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Aims

2

1. Review some basic concepts in polarised neutron 
scattering !

2. Give an overview of polarised neutron instrumentation.!
3. Discuss some applications of polarised neutron 

diffraction, particularly for magnetic systems (the dark 
side of PA)
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Outline

1. Introduction and motivation!

• Pauli matrices, polarization and cross sections!

• The scattering potential and the rules of polarised neutron 
scattering!

• Example: paramagnetic scattering!

2. Components of a polarized neutron instruments!

• Polarizers and analysers!

• Guide fields and flippers!

3. Polarized elastic scattering!

• The Blume-Maleev equations!

• Longitudinal polarisation analysis (polarimetry if time allows)

3



Erice, 2/7/2017

Neutron spin

4

The neutron is an S = 1/2 particle, like the electron. Its spin degree of freedom is 
represented by the spin angular momentum operator: 
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These have eigenvalues of ±1, meaning the spin can take on a value of ±1/2h. 
The expectation value       for a given spin wave-function is called the spin 
direction, and may be considered the direction in which the spin points.

where σ is a vector of the three Pauli matrices:

S =
~
2
�

We will label the corresponding eigenstates         and        , where α represents 
the spin direction.
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Polarized neutron beams
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For an ensemble (beam) of neutrons, the polarization is defined as:

In the presence of a magnetic field, the polarization is defined as the projection 
of P onto the field axis (the components perpendicular to the field precess)

where the right hand side is the mean expectation value of the spin direction
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Basic results from unpolarised scattering
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Magnetic Nuclear
Magnetic scattering length!
!
!
!    (components of M ⟂ Q) Nuclear coherent cross section !

 - mean scattering length
Incoherent cross section!
 - variance in scatt. length

d�

d⌦

Magnetic form factor

What effect do these scattering processes have on the polarization and vice versa?

/ Q̂⇥M(Q)⇥ Q̂

⇢s(r)
FT��! f(Q)

Scattering length depends on 
nuclear spin and isotope

(b)2

b2 � (b)2

Cross section
Scattering vector

ki;�

kf ;�
0

Q = ki � kf

spin state
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Historical digression
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All the ingredients for polarised neutrons were present 7 years after the discovery 
of the neutron, and 5 years before the first neutron scattering experiments

898 O. HALPERN AND M. H. JOH NSON

The magnitude of the spin doubling and the
origin of the bands remain to be found. The elec-
tronic splitting of the 'll state may be found from
the extrapolation to E=O of the differences
To(X)—T~(X). Theoretically this should give

ET~o(0) =A B+Bo—/A —0—-p
where

1 Ao/(l+1)0=- =—2.34 cm—'
4 v(II, Z)

This gives A =—378.9 cm '. A better value of
A and of vp may be found. from the following
considerations. If T(J)= To+F(J) then

Q,= To'+ Fi'(J)—{ To +Fg,"(J)],
F,= To'yF, '(J—1)—{To"+F„"(J)],
vo=o {Qi—Fo.'(J)+Fi."J

+Fo Fg'—(J 1)+—Fgo"JI,
Qo= To'+Fo'(J) —{ To"+Fo."(J)],
v, =Qo—Fo'(J)+F„"(J).
From these relations A is found to be —378.6
cm ' and up = 3D659.1 cm '. The data are not suf-
6ciently accurate or complete to permit any
estimate of the system origin v..
The authors wish to express their appreciation

of the kindness of Professor F. A. Jenkins for his
suggestion of the problem and his help in carrying
out the research.

M A Y 1$, 1939. PHYSICAL REV I EW VOLUME 55

On the Magnetic Scattering of Neutrons
O. HALPERN AND M. H. JoHNsoN

New York University, University Heigkts, Rem York, EevfJ York
(Received December 3, 1938)

In this paper there is contained a full elaboration of two
previously published short notes on the subject of mag-
netic scattering of neutrons together with a comprehensive
treatment of certain sides of this problem which have al-
ready received some attention from other authors. After
presenting the state of the problem in the introduction and
discussing in detail our reasons for the choice of an inter-
action function between neutrons and electrons, and the
nonmagnetic interaction between neutrons and nuclei, the
various possible cases of coherent and incoherent scattering
and depolarization phenomena are treated. Later applica-
tions to the theory of ferromagnetic scattering are kept in
mind. The general expression for the cross section due to

magnetic interaction is obtained and applied to various
classes of phenomena (scattering by free, rigidly aligned,
and coupled magnetic ions). The influence of the elastic
form-factor is treated quantitatively with the aid of a
simple model for the current distribution in the ion.
Finally a series of performed or suggested experiments is

- discussed mainly from the point of view whether they will
permit theoretical inter pretatior. Arrangements are
described which will allow one to obtain a reliable value for
the neutron's magnetic moment and also give insight into
the magnetic constitution of the scatterer (ion or crystal)
which will exceed the knowledge obtainable from macro-
scopic magnetic experiments.

I. INTRDDUcTIoN

~ ~

~

~

~

~

OMETIME ago it was suggested' that a
magnetic moment of the neutron should

manifest itself in the scattering of slow neutrons
from paramagnetic substances. The magnetic
scattering should in some instances be several
times as great as the total nuclear scattering if, for
the neutron, a magnetic moment of two nuclear
magnetons is assumed. This magnetic scattering
could therefore be easily isolated by comparing

~ O. Halpern and M. H. Johnson, Phys. 'Rev. Sl, 992;
S~, 52 (&93t).

the scattering cross section of the same atoms in
different chemical combinations which show a
varying magnetic susceptibility. It could also be
separated. from nuclear scattering by studying
the angular distribution of the particles scattered
from a single parama, gnetic compound. This is
due to the fact that magnetic scattering is, under
practical conditions, strongly favored in the
forward direction, whereas the nuclear scattering
is isotropic. If the neutron moment is of the ord.er
of magnitude of a nuclear magneton the para-
magnetic scattering provides a direct and simple
method for its quantitative determination.

Felix Bloch Julian Schwinger Otto Halpern
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The scattering potential
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Reminder: the scattering cross section is given by the First Born Approximation/
Fermi’s golden rule as the square of the matrix element:

How does the interaction with the neutron spin state enter the potential?
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◆
/ |h�0�0kf |V (r)|��kii|

2
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/ |h�0|V (Q)|�i|2

neutron spin state 
scattering system states

Fourier transform potential!
Elastic scattering only

Vn(Q) = A(Q) +B(Q)I · �Vm(Q) = � · Q̂⇥M(Q)⇥ Q̂

e.g. M(Q) ⟂ Q || x (i.e. in the yz plane), S || z
z

yx
Q

M
P

S unchanged
S flipped
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Non spin-flip Spin-flip

Rules of polarized neutron scattering
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Magnetic Nuclear

The scattered polarization is different! We will look at these in more detail later.

For the moment, only consider processes like these, that either leave the neutron 
spin (beam polarization) unchanged, or flip it by π, i.e.:

|+i ! |+i |+i ! |�i
|�i ! |�i |�i ! |+i

Components of M perpendicular to 
the polarization:!
! !
!
Components parallel:!
!
!

Nuclear coherent scattering and 
isotope incoherent scattering:!
! !
!
Spin-incoherent scattering:!

|�i ! |��i|�i ! |�i

( (

|�i ! |��i

|�i ! |�i

|�i ! |�iSF

1

3
(|�i ! |�i), 2

3
(|�i ! |��i)NSF

NSF
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Example: paramagnet

10

This means that if P || Q, all the magnetic NSF scattering vanishes, and the 
magnetic scattering should appear in the SF channel only.

Generally, magnetic scattering shows a complex dependence on the angles 
between M, P, and Q. In a paramagnet, the situation is much simpler.

The cross sections corresponding to NSF and SF scattering are:

Using the definition of scalar polarization P = (N+ �N�)/(N+ +N�)

Halpern-Johnson equation

✓
d�

d⌦

◆↵

NSF

= C[1� (P̂ · Q̂)2]

✓
d�

d⌦

◆↵

SF

= C[1 + (P̂ · Q̂)2]

P0 = Q̂[P · Q̂]
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What do we need to measure this?
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1. Polarizer; select single polarization from 
unpolarised incident beam!

!
2. Guide fields to both maintain P and rotate it || Q!
!
3. A flipper, to change the orientation!
!
4. A paramagnetic sample (magnetic scatt. SF)!
!
2. Guide fields to rotate P back to original direction!
!
5. Analyzer; selects a single polarization from 

scattered beam

P
G
F

A

S

|+i

|+||Qi
|�||Qi

Beam Box

|+||Qi

|+i G
|+i

All we need to do to verify this is to measure the SF cross section with P || Q. How 
do we achieve this? In practise, need 5 different components along the instrument:

Component

p
2
�1

(|+i+ |�i)
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Paramagnetic scattering: experiment
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|+i ! |+i |�i ! |+i

This experiment was first performed by Moon, Riste, and Koehler in 1968

Before into more detail on the full separation of cross section components, let’s 
have a look at the various polarised elements

Flipper off Flipper on

Moon, Riste, Koehler Phys Rev. 181 (1969) 920

The instrument used was a triple-axis spectrometer 
with additional components as on the previous slide:



The elements of a polarized beamline
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Layout of a polarized instrument
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As shown before, polarised instruments consist of some combination of:!
!

P G F A
Polarizer (Guide) Field Flipper Analyzer

e.g. wide-angle diffractometer

e.g. spin-echo 

e.g. reflectometer 

P F G F S G F A

P G F G S A P F G FS AG

precession

π/2 π/2π

π ππ
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Polarizing/analyzing the beam
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Historically, the first means of polarising/analyzing a neutron beam was by Bragg 
reflection from a ferromagnetic crystal. The coherent elastic cross section is:

If M ⟂ Q, M || B || z, and for a single magnetic domain:

✓
d�

d⌦

◆
/

���FN � h 0|� · Q̂⇥M(Q)⇥ Q̂| i
���
2

✓
d�

d⌦
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++

/ |FN � h+z|�zMz(Q)|+zi|2 = |FN � FM |2

✓
d�

d⌦

◆

��
/ |FN � h�z|�zMz(Q)|�zi|2 = |FN + FM |2

All the SF cross sections are zero. We can quickly see that a polarised beam will 
result if                . The polarising/analyzing efficiency is:FN = FM

P =
(d�/d⌦)�� � (d�/d⌦)++

(d�/d⌦)�� + (d�/d⌦)++
=

|FN + FM |2 � |FN � FM |2

|FN + FM |2 + |FN � FM |2
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Example: Heusler crystal
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e.g. Cu2MnAl Heusler alloy

+ stable, monochromates beam, high P — monochromatic, range ~0.8Å — 6.5 Å

Al @ (0,0,0), Mn @ (1/2,1/2,1/2) — (111) reflection structure factors:

F 2n+1
N = bAl � bMn = 7.179 fm F 2n+1

M =
1

2
�nr0gf(Q)hMzi = 6.740 fm

P =
(d�/d⌦)�� � (d�/d⌦)++

(d�/d⌦)�� + (d�/d⌦)++
=

|FN + FM |2 � |FN � FM |2

|FN + FM |2 + |FN � FM |2 ⇠ 95%
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Supermirrors I
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A major development in neutron polarization was the discovery of supermirrors in 
the mid 1970’s. Mezei, Commun. Phys. 1 (1976) 81
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Supermirrors II
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As for the single crystal ferromagnet, the supermirrors may be made polarising if 
the nuclear and magnetic scattering lengths are matched:

(b̄+ p̄) (b̄� p̄)

z z

For the polarization direction on the right, the interfaces are nearly invisible.

B||P B||�PR =

✓
n1 � n2

n1 + n2

◆2

1
2

+ stable, broad-band, high P, large divergences — cutoff below ~2Å
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Examples: supermirror devices
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OSNS 2007 - Polarized Neutrons

Supermirrors

Approximately ten instruments at ILL currently use supermirror bender assemblies as
broad band polarization at cold neutron wavelengths (�>2.5 Å)

On the right are recent reflection and transmission results from a 590 layer m=3 Fe/Si
supermirror on a 0.5mm Si wafer (Hoghoj et al, Physica B 267-8 (1999) 355)

See also Boni et al, (Physica B 267-8(1999) 320 ) for the development of remnant supermirrors

Bender (D7, ILL) V-cavity (LET, ISIS)

reflects desired spin state
m = 2.8 Co/Ti!
(500 layers)

transmits desired spin state

+
-

m = 5 Fe/Si!
(~3000 layers)

+

-
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3He
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In the 80’s and 90’s, 3He was developed as a polarizer/analyzer. The absorption 
of 3He depends on the relative orientation of its nuclear spin to the neutron spin:

T = exp (�O) cosh (OPHe)

Pn = tanh (0.0733pl�PHe) = tanh (OPHe)

+ broad-band (<1 Å), flip in-situ — sensitive to magnetic field, time-dependent

0 2 4 6 8 10
λ (Å-1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P n, T
n, P

2 T

Pn
Tn
P2T

3He can be polarised by either optically pumping metastable 3He atoms directly 
(MEOP), or by pumping an alkali metal vapour, and transferring the polarisation 
via spin exchange collisions (SEOP)

�± = �0 ± �p

PHe = 70 %!
pl = 10 bar cm

total absorption

spin-independent

spin-dependent



Manipulating the neutron spin: guide fields 
and flippers
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As might be expected, the polarization of the beam can be rotated and 
manipulated using spatially varying magnetic fields. But what type of field profile 
leads to a flip, and what profile causes a field rotation?!
!
Consider a neutron moving through a magnetic field changing at a constant  
angular rate               . The equation of motion is:!
!
!
!
!
The solution in a homogenous field is of course Larmor precession of <σ> about 
the field direction at frequency ⍵L. In the changing field, we may identify two 
limits:

Adiabatic versus non-adiabatic transitions

22

dh�i
dt

= �h�i ⇥B

Adiabatic Non-adiabatic

d✓B/dt
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Preserving polarization vs. flipping it
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The degree of adiabaticity may be quantified by the adiabaticity parameter:

Adiabatic Non-adiabatic

For good transport of P along the guide field, A should be in excess of 10

The spin immediately begins 
precessing about the new direction

The spin follows the rotating field 
direction

B

S

B

S
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Flippers I
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Drabkin Cryoflipper

I1I2

beam

On the contrary, flippers require small values of A << 1

+ Broad band, no mat. in beam, simple!
— Low efficiency, poor for large beams

+ Broad band, 100% efficient!
— Material in beam, trapped flux

B

%&00 ) D/ is rebuilt at the hot position HC =D/B>!

Several copies de the Cryo-ipper are produced!

Meissner screen (Nb or YBCO)
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Flippers II
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Mezei flipper RF AFP

B

Larmor precession can also be used as a tool to flip the neutron

+ Any angle, high efficiency, simple!
— Mat. in beam, monochromatic*

+ Broadband, high efficiency!
—

OSNS 2007 - Polarized Neutrons

Radio-frequency flippers

EE00

Zeeman Zeeman splitting in field Bsplitting in field B
00

�E = g�NB0

Resonance frequency ofResonance frequency of

transitions between transitions between ““upup”” and and

““downdown”” states is states is  thereforetherefore

  

� =
g�NB0

h
= �B

0

Which is just the Which is just the LarmorLarmor

precession frequency.precession frequency.

Transitions between up andTransitions between up and

down states occur on applyingdown states occur on applying

an RF field atan RF field at  ��LL perpendicular perpendicular

to the main fieldto the main field RF flipper installed onRF flipper installed on    the small-angle instrument D22 at thethe small-angle instrument D22 at the

ILLILL

B0

B1
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A brief note on efficiency
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Inevitably, the components on a neutron instrument have a finite efficiency, which 
has to be corrected for.!
!
e.g. diffractometer with a single flipper, measuring -+

P F
+

-

p+

p-

p-f

p+f

p+(1-f)

AS

It is essential to characterise the instrument components!

[p+(1-f)+p-f](dσ/dΩ)++!
+p+f(dσ/dΩ)-+



Elastic polarized scattering



Erice, 2/7/2017

Blume-Maleev equations I
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Although it is instructive to consider the matrix elements for specific processes, it 
would be useful to generalise the dependence of the cross section and scattered 
polarization on the incident polarization. This can be achieved using the density 
matrix:

hAi = Tr{⇢A}

Let’s now expand out the matrix element in the expression for the cross section 
shown previously. In terms of the density matrix:

density matrix 

Similarly, the scattered polarization is:

⇢ =
1

2
(I2 +P · �)⇢ =

X

⌫

p⌫ | ⌫ih ⌫ |

over spin states in the beam ⍴ related to polarization

✓
d�

d⌦

◆
/ |h 0|V (Q)| i|2 = Tr{⇢V (Q)†V (Q)}

P0
✓
d�

d⌦

◆
/ Tr{⇢V (Q)†�V (Q)}

Blume (Phys Rev 130, 1670, 1963, Physica B 267-268, 211, 1999); Maleev JETP 14 (1962) 1168
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Blume-Maleev equations II
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Using the properties of the Pauli matrices (and their products) and the identity:

… we arrive at the Blume-Maleev equations (ignoring incoherent, dropping Q):

(a · �)(b · �) = a · bI+ i(a⇥ b) · �

✓
d�

d⌦

◆
/ NN⇤ +M? ·M⇤

? � iP · (M? ⇥M⇤
?) +P · (M?N

⇤ +M⇤
?N)

8 > > > > > > > > < > > > > > > > > :

� � � � � � � � � � � � � �

8 > > > > > > > > < > > > > > > > > :

� � � � � � � � � � � � � �

Magnetic Nuclear-magnetic interference

chiral
8 > > > > > > > > < > > > > > > > > :

� � � � � � � � � � � � � �

create polarization 

P0
✓
d�

d⌦

◆
/ PNN⇤ �P(M? ·M⇤

?) +M?(P ·M⇤
?) +M⇤

?(P ·M?) + ...

i(M? ⇥M⇤
?) +M?N

⇤ +M⇤
?N + i(M?N

⇤ +M⇤
?N)⇥P

Not observed in unpolarized experiment
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Half-polarised instrument
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Let us first look at a simple application of this; a half polarised diffractometer

P G F S

✓
d�

d⌦

◆
/ NN⇤ +M? ·M⇤

? � iP · (M? ⇥M⇤
?) +P · (M?N

⇤ +M⇤
?N)

If we assume (as in the polarizer example), M || |P| ⟂ Q, and M⟂ and N are real, 
the ratio of flipper on to off intensities is

R =
F 2
N + F 2

M + 2PFNFM

F 2
N + F 2

M � 2PFNFM

If the nuclear structure factors are also known (they can be found from an 
unpolarised experiment), the magnetic structure factor FM can be extracted for 
any number of Bragg peaks. 
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Spin density measurement
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In a ferromagnet, the magnetic scattering amplitude depends only on the form 
factor (the spatial Fourier transform of the spin density)

⇢s(r)
FT��! f(Q)

Thus, flipping ratio measurements can be used to extract real space spin density 
maps for both ferromagnets and materials which be polarised in a magnetic field

3440 N Kernavanois et al
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Figure 5. The result of the form factor refinement for CoO. The circles show observed magnetic
structure factors (corresponding to four formula units). Crosses show the corresponding calculated
values. The solid and dashed curves show the spherical contributions of cobalt atoms for different
values of the L/S ratio.

As far as the oxygen is concerned, since its contribution is weak (as shown by the MaxEnt
results), it can be approximated by its spherical (spin-only) part:

µO fO(Q) = µO⟨ j0(Q)⟩. (9)

Inserting equations (7)–(9) into (2) gives an expression for the magnetic structure factor
of CoO. We have used this expression in a least-squares procedure to derive µS

Co, µL
Co, µO, and

α from our 22 independent experimental observations. The values of the radial integrals used
are those tabulated in [19] for a free Co2+ ion. For the oxygen contribution, a radial integral
⟨ j0(Q)⟩ has been calculated from the standard Slater exponent tabulated in [20] (ζ = 2.25 au).

The result of this analysis is shown in figure 5. The parameters obtained are µS
Co =

0.045(2) µB , µL
Co = 0.041(1) µB , µO = 0.008(1) µB , and α = 0.83(4). The corresponding

χ2 is equal to 1.00.
The first point worthy of comment is the induced magnetization on the oxygen atom.

This polarization, already shown by the MaxEnt reconstruction, is confirmed by this analysis.
Although small, the result is unambiguous, since it is eight times larger than its standard
deviation, and represents roughly 8% of the total magnetization. This contribution cannot be
explained by chemical disorder, since our attempts to refine the oxygen occupation number led
to 1 within roughly 2%. A similar effect has already been observed for other magnetized
antiferromagnets, for example the garnet Ca3Fe2Ge3O12 [21], and the layered perovskite
ruthenate Ca1.5Sr0.5RuO4 [22]. It has been explained in terms of the covalent interaction
inherent in the super-exchange mechanism which gives rise to the antiferromagnetic coupling.
Three effects are expected in such a case:

(i) a reduction of the magnetic moment on the anion compared to its free-ion value due to a
partial transfer to the ligands;

(ii) the appearance of an overlap density which creates a node between the magnetic ion and
the ligand;

(iii) the appearance of magnetization on the ligand itself with the same sign (direction) as on
the anion (covalent spin density).

In a simple antiferromagnet, the magnetizations on either side of the ligand have opposite signs
and so the covalent spin density may be exactly cancelled. By contrast, in the paramagnetic

Magnetization distribution in paramagnetic CoO 3439

Figure 4. MaxEnt with non-uniform priors. Projections of the magnetization density along [011̄].
Upper part: MaxEnt reconstruction starting with model 1(a) and model 2(c) as the non-uniform
prior. The contour lines correspond to values from 0.0075 µB Å−2 up to 0.1575 µB Å−2, with a step
of 0.005 µB Å−2. Lower part: differences between reconstructions and models. The contour lines
correspond to values from −0.0275 µB Å−2 up to 0.0275 µB Å−2, with a step of 0.005 µB Å−2.
Dashed lines are negative contours.

to the special positions occupied by cobalt and oxygen atoms in CoO, the magnetic structure
factor can be simply written as

FM (Q) = 4 × (µCo fCo(Q)e−WCo + (−1)h+k+lµO fO(Q)e−WO ). (2)

Assuming that both spin (S) and orbital (L) moments are present on the cobalt site,

µCo fCo(Q) = µS
Co f S

Co(Q) + µL
Co f L

Co(Q). (3)

As already seen, in a perfect octahedral field, the d orbitals are split into the t2g and the eg

subsets. For an eg and a t2g electron, one has respectively

f S
eg

(Q) = ⟨ j0(Q)⟩ + 3
2 A(Q)⟨ j4(Q)⟩ (4)

and

f S
t2g

(Q) = ⟨ j0(Q)⟩ − A(Q)⟨ j4(Q)⟩ (5)

where the ⟨ jL(Q)⟩ are the radial integrals (Bessel–Fourier transform of order L) of the radial
density and A(Q) depends only on the Miller indices (hkl) of Q:

A(Q) = h4 + k4 + l4 − 3(h2k2 + h2l2 + k2l2)

(h2 + k2 + l2)2
. (6)

If we assume that a fraction α of the unpaired electrons are in the eg orbitals, the remaining
(1 − α) being in the t2g orbitals, the spin contribution to the form factor can be written as

µS
Co f S

Co(Q) = µS
Co(⟨ j0(Q)⟩ + ( 5

2α − 1)A(Q)⟨ j4(Q)⟩). (7)

In the dipolar approximation, the orbital contribution µL
Co f L

Co(Q) is

µL
Co f L

Co(Q) = µL
Co(⟨ j0(Q)⟩ + ⟨ j2(Q)⟩). (8)

e.g. CoO projection along [011]

O

Co

Kernavanois JPCM 15 (2003) 3433
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FIG. 1. (Color online) Field dependence of the CeRuSn single
crystal magnetization measured at 2 K up to 7 T applied along
the principal directions and at 285 K along the c axis. Arrows
denote positions at which the polarized neutron experiment has been
performed. In the inset, the temperature dependence of the inverse
magnetic susceptibility 1/χ (T ) = H/M(T ) measured upon cooling
and warming up in a field of 1 T applied along the c axis is shown.
Best fits to a modified Curie-Weiss law in the range between 250 and
350 K and between 50 and 150 K (both upon cooling) are shown by
lines through the experimental points, respectively. Note the different
slopes above and below the hysteretic structural transition.

structure of CeRuSn projected nearly along the b axis is shown
in Fig. 2(a). At this point we would like to stress that although
the high-temperature structural details of our crystal may differ
slightly from the used parameters, results derived below are

FIG. 2. (Color online) A schematic representation of the crystal
structure adopted by CeRuSn at room temperature (a). The atoms
are shown as large, intermediate, and small circles for Ce, Ru, and
Sn, respectively, and the numbers within the largest circles denote
different Ce1 and Ce2 sites with short and large distances to the
nearest neighbors, respectively. The unit cell that corresponds to
the CeCoAl type of structure (1c) is shown in bold. A color-coded
spin density distribution in CeRuSn obtained from data recorded at
285 K in a magnetic field of 6.2 T applied close to the c axis and
analyzed using maximum entropy reconstruction is shown in (b).
Densities around Ce magnetic moments with positional parameters
y = 0 or 1.0, i.e., at the boundary of the crystallographic unit cell
are restricted by an isosurface value of 0.0015µB/Å

3
. Inside this

region is the density color coded according to the scale. Moments
residing entirely inside the unit cell (i.e., with y = 0.5) appear as
isolated density clouds of a constant isosurface density (shown in
yellow) of 0.0015µB/Å

3
. Densities below this level are not shown.

Note remarkable different densities at the corresponding Ce sites.

representative in a sense that they clearly reflect coexistence
of two different Ce states that occupy two different sites.

Although the CeRuSn bulk magnetization at 285 K and
at 6.2 T oriented along the c axis is only 0.019(1)µB/Ce,
this value is sufficiently high to perform a PND experiment
and to obtain reliable flipping ratio data. At 285 K, we have
collected total flipping ratios from 187 Bragg reflections (85
unique ones). Magnetic structure factors have been calculated
with the help of the Cambridge Crystallography Subroutine
Library [18] suite programs. Spin densities were determined
using the software package PRIMA [19] that calculates the most
probable distribution that is in agreement with the symmetry
of the parent lattice, observed magnetic structure factors, and
associated errors using the maximum entropy (MAXENT)
method [20]. The resulting densities were drawn using the
computer code VESTA [21]. In Fig. 2(b) a color-coded spin
density distribution as determined from the measured flipping
ratios at 285 K is shown as viewed nearly along the b axis.
Comparison with the crystal structure in the same orientation
shown in Fig. 2(a) shows that spin densities in the form of
clouds elongated along the c axis (caused by a lesser resolution
along the direction of the applied field) are found at places
that correspond to both Ce1 and Ce2 atoms. However, the
densities are not equal at the two inequivalent sites. The
integration corresponding to the Ce3+ ionic radius of 1.34 Å
for the coordination number 12 [22] reveals that while the Ce2
possesses a total magnetic moment of 0.017(3)µB , the Ce1
site possesses a total magnetic moment of only 0.004(2)µB ,
i.e., substantially less than at the Ce2 site. These values are
listed in Table I. The average of the two values is smaller
than the bulk magnetization of 0.019µB/Ce achieved at 6.2 T
suggesting either some experimental systematic error (e.g.,
that the magnetic field was not applied exactly along the
easy-axis direction) or a nonzero contribution from other
sites or conduction electrons. Indeed, the integration over

TABLE I. Magnetic moment values of a CeRuSn single crystal
determined from the direct fitting of PND data and by the integration
of the spin density maps obtained by a maximum-entropy method.
The PND experiment was carried out at T = 285 K and 1.7 K,
respectively, in a magnetic field of 6.2 T applied close to the
c axis. We assumed the Ce moment to have both spin µS and
orbital µL parts. The parameter C2 = µL/µtot is listed as well. Bulk
magnetization measurements give magnetization values of 0.019(1)
and 0.744(2)µB/Ce at 285 and 2 K, respectively. C2 and µS are
derived parameters; error bars are given implicitly by parameters
determined experimentally.

T = 285 K
Method DIRECT MAXENT

Site Valence µS µL µtot C2 µtot

Ce1 Ce(4−δ)+ −0.006 0.009(7) 0.003(1) 3.0 0.004(2)
Ce2 Ce3+ 0.009 0.021(6) 0.030(1) 0.7 0.017(3)

T = 1.7 K
Method DIRECT MAXENT
Site Valence µS µL µtot C2 µtot

Ce1 Ce(4−δ)+ 0.2 0.4(2) 0.60(3) 0.67 0.58(2)
Ce2 Ce3+ −0.2 0.9(2) 0.72(4) 1.20 0.82(3)
Ce3 Ce(4−δ)+ 0.3 0.1(3) 0.43(4) 0.35 0.42(2)
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the whole unit cell led to an average value of 0.021µB/Ce.
This suggests that also the interatomic space is polarized. The
signal intensity, however, does not allow conclusions regarding
possible polarization at the Ru/Sn sites.

Another way to treat the experimental data is the direct
refinement of the measured flipping ratios. We assume all the
magnetic moments to be centered on the given atomic sites.
Various atoms are characterized by magnetic form factors
f (Q) that depend on the scattering vector Q and have, in
general, orbital (µL) and spin (µS) parts, where the total
magnetic moment µ = µS + µL.

The cerium magnetic form factor is usually expressed
within the dipolar approximation by the formula f (Q) =
⟨j0 (Q) ⟩ + C2⟨j2(Q)⟩, where C2 = µL/(µS + µL) and ji

is the radial integral for the Ce3+ valence state [23]. An
equivalent expression can be written down for the Ru magnetic
form factor. The best fit allowing magnetic moments on Ce
and Ru sites indicates that no significant magnetic moment
resides at either of the two inequivalent Ru sites. By assuming
a magnetic moment on the Ce sites only, we could obtain a
rather good fit of the experimental data. The best fits yield the
moment values listed in Table I.

While it is difficult to conclude anything regarding the
coupling of the spin and orbital parts at the Ce1 site, the spin
and orbital moments on the Ce2 atoms seem to be clearly
parallel to each other with the C2 parameter strongly reduced
at 285 K with respect to the expected value of 1.33 calculated
for both, α and γ cerium [24]. Thus, the derived magnetic
form factor deviates from that of the free ion Ce3+ situation
by having different coupling of the spin and orbital parts. We
interpret this as a consequence of 4f electron delocalization
in agreement with the suggestions made for α cerium [25].

C. Spin density at 2 K

As mentioned above, below room temperature the com-
mensurate crystal structure becomes incommensurate. Two
sets of structural Bragg reflections are observed at 2 K for
CeRuSn: the main reflections that correspond to the average
CeCoAl-type structure and incommensurate ones that can be
described by a propagation vector qnuc = (0, 0, 0.35) [14]. For
the polarized data refinement at low temperatures we could
use structural information obtained on the same crystal from
previous unpolarized neutron diffraction work [14]. However,
due to limitations of the available computer codes [20], we
had to approximate the incommensurate crystal structure by a
commensurate one. Since the modulation is close to a tripling
of the original CeCoAl structure along the c axis, we have
used the three times larger c-axis parameter. The positional
parameters were taken from literature [10,13,17]. This leads
to three independent Ce, Ru, and Sn sites. As in the case of
the high-temperature structure, Ce atoms have different Ce-Ru
and Ce-Sn neighbor distances, those for the Ce3 site being the
shortest and the Ce2 the longest. The corresponding structural
approximant is shown in Fig. 3(a).

Spin densities were reconstructed from magnetic structure
factors calculated from 173 flipping ratios (92 unique ones).
These were collected in the same angular range as at high
temperatures. The resulting color-coded spin density distribu-
tion of CeRuSn at 1.7 K, projected nearly along the b axis,

FIG. 3. (Color online) A schematic representation of the simplest
aproximation to the crystal structure of CeRuSn at low temperatures
(a). The atoms are shown as large, intermediate, and small circles for
Ce, Ru, and Sn, respectively, and the numbers within the largest circles
denote mutually inequivalent Ce1, Ce2, and Ce3 sites. The Ce3 site
has the nearest neighbors at the shortest distances and the Ce2 site at
the the largest distance, respectively. The unit cell that corresponds to
the CeCoAl type of structure (1c) is shown in bold. A color-coded spin
density distribution in CeRuSn obtained from data recorded at 1.7 K
in a magnetic field of 6.2 T applied close to the c axis and analyzed
using maximum entropy reconstruction is shown in (b). Densities
around Ce magnetic moments with positional parameters y = 0 or
1.0, i.e., at the boundary of the crystallographic unit cell, are restricted
by an isosurface value of 0.04µB/Å

3
. Inside this region is the density

color coded according to the scale. Moments residing entirely inside
the unit cell (i.e., with y = 0.5) appear as isolated density clouds
of a constant isosurface density (shown in yellow) of 0.04µB/Å

3
.

Densities below this level are not shown. Note remarkable different
densities at corresponding Ce sites.

is shown in Fig. 3(b). At first glance, it is apparent that the
density clouds correspond very well to positions of Ce ions.
The density values are, however, much larger than those at
high temperature and different between the sites. Integration
of the map in three dimensions, corresponding to the Ce3+

ionic radius of 1.34 Å, reveals values of 0.58(2), 0.82(3), and
0.42(2)µB for the Ce1, Ce2, and Ce3 site, respectively.

We see that all three sites carry a significant magnetic
moment that is, however, much smaller than the Ce free-ion
moment of 2.14µB . Also in this case we observe that the
average of the three magnetic moments is somewhat smaller
than the bulk magnetization, indicating significant polarization
at other crystallographic sites and/or intersticial regions. The
integration over the whole unit cell amounts to 8.98µB (leading
to an average Ce moment of 0.748µB ) and is in excellent
agreement with the magnetization data. In addition, we observe
that in contrast to our previous unpolarized study [14], the
largest magnetic moment is obtained for the site with the
largest nearest-neighbor distances. The reason for this different
observation is unclear at the moment. However, one has to
consider that the two experiments describe different states of
CeRuSn. While the unpolarized experiment was devoted to the
antiferromagnetic structure determination in zero field using
the incommensurate crystal structure description, the current
one describes CeRuSn in its ferromagnetic state (magnetostric-
tion across the AF-F transition inducing rearrangement of
atomic positions/Ce moments is possible) using the simplest
approximant.

The second method, a direct refinement to the flipping
ratios [18], in which we assume all the magnetic moments to be
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System related to both famous Ce-based Kondo materials and elemental Ce. 
Two Ce sites at RT, unusual structural phase transition at ~250 K!

275 K!
µCe1 = 0.003µB!
µCe2 = 0.030µB

1.8 K!
µCe1 = 0.60µB!
µCe2 = 0.72µB!
µCe3 = 0.43µB
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Ring of Cr3+ ions joined by organic linkers. One site in the ring is substituted with 
Cd3+. Theory predicts a decrease in moment moving away from the Cd site.

4.6 T 9 T

data refinement. In addition, the FN values were directly obtained
by measuring a selected number of reflections using the same
crystal measured on D3. For this purpose, we used the four-circle
5C2 diffractometer at Laboratoire Léon Brillouin (Saclay, France)
to measure the integrated intensities at 15 K (see Supplementary
Note 2 for more details). The FNs were calculated as the square
roots of the measured intensities with the sign chosen to be the
one derived from the structure refinement. The spin densities
derived using the measured FN are shown in Fig. 4 and the same
result is obtained using the FN calculated from the structural
model. From the data refinement it is found that most of the spin
density is located at the Cr position. Allowing spin delocalization
on the F and O atoms gives a similar quality fit and the results
show that only a small percentage of spin density is delocalized
from the Cr on to the neighbour atoms. The experimental values
of the spin population are reported in Table 1.

Similar PND studies were performed on a single crystal of the
parent closed ring Cr8. The experiments were performed using
the 5C1 diffractometer at Laboratoire Léon Brillouin. The crystal
was mounted with the axis perpendicular to the ring plane
making an angle of 90! with the external magnetic field. Flipping
ratio measurements were taken for a field of 6 T and at T¼ 5 K to
populate the first excited S¼ 1 state.

Discussion
The PND experimental results for Cr8Cd (Fig. 4) reveal that there
is an accumulation of spin density at the edges of the open ring
and negligible spin density at the Cr positions further away from
the Cd. The sign of the spin moments alternates from positive to
negative along the ring, which indicates a staggering of the
magnetization. This effect is similar for both 4.6 T and 9 T and
increasing the field to 9 T has only the effect of increasing the
magnetic moment on each ion, maintaining the same spin
distribution. The measured spin moments at different Cr sites are
in agreement with the calculations based on the quantum spin
Hamiltonian in Equation 1. A comparison of the experimentally
determined spin moments with the calculated values using the
spin Hamiltonian is shown in Fig. 5. The calculations based on a
classical model of an open spin chain by Lounis et al.11 predict a
NC spin arrangement for a chain of eight atoms, which also is in
agreement with the values of the projected spin moments along
the magnetic field found experimentally.

The classical spin configuration in a magnetic field for an open
chain of eight atoms is shown in Fig. 6a. The spins at the
extremities of the chain (1 and 8) are more energetically favoured
to align along the magnetic field as they have to compete only
with one exchange interaction. The AF interaction with the
nearest neighbours on sites 2 and 7 would imply that those spins
are aligned in the opposite direction. As we move towards
the centre of the chain, for the spins at position 4 and 5, the
‘spin-up’—‘spin-down’ condition can no longer be satisfied as
these two spins cannot simultaneously satisfy the AF conditionCr1
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Cr4Cr5

Cr6
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Cr7

Cd
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Figure 4 | Measured spin density maps. Spin density maps (scale in
mB Å" 2) obtained by the refinement of the D3 experimental data for
applied fields of 4.6 T (a) and 9 T (b) at T¼ 1.8 K (projection along the
crystallographic b axis).

Table 1 | Results of the spin density refinement.

Refinement details
Magnetic field 4.6 T 9 T
Spin state S¼ 1 S¼ 2
No with |1" R|4s 187 126
Nv 9 13
GOF 1.38 1.9
Rw(|1" R|) 0.17 0.13

Local magnetic moments mi (mB)
Cr1 0.91(4) 1.57(8)
Cr2 "0.26(4) "0.48(5)
Cr3 0.33(4) 0.68(6)
Cr4 0.04(3) 0.08(6)
Cr5 0.03(3) 0.08(5)
Cr6 0.33(3) 0.70(5)
Cr7 "0.36(4) "0.62(6)
Cr8 0.94(3) 1.60(5)
Sum 1.96(9) 3.61(16)

s, experimental error bar on the flipping ratio R(hkl), No, number of observed flipping ratios with
|1" R|4s, Nv, number of varied parameters; GOF, goodness of fit; Rw, weighted agreement
factor; weighting scheme: w¼ 1/s2.
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Figure 5 | Local spin moments as a function of magnetic field. Calculated
local spin moments mi at the different Cr positions as a function of external
magnetic field (lines) as compared to the experimental values (solid circles)
for the two measured fields of 4.6 T and 9 T.
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Figure 6 | Classical spin ground state configurations. Classical spin
ground state configuration for an even-open chain (a) an even-closed chain
(b) and an odd-open chain (c) of AF-coupled spins under an external
magnetic field.
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Longitudinal polarization analysis corresponds to the cases we looked at 
previously - where Pʹ=±P. For a single crystal, define the coordinate system:

These are equivalent to the Moon, Riste, and Koehler equations for Px || Q
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If we only have a single detector (like the example discussed previously), we can 
ensure that x || Q for any Q using adiabatic rotations of the polarization. !
!
Measuring the 12 cross sections on the previous slide allows us to perform a 
separation of the components (again, ignoring incoherent scattering): 
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Coupled magnetic and ferroelectric domains in multiferroic Ni3V2O8

I. Cabrera,1, 2 M. Kenzelmann,3 G. Lawes,4 Y. Chen,2 W. C. Chen,2 R. Erwin,2

T. R. Gentile,2 J. B. Leão,2 J. W. Lynn,2 N. Rogado,5 R. J. Cava,6 and C. Broholm1, 2

1Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
2National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

3Laboratory for Developments and Methods, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
4Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA

5DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA
6 Department of Chemistry and Princeton Materials Institute,

Princeton University, Princeton, New Jersey 08544, USA
(Dated: January 11, 2014)

Electric control of multiferroic domains is demonstrated through polarized magnetic neutron
diffraction. Cooling to the cycloidal multiferroic phase of Ni3V2O8 in an electric field E causes the
incommensurate Bragg reflections to become neutron spin polarizing, the sense of neutron polar-
ization reversing with E. Quantitative analysis indicates the E-treated sample has handedness that
can be reversed by E. We further show close association between cycloidal and ferroelectric do-
mains through E-driven spin and electric polarization hysteresis. We suggest that definite cycloidal
handedness is achieved through magneto-elastically induced Dzyaloshinskii-Moriya interactions.

PACS numbers: 75.25.+z, 75.60.-d, 75.80.+q, 77.80.-e

Materials that are both ferroelectric and magnetic are
classified as multiferroics. In some multiferroics where
the ferroelectric and magnetic phases coexist, spin and
charge are strongly coupled, leading to the possibility of
controlling magnetic properties through an electric field
E. Such a nonlinear magneto-electric response is of fun-
damental interest and holds the potential for applications
that include sensing, spintronics, and microwave commu-
nication [1]. Recent studies have shown that an external
E applied to multiferroics with non-collinear spin struc-
tures, such as TbMnO3 and LiCu2O2, favors a particular
handedness of the magnetic order [2, 3]. Other studies
have shown the E control of domain population related
to equivalent magnetic propagation vectors [4]. Here we
examine the suppression and promotion of cycloidal mag-
netic structures in Ni3V2O8 (NVO) by an applied E. Our
quantitative analysis of the polarized magnetic diffrac-
tion cross-section and hysteresis curve for this multifer-
roic material indicates that a clockwise cycloidal single
crystal can be generated and is stabilized by magneto-
elastically induced Dzyaloshinskii-Moriya interactions.

NVO is an insulating magnet with spin-1 Ni2+ ions ar-
ranged in a buckled kagomé-staircase geometry [5]. The
spins occupy two distinct crystallographic sites denoted
cross-tie and spine [See Fig. 1 (a)]. Competing nearest
and next-nearest neighbor interactions along the spines
yield a complex magnetic phase diagram [6]. Magnetic
inversion symmetry breaking was inferred in the so-called
low-temperature incommensurate (LTI) phase, where un-
polarized neutron diffraction data indicate a magnetic
cycloidal structure with spins in the a-b plane and py-
rocurrent measurements find concomitant electric polar-
ization along the b axis. A Landau mean field theory
was previously devised to account for this multiferroic

FIG. 1: (Color online) (a) NVO crystal sublattice showing
Ni2+ spine (red) and cross-tie (blue) sites. (b) Counter-
clockwise (top) and clockwise (bottom) spin cycloids prop-
agating along the a axis. The (green) vertical arrow indicates
the direction of P.

behavior [5, 7, 8]. The free-energy expansion is

F = a(T − TH)σ2
H + b(T − TL)σ2

L + O(σ4)

+(2χE)−1P2 + V.
(1)

Here, a and b are constants, T is temperature, σH and
σL are the magnetic order parameters in the high-T in-
commensurate and LTI phases, respectively, χE is the
electric susceptibility, and P is the electric polarization.
The last term is the lowest order (trilinear) symmetry-
allowed multiferroic interaction, which in the LTI phase
is given by VLTI =

∑
γ aγσHσLPγ . Minimizing F with

respect to P, one finds that Pb = b̂ · P varies with T
in proportion to the product of the two magnetic order
parameters (Pb ∝ abχEσLσH), as observed experimen-
tally [9]. The theory also suggests that ferroelectric and
magnetic domains are coupled in NVO. Here we examine
this hypothesis by probing the magnetic and ferroelectric
response to an applied E in the multiferroic phase.

NVO crystals were grown from a BaO-V2O5 flux [6].
The buckled kagomé layers span the a-c crystallographic
plane and form the largest crystalline surfaces. A 0.58

Ni3V2O8 comprises Ni2+ spins on a complex, buckled kagome lattice. The spin 
order is helicoidal, which induces a ferroelectric polarization below ~6.5 K. The 
direction is linked with the chirality of the helix. Can this be observed?

2

FIG. 2: (Color online) Full polarized magnetic diffraction in
an electric field under opposite spin-flip scattering conditions.
Statistical uncertainties represent one standard deviation. (a)
Cooling in a field E= +300 kV/m from 11 K to 5 K (E-
cooling) favors cycloidal domains that predominantly diffract
neutrons polarized antiparallel to Q. (b) Reversing E yields
the opposite polarized intensity asymmetry.

g, 120 mm3 crystal was selected for this experiment. A
parallel-plate capacitor was formed by evaporating a 5
nm Cr/40 nm Au layer on each large face of the crys-
tal, hence normal to the ferroelectric axis. Au wires were
attached to each side of the sample using silver epoxy
paste. Polarized neutron diffraction measurements were
carried out on BT-7 at NIST. A 14.7 meV neutron beam
was polarized and analyzed by 3He neutron spin filters
[10]. Helmholtz coils were used to generate a guide field
at the sample position, thus defining the neutron spin
quantization axis. In the vertical field (VF) configura-
tion the field strength was 0.4 mT, oriented normal to
the scattering plane to within 0.07 rad. In the horizon-
tal field (HF) configuration, the field strength was 0.8
mT, oriented within 0.1 rad of the horizontal plane and
parallel to wave vector transfer Q = ki − kf to within
0.2 rad. Mezei neutron spin-flippers were mounted be-
fore and after the sample, providing access to a total of
eight configurations for the incoming and outgoing neu-
tron spin. The nomenclature used is as follows: (+) refers
to a flipper off and (−) refers to a flipper on. With both
flippers off the neutron spin nominally points up for VF
and parallel to Q for the HF configuration.

HF spin-polarized diffraction data are shown in Fig.
2. There is a strong asymmetry in the intensity be-
tween the (+/−) and (−/+) spin-flipper configurations
which reverses with E. This demonstrates in a quali-
tative fashion the E-driven suppression and promotion
of cycloidal magnetic domains [11]. Examining the data
more carefully, we note that a finite peak remains under
the (+/−)[(−/+)] spin-flip scattering condition, even af-
ter cooling in a +300 [−300] kV/m field. Similar ef-

TABLE I: Spin components on Ni2+ spine (s) and cross-tie
(c) sites describing CW and CCW cycloids. The inversion
operator I converts a CW cycloid into a CCW as follows:
for α = a or c, I[mα

si] = ∓(mα
si)

∗ and for the b-component,
I[mb

si] = ±(mb
si)

∗ (upper sign for i = Γ1 and lower sign for
i = Γ4). For all cross-tie sites I[mci] = (mci)

∗. There are
six additional atoms in the conventional unit cell, obtained
by translating di by ( 1

2
, 1

2
, 0). Asterisks denote complex con-

jugation.

di mdi mdi

= (l, m, n) (CW) (CCW)
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4
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, 0.13, 3

4
) md2

= (ma
s1, m̄b

s1, m̄c
s1) + (m̄a

s4, mb
s4, mc

s4) (md4
)∗

( 3
4
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)∗

fects have been seen in [2, 3], but have not been fully
accounted for. Note that, because the strong diffraction
cross-section is suppressed by both the incident and the
final beam 3He neutron spin filters, the residual inten-
sity cannot be accounted for by finite beam polarization.
Quantitative analysis of the polarized diffraction cross-
section is needed to account for this effect.

Within a single domain, the magnetic structure of
NVO in the LTI phase can be described as follows:

SRdi = mdie
iqm·(R+di) + md

∗
i e

−iqm·(R+di). (2)

Here, qm is the magnetic propagation vector, R is a vec-
tor from the origin to the unit cell, di are position vectors
for Ni2+ ions within the conventional unit cell, and mdi

transform according to irreducible representations of the
magnetic space group and specify the time-averaged mag-
netic moments on Ni2+ sites. In the LTI phase, where
electric polarization is present, the spin structure was
previously described by the Γ1 and Γ4 irreducible repre-
sentations with best fit basis vectors for spine and cross-
tie sites msi and mci, i = 1, 4 [7]. The resulting spin
structure is a clockwise (CW) cycloid, progressing along
a [see Fig. 1 (b)]. Spatial inversion is a symmetry op-
eration of the paramagnetic phase that converts a CW
cycloid into a counterclockwise (CCW) cycloid. The set
of complex mdi for CW and CCW cycloids are listed in
Table I. We expect that domains in NVO are associated
with these symmetry-related structures.

To quantitatively characterize the cycloidal domains,
we employed Blume’s equations for elastic scattering of
polarized neutrons [11]. The polarization-resolved differ-
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If there is more than one detector, it is no longer possible to simultaneously align 
the polarization with Q. It is also generally difficult to flip over a wide angle. 
These two limitations mean some assumptions have to be made:!

P G F G S A
π

1. The detector is 2D and lies in the plane containing x, y, and Q i.e.

z

yx
Qα

Schärpf angle α 
Otto Schärpf
D7
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3. The magnetic component is isotropically distributed in space, i.e. the 
scattering is paramagnetic-like and the Halpern-Johnson equation applies:!

Including the incoherent cross sections, which have been neglected so far, the 
result is the Schärpf equations…!

All the direction-dependent components replaced by averages.

2. There sample does not have a net magnetic moment, nor are there any no 
chiral or nuclear-magnetic interference contributions:
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Schärpf and Capellmann phys. stat. sol. (a) 135, (1993), 359!
Stewart J. Appl. Cryst 42 (2009) 69

P0 = Q̂[P · Q̂]
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These conditions are generally met for diffuse scattering from powder samples:!

67% reduction from the expected S ¼ 1 spin-only moment
displayed by Lu2Mo2O7 [20]. This suggests that spin-orbit
coupling is significant in both of these 4d systems.
Heat capacity of Lu2Mo2O7 was measured on a 9.0 mg

pellet in a Quantum Design physical property measurement
system (PPMS). The high temperature data were modeled
by the Debye equation [Fig. 1(a)] which gave a Debye
temperature θD ¼ 540 K. Upon subtraction of this esti-
mated lattice contribution, a broad hump centered ∼50 K is
observed in the magnetic heat capacity Cmag, typical of a
spin glass system. Heat capacity of the oxynitride was
measured on a 8.9 mg sample over 0.5–30 K using a 3He
insert. Given the similar structure and formula weight of the
oxide and oxynitride phases, the lattice contribution esti-
mated for Lu2Mo2O7 was also used to extract the magnetic
heat capacity of the oxynitride. A comparison of the low
temperature magnetic heat capacities of the oxide and
oxynitride are shown in Fig. 1(b). The temperature
dependencies are markedly different with Cmag ∝ T2 for
the oxide and Cmag ∝ T for the oxynitride.
Diffuse magnetic neutron diffraction was measured for

both pyrochlores on the D7 Spectrometer at the Institut
Laue-Langevin [28]. xyz polarization analysis was used
to separate the components of total neutron scattering
[29,30]. Data were collected with an incident wavelength
λ ¼ 4.8 Å, at which final energies are integrated up to
E ∼ 3.5 meV. A detailed experimental account is given in
the Supplemental Material [22]. Figure 2 shows the
magnetic scattering cross sections ðdσ=dΩÞmag of the oxide
and oxynitride at 1.5 K, well below Tf ∼ 16 K. The
magnetic diffuse scattering from the oxide displays a broad
peak centered around 0.6 Å−1 that indicates the presence of
static short ranged molybdenum spin correlations, which
were modeled by [31],
!
dσ
dΩ

"

mag
¼ 2

3
ðγnr0Þ2

!
1

2
gFðQÞ

"
2

×
!
SðSþ 1Þ þ

X

i

ZihS0 · Sii
sinQri
Qri

"
; ð1Þ

where hS0 · Sii gives the correlation between a spin and its
Zi nearest neighbors at a distance ri. γn, r0, and g take their
usual definitions and FðQÞ is the molybdenum form factor
[32]. The best fit to the data (Fig. 2) was obtained
by allowing for nearest-(r1 ¼ 3.581 Å, Z1 ¼ 6) and
next-nearest-neighbor (r2 ¼ 6.203 Å, Z2 ¼ 12) correla-
tions hS0 · S1i ¼ −0.029ð6Þ and hS0 · S2i ¼ −0.056ð7Þ,
respectively. In contrast, the magnetic diffuse scattering
of the oxynitride at 1.5 K is much weaker than that of the
oxide and appears to follow FðQÞ2. These data were thus
modeled using Eq. (1) with hS0 · Sii ¼ 0 for all i [33]. The
fit is shown as the solid line against the oxynitride data in
Fig. 2. The effective magnetic moment extracted from
the fit to the data, 0.11ð1ÞμB, corresponds to only 6% of the
expected S ¼ 1

2 spin-only value, suggesting that most of the
scattering from the oxynitride is inelastic and thus outside
the energy range over which D7 integrates energy [34].
To probe their full static and dynamic behavior, both

samples were studied on the Cold Neutron Chopper
Spectrometer (CNCS) [35] at the Spallation Neutron
Source of the Oak Ridge National Laboratory.
Measurements were performed on cooling to 1.5 K with
an incident neutron energy Ei ¼ 3.3 meV. The inset of
Fig. 2 shows the elastic scattering from the oxide and
oxynitride at 1.5 K, obtained by integrating the inelastic
spectra over the energy of the elastic line,
E ¼ ½−0.1; 0.1& meV. A broad peak at low Q is observed
for the oxide, which can again be modeled by Eq. (1). To
confirm the consistency of the analyses of the CNCS and
D7 data sets, a scaled version of the fit to the CNCS data is
plotted with the D7 fit in the main panel of Fig. 2;
agreement is excellent. Remarkably, the scattering col-
lected for the oxynitride at 1.5 K within the narrowly
defined elastic window on the CNCS is consistent with no
elastic magnetic scattering, as shown in the inset to Fig. 2.

FIG. 1 (color online). (a) Total heat capacity C of Lu2Mo2O7

(open circles) with the estimated lattice (dashed line) and
magnetic Cmag (closed circles) contributions. (b) The magnetic
heat capacities of the oxide and oxynitride phases.

FIG. 2 (color online). The magnetic scattering cross sections of
the both samples at 1.5 K. The solid lines are fits to the data. The
inset shows the elastic magnetic scattering measured on CNCS at
1.5 K. A scaled version of the fit of Eq. (1) to the CNCS oxide
data is shown on top of the D7 data (dashed line).

PRL 113, 117201 (2014) P HY S I CA L R EV I EW LE T T ER S
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Coulomb repulsion!
2-near 2-far

breaks the threefold symmetry of the triangular lattice. The impact of this
symmetry mismatch is for the average structure—deduced from analysis
of Bragg diffraction—to appear to have a higher symmetry than that
observed using local spectroscopic probes or expected from crystal chem-
ical considerations. This has led to misconceptions about disordered crys-
tal structures in the past (for example, the apparently linear Si–O–Si bond
in b-cristobalite45), and the clearest way to address this ambiguity is
through direct analysis of the diffuse scattering or through modelling of
the total scattering. Big-box modelling is particularly effective because
local distortions within individual unit cells can be explored (to agree
with PDF data, for example) while still generating an overall structure
that replicates the Bragg diffraction intensities.

Such an approach has been used to address high-temperature beha-
viour in ferroelectric BaTiO3: even within the cubic (paraelectric) phase
the Ti atoms are displaced from the centre of the TiO6 octahedron in
one of the eight Æ111æ directions, mimicking the distorted arrangement
of the ordered low-temperature rhombohedral phase46. These eight Ti
positions average to the central octahedral B-site in the ideal perovskite
structure (Fig. 3a)47. A similar conclusion was reached in studies of the
thermoelectric properties of PbTe (which has the same structure as rock
salt) in terms of large-amplitude displacements of Pb atoms along
Æ100æ-type directions at high temperature48. Likewise, the high ionic
conductivity of d-Bi2O3 was shown to depend on local relaxation of
the Bi-ion coordination geometry towards that adopted in the low-
temperature b-phase; these correlated distortions promote vacancy
migration (Fig. 3b)49. The Bi atoms in the relaxor ferroelectric NBT
(Na0.5Bi0.5TiO3) also assume positions of lower local symmetry than
that of the average lattice in the rhombohedral phase50. These are all
examples where second-order Jahn–Teller distortions of the Bi31, Pb21

and Ti41 coordination environments are responsible for lowering the
local symmetry. Analogous behaviour is observed for molecular systems
where a phase transition can only reduce the overall structural distor-
tion and raise the average symmetry through a superposition of distinct
molecular orientations. An example of this is seen in Fig. 3c where
rotational disorder in the imidazolium cation (C3H5N2)1 above the
ferroelectric phase transition leads to an average hexagonal molecular
shape that is chemically nonsensical51.

For most materials correlated disorder persists only in a high-tem-
perature state, with order emerging on cooling. But in some systems
the disordered state is trapped to low temperatures. One example is
K12x(NH4)xI (with x < 0.5), where the tetrahedral geometry of the
ammonium cation is incompatible with the octahedral symmetry of
its crystallographic site in the rock salt structure52. A second example
is solid C60, where the combination of icosahedral molecular symmetry
and trigonal point symmetry at the crystallographic site frustrates order
and gives rise to glassy dynamics at low temperatures53. A similar
mismatch between symmetry at the molecular and crystal lattice level

also exists in far larger structures, and is even exploited in the
mechanical release of phage DNA from viruses54.

Disorder–property relationships
Perhaps counterintuitively, correlated disorder may actually be an essen-
tial ingredient for functional material properties. There will be even more
cases where disorder—though not by itself the microscopic driving
force—is intimately associated with a particular functionality. Any
switchable ferroic state, for example, emerges from a disordered parent
phase where the correlations that are present describe the ferroic property
of interest. Relaxor ferroelectrics are an extreme example of this relation-
ship, where correlations are so strong that they stabilize polar nanore-
gions, which in turn drive the attractive dielectric properties for which
relaxors are favoured55. Here it is dipolar disorder that results in function,
but there are strong analogies too to the balance of orbital, electronic, and
magnetic disorder implicated in the colossal magnetoresistance of
LaxCa12xMnO3, for example56. Likewise, the proximity of correlated
paramagnetic states to the superconducting transitions of most high-
temperature superconductors has been noted many times previously
(for example, see ref. 57). As these examples illustrate, there is at least
an empirical correspondence between correlated disorder and advanced
function that is increasingly obvious even if not yet well understood.

Correlated disorder is often implicated in cooperative phenomena.
One example is solid-phase ion conduction: superionics are effectively
porous to a particular type of ion precisely because there exists a low-
barrier mechanism for collective displacements. Another example is the
emergence of quasi-particles such as skyrmions in chiral ferromagnets58

and magnetic ‘monopoles’ in the pyrochlore spin ices59, and the poten-
tial application of these phenomena in data storage and spintronic
devices would constitute putting correlated disorder to practical use.
As a final point, we note that the configurational entropy associated
with disordered states has its own set of thermodynamic and lattice
dynamical consequences that affect material properties. Not only would
ice melt at a different temperature were it not for proton disorder, but
the influence of disorder on phonons is exploited in optimizing thermal
conductivity of thermoelectrics60.

Concluding remarks
As we have shown here, simple local rules or distortions can give rise to
surprisingly complex disordered states of matter in a wide range of
material systems. In many cases the presence of disorder—whether
chemical, electronic, magnetic or geometric—and the nature of the
correlations that persist within the disordered phase affect the physical
and chemical properties of the system in question. Just as classical crys-
tallography has helped us to develop an understanding of the structures
of ordered crystalline materials, so modern crystallography and its ever-
improving methods are rapidly improving our ability to characterize

a
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c d

Figure 2 | Ice-like states on the pyrochlore lattice. a, The structure of cubic
ice is related to that of the pyrochlore lattice (thin black lines). Many different
orientations of the water molecules are capable of satisfying the same hydrogen-
bonding ‘rules’, in which each configuration can be represented uniquely by
decorating the edges associated with the two hydrogen atoms per tetrahedron
(thick black lines). The ice rules are encoded in the provision that no two such
edges join. b, c, The arrangement of dipoles in ‘charge-ices’ (b) and magnetic

moments in ‘spin-ices’ (c) map onto the same edge decorations, linking the
structural complexity of these physically disparate systems. d–g, Diffraction
patterns of the superionic conductor a-Cu1.8Se (ref. 67) (d), the negative
thermal expansion ‘charge-ice’ Cd(CN)2 (ref. 41) (e), the quantum spin ice
candidate Yb2Ti2O7

68 (f) and (water) ice itself69 (g) all show continuous
scattering in related regions of reciprocal space.
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breaks the threefold symmetry of the triangular lattice. The impact of this
symmetry mismatch is for the average structure—deduced from analysis
of Bragg diffraction—to appear to have a higher symmetry than that
observed using local spectroscopic probes or expected from crystal chem-
ical considerations. This has led to misconceptions about disordered crys-
tal structures in the past (for example, the apparently linear Si–O–Si bond
in b-cristobalite45), and the clearest way to address this ambiguity is
through direct analysis of the diffuse scattering or through modelling of
the total scattering. Big-box modelling is particularly effective because
local distortions within individual unit cells can be explored (to agree
with PDF data, for example) while still generating an overall structure
that replicates the Bragg diffraction intensities.

Such an approach has been used to address high-temperature beha-
viour in ferroelectric BaTiO3: even within the cubic (paraelectric) phase
the Ti atoms are displaced from the centre of the TiO6 octahedron in
one of the eight Æ111æ directions, mimicking the distorted arrangement
of the ordered low-temperature rhombohedral phase46. These eight Ti
positions average to the central octahedral B-site in the ideal perovskite
structure (Fig. 3a)47. A similar conclusion was reached in studies of the
thermoelectric properties of PbTe (which has the same structure as rock
salt) in terms of large-amplitude displacements of Pb atoms along
Æ100æ-type directions at high temperature48. Likewise, the high ionic
conductivity of d-Bi2O3 was shown to depend on local relaxation of
the Bi-ion coordination geometry towards that adopted in the low-
temperature b-phase; these correlated distortions promote vacancy
migration (Fig. 3b)49. The Bi atoms in the relaxor ferroelectric NBT
(Na0.5Bi0.5TiO3) also assume positions of lower local symmetry than
that of the average lattice in the rhombohedral phase50. These are all
examples where second-order Jahn–Teller distortions of the Bi31, Pb21

and Ti41 coordination environments are responsible for lowering the
local symmetry. Analogous behaviour is observed for molecular systems
where a phase transition can only reduce the overall structural distor-
tion and raise the average symmetry through a superposition of distinct
molecular orientations. An example of this is seen in Fig. 3c where
rotational disorder in the imidazolium cation (C3H5N2)1 above the
ferroelectric phase transition leads to an average hexagonal molecular
shape that is chemically nonsensical51.

For most materials correlated disorder persists only in a high-tem-
perature state, with order emerging on cooling. But in some systems
the disordered state is trapped to low temperatures. One example is
K12x(NH4)xI (with x < 0.5), where the tetrahedral geometry of the
ammonium cation is incompatible with the octahedral symmetry of
its crystallographic site in the rock salt structure52. A second example
is solid C60, where the combination of icosahedral molecular symmetry
and trigonal point symmetry at the crystallographic site frustrates order
and gives rise to glassy dynamics at low temperatures53. A similar
mismatch between symmetry at the molecular and crystal lattice level

also exists in far larger structures, and is even exploited in the
mechanical release of phage DNA from viruses54.

Disorder–property relationships
Perhaps counterintuitively, correlated disorder may actually be an essen-
tial ingredient for functional material properties. There will be even more
cases where disorder—though not by itself the microscopic driving
force—is intimately associated with a particular functionality. Any
switchable ferroic state, for example, emerges from a disordered parent
phase where the correlations that are present describe the ferroic property
of interest. Relaxor ferroelectrics are an extreme example of this relation-
ship, where correlations are so strong that they stabilize polar nanore-
gions, which in turn drive the attractive dielectric properties for which
relaxors are favoured55. Here it is dipolar disorder that results in function,
but there are strong analogies too to the balance of orbital, electronic, and
magnetic disorder implicated in the colossal magnetoresistance of
LaxCa12xMnO3, for example56. Likewise, the proximity of correlated
paramagnetic states to the superconducting transitions of most high-
temperature superconductors has been noted many times previously
(for example, see ref. 57). As these examples illustrate, there is at least
an empirical correspondence between correlated disorder and advanced
function that is increasingly obvious even if not yet well understood.

Correlated disorder is often implicated in cooperative phenomena.
One example is solid-phase ion conduction: superionics are effectively
porous to a particular type of ion precisely because there exists a low-
barrier mechanism for collective displacements. Another example is the
emergence of quasi-particles such as skyrmions in chiral ferromagnets58

and magnetic ‘monopoles’ in the pyrochlore spin ices59, and the poten-
tial application of these phenomena in data storage and spintronic
devices would constitute putting correlated disorder to practical use.
As a final point, we note that the configurational entropy associated
with disordered states has its own set of thermodynamic and lattice
dynamical consequences that affect material properties. Not only would
ice melt at a different temperature were it not for proton disorder, but
the influence of disorder on phonons is exploited in optimizing thermal
conductivity of thermoelectrics60.

Concluding remarks
As we have shown here, simple local rules or distortions can give rise to
surprisingly complex disordered states of matter in a wide range of
material systems. In many cases the presence of disorder—whether
chemical, electronic, magnetic or geometric—and the nature of the
correlations that persist within the disordered phase affect the physical
and chemical properties of the system in question. Just as classical crys-
tallography has helped us to develop an understanding of the structures
of ordered crystalline materials, so modern crystallography and its ever-
improving methods are rapidly improving our ability to characterize
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Figure 2 | Ice-like states on the pyrochlore lattice. a, The structure of cubic
ice is related to that of the pyrochlore lattice (thin black lines). Many different
orientations of the water molecules are capable of satisfying the same hydrogen-
bonding ‘rules’, in which each configuration can be represented uniquely by
decorating the edges associated with the two hydrogen atoms per tetrahedron
(thick black lines). The ice rules are encoded in the provision that no two such
edges join. b, c, The arrangement of dipoles in ‘charge-ices’ (b) and magnetic

moments in ‘spin-ices’ (c) map onto the same edge decorations, linking the
structural complexity of these physically disparate systems. d–g, Diffraction
patterns of the superionic conductor a-Cu1.8Se (ref. 67) (d), the negative
thermal expansion ‘charge-ice’ Cd(CN)2 (ref. 41) (e), the quantum spin ice
candidate Yb2Ti2O7

68 (f) and (water) ice itself69 (g) all show continuous
scattering in related regions of reciprocal space.
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Dipolar coupling & anisotropy!
2-in 2-out

3D water ice 3D spin ice

Both are under-constrained - infinite number of ways to satisfy interactions
Keen Nature 521 303; Bernal, Fowler J. Chem. Phys 1 515!

Ramirez, Nature 399 333; Bramwell PRL 87 047205  
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Figure 2. Top row: sketches of mapping of diamond ice and spin ice (water molecules in cyan/green); coarse
graining of spin ice spins to a non-divergent field; unbound monopole defects made by flipping first the lowest spin
to create a pair, and then subsequent flips along the highlighted path (the Dirac string). Middle row: diffuse scattering
expected from dipolar correlations in the pyrochlore Heisenberg antiferromagnet (left) and ⟨111⟩ Ising ferromagnet
(right) – the two are related by a mapping and have identical correlation functions, but different structure factors,
hence pinch points at the same wavevectors but of different appearance (calculated following [22]); Bottom row:
polarized neutron scattering data from Ho2Ti2O7 showing the pinch points in the spin flip channel, other correlations
in the NSF and hidden pinch points in the total [72].

04001-p.5

Powder Single crystal

A. M. HALLAS et al. PHYSICAL REVIEW B 86, 134431 (2012)

FIG. 4. (Color online) Left: Fits to experimental powder mag-
netic scattering data for the spin ice materials (a) Dy2Ti2O7,
(c) Ho2Ti2O7, (e) Ho2Ge2O7. Data points are shown as black
circles and RMC fits as red lines. The fits shown are an average
of 64 independent refinements. Error bars represent ±1σ prop-
agated from the statistical uncertainty of the raw counts. Right:
single-crystal magnetic scattering predicted from RMC configu-
rations for (b) Dy2Ti2O7, (d) Ho2Ti2O7, (f) Ho2Ge2O7. Patterns
are averaged over 64 configurations, with further averaging per-
formed over regions of 33 unit cells within each configuration
(Ref. 26). Experimental single-crystal data for Dy2Ti2O7 [from
Fennell et al. (Ref. 6)] and Ho2Ti2O7 [from Fennell et al. (Ref. 14)]
are shown as insets for comparison.

magnetic dipolar interaction4,24 and possible smaller exchange
interactions beyond nearest neighbors.25 These interactions
slightly favor certain ice-rules configurations over others, and
give rise to subtle differences between single-crystal neutron
scattering patterns for different spin ice materials. Obtaining a
single crystal of Ho2Ge2O7 in order to investigate such effects
is currently unfeasible due to the high pressure required for
synthesis. However, the RMC approach can be used to predict
the single-crystal diffuse scattering from powder data.21 By

using the collective “loop” spin flips described in Ref. 27 as the
basic RMC move, it is possible to enforce the ice rules. Thus,
the nearest-neighbor correlations are fixed and the sensitivity
of the RMC refinement to small variations in further neighbor
correlations can be maximized.

The effectiveness of this approach was first tested by fitting
powder data collected on D7 for the two canonical spin ices
Dy2Ti2O7 and Ho2Ti2O7 [Figs. 4(a) and 4(c)]. The single-
crystal scattering was then calculated from the RMC spin
configurations and compared with actual experimental data
[Figs. 4(b) and 4(d)]. The close agreement between experimen-
tal single-crystal data and the RMC predictions demonstrates
the effectiveness of the approach. The powder data for
Ho2Ge2O7 were then fitted in the same way with a good fit to
data obtained [Fig. 4(e)]. This result places a lower bound of
zero on the density of ice-rules defects present in Ho2Ge2O7 at
50 mK. The predicted single-crystal scattering for Ho2Ge2O7
[Fig. 4(f)] differs slightly from both Ho2Ti2O7 and Dy2Ti2O7,
but appears to resemble Ho2Ti2O7 more closely. The radial
spin correlation function was also calculated for all three spin
ices, showing distinguishable differences between Ho2Ge2O7
and Ho2Ti2O7 only in the third-neighbor correlations, for
which Ho2Ge2O7 is somewhat less ferromagnetic.

The pyrochlore Ho2Ge2O7 exhibits all the distinctive
properties of a dipolar spin ice: a small, positive Curie-
Weiss constant; Pauling zero-point entropy; magnetization
which saturates to half the magnetic moment; a spin-freezing
transition in the ac susceptibility; and the characteristic
magnetic diffuse scattering of spin ices. Reverse Monte Carlo
refinements using powder diffuse scattering data suggest that
the data are consistent with no violations of the ice rule
at 50 mK, although powder data alone can not exclude the
possibility that a fraction of monopoles of up to 10% remains
present. The RMC refinements also allow us to predict the
single-crystal diffuse scattering for Ho2Ge2O7, revealing the
presence of spin correlations closely resembling the dipolar
spin ice model. Thus, Ho2Ge2O7 is a “highly correlated” spin
ice, with the highest density of monopoles in the Ho series at
low temperatures, and the best natural candidate for monopole
studies involving neutron scattering.
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Neutron Polarimetry
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For a full description of the scattering processes we must perform “polarization analysis” in its true 
sense, i.e. we must measure all components of the polarization vector

Blume (Phys Rev 130, 1670, 1963, Physica B 267-268, 211, 1999)

To this point we have only been concerned with applying uniaxial polarization analysis - i.e. with 
measuring the scattered intensity associated with a scalar change of polarization along a particular axis.

This is “uniaxial (longitudinal) polarization analysis”

This is “neutron polarimetry”
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Neutron Polarimetry

45

Points to note are:

1) Pure nuclear scattering does not effect the neutron polarization 
2) The cross-terms are non zero only for non-collinear (e.g. spiral) structures 
    where M⊥

* and M⊥ are not parallel.  
3) Scattering by NM interference will only occur when the nuclear and magnetic 
    contributions occur with the same wavevector.

Where there is no NM interference and no chiral terms (which is generally true for 
paramagnets and glassy systems) the above equations reduce to the uniaxial 
equations.
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The imaginary part of M⊥ contains the 
phase information on the magnetic 
order. For non-chiral structures,
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Sample is magnetised

So we recover the form of the cross-section for magnetic diffraction - and the observation that 
there is no spin-flip scattering
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• e.g.  M⊥ and M⊥
* are parallel –  

• no nuclear scattering
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• no nuclear scattering - chiral systems
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Polarimetry - M real
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Polarimetry - M complex
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Polarimetry - NM (real/real)
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As an illustrative example, in the case of collinear antiferromagnet - aligned in the z-
direction, the polarization tensor would be

The appearance of any non-collinear magnetism would feed through into the off-
diagonal components
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The Polarization Tensor

51

The goal is to determine complex magnetic structures.  In practice this is done by measuring 
the polarization tensor P which is unambiguously defines all the terms in the Blume equations

In practice, this is what is measured in a neutron polarimetry measurement

NB The 3-directional PA method (D7) only measures the diagonal 
components of this matrix and would therefore miss this information
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CRYOPAD
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CRYOPAD has been developed by Tasset and co-workers at ILL in order to determine the vector 
polarization of the scattered beam for any predetermined direction of the vector polarization of the 
incident beam (i.e. measurement of the polarization tensor)

The field along the whole of the neutron beam is perfectly defined with the help of spin nutators, 
precession coils, Meissner screens, in order to align and analyse the polarization in any direction 
in space. 

Tasset et al, Physica B 267-8, 69, (1999)

axial guide 
field

axial guide 
field

rotation coilsrotation coils

Incident/outgoing  
θ-nutators

Outer Meissner Screen Inner Meissner Screen

ϕ -coil ϕ -coil

To analyser and 
detector

Axially polarized 
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It is anti-centrosymmetric and therefore information about 180o 
antiferromagnetic domains cannot be obtained by measuring just 
the cross section or with uniaxial polarized neutron measurements

By cooling under various conditions of electric and magnetic fields an 
imbalance in domain populations is achieved - the crystal is then 
measured in zero field

Not only are the magnetic structures for the cooling 
conditions obtained - but for the first time the zero field 
magnetic form factor of an antiferromagnet is determined

Cr2O3 is a collinear antiferromagnet with zero  
propagation vector for which the magnetic and nuclear scattering are 
phase shifted by °90

Cr2O3  Brown et al, Physica B 267-268, 215, 1999)

Other studies include inelastic scattering measurements of, for 
example, CuGeO3  (Regnault et al, Physica B 267-268, 227, 1999) and 
structural studies of complex magnetic phases e.g. Nd  



Summary



Erice, 2/7/2017

Important things to remember

• The neutron cross section and the scattered polarization of the beam 
depends on the incident polarization!

• For magnetic scattering, components parallel to the polarization 
leave the spin unflipped while components perpendicular flip the 
spin!

• Chiral scattering and nuclear-magnetic interference may be 
observed !

• Polarized neutron scattering can thus separate!

• Components of the cross section!

• Components of the magnetisation!

• All of this can be achieved using just a few polarised neutron 
components!

• Polarizer/analyser, flipper, guide fields
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