*Navagadro = 0.0267 molecules per Å3

– SLD=b/volume = N(bSi + 2bO) = 0.0267(4.15 + 11.6) 10-5 Å-2 = 4.21 x10-6 Å-2

• A uniform SLD causes scattering only at Q=0;  variations in the SLD cause 
scattering at finite  values of Q
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SLD Calculation

• www.ncnr.nist.gov/resources/sldcalc.html
• Need to know chemical formula 

and density

Not relevant for SLD

X-ray values

Background

Determine best sample thickness

Note units of the cross section – this is cross section per unit volume of sample

Enter



Typical SANS/SAXS Applications

• Biology
– Organization of biomolecular complexes in solution
– Conformation changes affecting function of proteins, enzymes, protein/DNA 

complexes, membranes etc
– Mechanisms and pathways for protein folding and DNA supercoiling 

• Polymers
– Conformation of polymer molecules in solution and in the bulk
– Structure of microphase separated block copolymers
– Factors affecting miscibility of polymer blends

• Chemistry
– Structure and interactions in colloid suspensions, microemeulsions, 

surfactant phases etc
– Mechanisms of molecular self-assembly in solutions 



Instrumental Resolution for SANS/SAXS
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SANS Measures Particle Shapes and Inter-particle Correlations
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These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering is no longer from point-like particles



Scattering from Independent Particles
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Scattering for Spherical Particles
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Radius of Gyration Is the Particle “Size” Usually 
Deduced From SANS Measurements
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Shape Determination for Dilute, Randomly 
Oriented, Uniform Particles

• If I(Q) is measured over a wide enough Q range then the inverse 
transform can be computed

rby  separated particle in the points  twofinding ofy probabilit  theis (r)r4P(r)  where
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P(r) for Simple Models

Rg = 
21.0Å

Rg = 29.0Å



Contrast & Contrast Matching

Both tubes contain borosilicate beads + 
pyrex fibers + solvent. (A) solvent 
refractive index matched to pyrex;. (B) 
solvent index different from both beads
and fibers – scattering from fibers 
dominates
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H2O

* Chart courtesy of Rex Hjelm



Contrast Variation

CD2

Deuterated Lipid Head Group

CONTRAST


Lipid Head Group

CH2



Using Contrast Variation to Study Compound Particles

Viewgraph from Charles Glinka (NIST)

Examples include nucleosomes
(protein/DNA) and ribosomes
(poteins/RNA)

12

12
2121

2
2

2
2

2
1

2
1

2

2
.

21
.

1

)sin()()(                  

)()()(

)(
1 2

QR
QRQFQF

QFQFQI

rderde
V
NQI

V V

rQirQi











  
 



Porod Scattering

function.n correlatio for the form (Debye) h thisfactor wit form  theevaluate  toand
r  smallat  V)]A/(2  a[with  ..brar-1G(r) expand  toisit obtain  y toAnother wa

 smooth. is surface
particle  theprovided shape particleany for  Q as holds and law sPorod' is This

 surface. ssphere'  theof area  theisA    where2
)(2

9  Thus

)resolutionby out  smeared be  willnsoscillatio (the averageon  2/9                     
Q as cos9                     

cossin9)(
)(

cos.sin9

radius) sphere  theis R  where1/RQ (i.e. particle
spherical afor  Q of  valueslargeat  )(F(Q) ofbehavior   theexamine usLet 

2

44

2
2

2

22

2
24

2

3
242

42































 




Q
A

QR
VF(Q)

V
QRV

QR
QR

QRVQR
QR

QRQRQRV(QR)F(Q)

QR



Scattering From Fractal Systems

• Fractals are systems that are “self-similar” under a change of scale I.e. R -> CR
• For a mass fractal the number of particles within a sphere of radius R is 

proportional to RD where D is the fractal dimension
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Typical Intensity Plot for SANS From Disordered 
Systems

ln(I)

ln(Q)

Guinier region (slope = -rg
2/3 gives particle 

“size”)
Mass fractal dimension (slope = -D)

Porod region - gives surface area and
surface fractal dimension 
{slope = -(6-Ds)}

Zero Q intercept - gives particle volume if 
concentration is known



General References

• Introduction to the Theory of  Thermal Neutron Scattering
by G. L. Squires

• Neutron Scattering: A Non-Destructive Microscope for Seeing Inside Matter
by Roger Pynn
Available on-line at http://www.springerlink.com/content/978-0-387-09415-1

• Elements of Modern X-Ray Physics
by Jens Als-Nielsen and Des McMorrow
John Wiley and Sons:    ISBN 0471498580

• Elementary Scattering Theory For X-ray and Neutron Users
by D.S. Sivia
Oxford University Press 

• International Neutron Scattering Instrumentation School (INSIS)
http://neutrons.ornl.gov/conf/insis2012/



SANS References

• A website of SANS tutorials
– www.ncnr.nist.gov/programs/sans/tutorials

• SANS data can be simulated for various particle shapes using the 
programs available at: 
– www.ncnr.nist.gov/resources/simulator.html

• To choose instrument parameters for a SANS experiment at NIST go to:
– www.ncnr.nist.gov/resources/sansplan.html
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Neutron Scattering Instrumentation is Designed 
to Compromise between Intensity & Resolution

• Maxwellian distribution of neutron velocities  

• Liouville’s theorem – the (6-dimensional) phase space density of non-
interacting particles cannot be increased by conservative forces
– Brighter sources => colder moderators or non-equilibrium neutron production

• We can only increase scattered intensity at a given (Q,E) by increasing 
the phase space volume

• Design instruments to have good resolution in the direction of (Q,E) 
space that is important for the science

• Neutron optics & instrumentation is designed to:
– Maintain neutron brightness
– Provide good resolution in a chosen direction in (Q,E) space
– Simultaneously measure as many resolution elements [i.e. (Q,E) points] as is useful
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The Intermediate Scattering Function

• Another function that is often useful is the Intermediate Scattering 
Function defined as

This is the quantity measured with Neutron Spin Echo (NSE)

• It is not possible to derive exact expressions for I, G or S except for 
simple models. It is therefore useful to know the various analytical 
properties of these functions to ensure that models preserve them. 
Squires shows:

• There are also various sum & moment rules on these quantities that 
are sometimes useful (see Squires for details)
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