

Isotope De	ependenc	ce					
Nickel Isotope	Scattering length <i>b (fm)</i>	Hydrogen Isotope	Scattering length <i>b(fm)</i>				
		1H	-3.7409(11)				
⁵⁸ Ni	15.0(5)	2D	6.674(6)				
⁶⁰ Ni	2.8(1)	3Т	4.792(27)				
⁶¹ Ni	7.60(6)	0	5.803				
⁶² Ni	-8.7(2)	11 10	$ \begin{array}{l} \langle \lambda \rangle &= \uparrow \uparrow \\ \langle \lambda \rangle &= (\uparrow \downarrow + \downarrow \uparrow) / \sqrt{2} \end{array} $				
⁶⁴ Ni	-0.38(7)	1 - 1	$ \rangle = \downarrow \downarrow$				
		00	$0\rangle = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$				
 Isotopic substitution for contrast Isotopic substitution to move peak positions in spectroscopy Incoherent scattering 							
		Erice August 2015	Science & Technology Facilities Council				

LD		http	://www	w.ncn	r.nis	st.g	gov/	reso	our	ces/	slo	calc.html	
← → C M	🔒 https	://www.ncn	r.nist.gov/resou	irces/activati	on/						27		
NIST	Cente	er for Ne	utron Res	earch			P		Nut	NIST			
Home		Instrume	ents	Scienc	0	E	xperime	nts		SiteM	ap		
- Material -					Neutro	on activ	ation a	nd scatte	ring ca	alculator			
Co													
-Neutron As	timetica -				This cal	culator u	ises neutro	on cross se	ctions to	compute			
Neutron Ac	nvation		For a blick and a	Calculate	activatio	on on the	sample g	iven the m	ass in th	ie sample ar	nd the		
Thermal flux	(d ratio	Them	al/fast ratio	neutron	me oeam s which :	, or to pre	sorbed by t	ering ca he same	iculations fo	or use		
168		0	0			,	as not no	interest by t	ne sond	P			
Mass		Time on bear	n Time	off beam	1. Enter	the sam	ple formu	la in the m	aterial p	anel.			
1		10	1 y		2. To pr	rform ac	tivation c	alculations	fill in t	the thermal	flux.		
Abcomption	and Seat	tering			the mas	s, the tim	e on and	off the bea	m, then	press the ca	alculate		
Description	and scat	Thisks		Calculate	button i	n the neu	stron activ	ation pane	L				
Density		1	635	Carcolare	3. To pe	rform sc	attering c	alculations	fill in t	the wavelen	gth of		
Source neutron	05	Source	X-rays		the neut	ron and/	or xrays, t	he thickne	ss and t	he density (if not		
1 Ang		Cu Ka			given in	the form	outa), then	press the	calculat	e button in	the		
<u> </u>					absorpt	on and s	cancing	paner.					
o at 8.90 g/cm ource neutrons: 1 ource X-rays: 1.5 1/e penetration (cm)	1.000 Å = 542 Å = 8 depth	81.80 meV = 042 keV Scattering (10	= 3956 m/s length density r ⁶ /Å ²)	Scattering c	ross section m)	X-ra (10	v SLD ^δ /Å ²)						
abs	0.532	real	2.265	coh	0.071	real	63.020						
abs+incoh	0.432	imag	-0.009	abs	1.881	imag	-9.141						
abs+incoh+coh	0.418	incoh	5.621	incoh	0.437								
Neutron transmiss Transmitted flux is	ion is 9.8 s 9.855e+	6% for 1 cm 6 n/cm ² /s for	of sample (after ; a 1e8 n/cm ² /s b	absorption and eam.	l incoherent s	scattering	<u>)</u> .						
									ŗ	Erice August 201	15		nnology Facilities Cour

13

24

	Internal Dimensions	Guide Type	Coating	Starting Position	End Position	Internal			
	10 cm (H) x 12 cm (V)	flight tube, absorbing walls	no coating	1.00 m	2.50 m	⁴ He			
	10 cm (H) x 12 cm (V)	horiz.beam bender 6 channels	$3.6 \times \theta_c \operatorname{Ni}(H)$ $3.6 \times \theta_c \operatorname{Ni}(V)$	2.50 m	4.50 m	⁴ He			
	10 cm (H) to 3 cm (H) x 12 cm (V) to 3 cm (V)	tapered neutron guide	$\begin{array}{c} 3.6 \text{ x } \theta_{c} \text{ Ni (H)} \\ 3.6 \text{ x } \theta_{c} \text{ Ni (V)} \end{array}$	4.50 m	16.50 m	Vacuum			
Moderate	Moderator-Guide coupling								
📕 Guide Sy	Guide System								
📕 Bender	🕨 Bender								
Choppers									
Collimation									
Sample position									
Polarisati	Polarisation								
Detection	Detection Erice								

PNR R	oadma	ар			, ↓ , V ₂ >> 0
System	Motivation	M (emu/cm³)	Degree of difficulty	Challenge Ciá Xi Kolitai	A CONTRACT COMPANY
Transition, Fe, Co etc., and rare earth elements.	Exchange bias (spin valves) Exchange coupling (magnets)	10 ³	"Easy"	To discern a weakly magnetic material in proximity to a strongly magnetic material. Highly polarized neutron beams are very desirable.	20E0 v Non-magnetic metal
Complex oxides, LCMO etc.	Faster switching speed 10-100THz (orbital) vs. 1-100 GHz (spin)	10 ²	Moderate	Dots, domains and patterned media are still possible to study.	111 A
(Ga,Mn)As	Spin FET⇒ ten- fold reduction in number of devices	10 ¹	Challenging		
Doped "non- magnetic" oxides, e.g. Cr-ZnO, nuclear polarization etc.	ditto	10 ⁰	Tour de force	Instrument bias is a serious problem. Bias – 1 part in 1000 has been achieved under non-routine conditions.	electric current
Spin currents in nanostructures	ditto	10 ⁻²	Presently unfeasible	Bias ~ 1 part in 10 ⁸ has been achieved for nuclear physics experiments. Intense neutron beams an advantage.	***
Spin currents in Fe/GaAs FET's	ditto	10~4	Presently unfeasible		0
Adapted with per	mission, Fitzsimme	ons (ORNL)		Erice August 2015	Science & Technology Facilities Council

42

Conclusions									
• Improved software reduction for divergent beams and bent samples enables kinetics ~120 ms time resolution.									
Equivalent to significant instrument flux increase >10x	Equivalent to significant instrument flux increase >10x								
Strong need for higher resolution detectors									
 Use it whenever the signal on the detector is wider than the resolution 									
 Incorporated into ILL data reduction software COSMOS 									
COSMOS version 3.3.0 - 🗆	×								
Load Save Reset Help About News Quit									
Data Calculation Normalization Defector Modeline IO LOG PLOF Calculation Method Algele 1 coherent V Angle 2 coherent V									
Horeground (pixel) Width Angle 1 7,7 Angle 2 3,3 Angle 3 7,7									
August 2015									

<section-header>
Science driven design
Science driven design
Flexible design, but not too flexible
Key performance indicators
Flux
Background
Dynamic range
Sample environment
Software
Software
Dyour feel you've learnt by your mistakes kere?
Peter Cook: I think I have, yes, and I think I can probably epeat them almost perfectly.

