

The Neutron Resonance Spin Echo Option @ V2/FLEXX at BER II

Klaus Habicht

Helmholtz-Zentrum Berlin für Materialien und Energie

Is an NRSE option better than a dedicated instrument?

V2/FLEXX, the cold-neutron host spectrometer

Features of the NRSE option at V2/FLEXX

FLEX-upgrade project

Duc Manh Le – now STFC, ISIS, UK Markos Skoulatos – now MLZ, Germany Kirrily Rule – now ANSTO, Australia

Diana Lucía Quintero-Castro, now Univ. Stavanger, Norway Rasmus Toft-Petersen, now DTU, Denmark

Zhilun Lu, HZB, Germany Zita Hüsges, HZB, Germany Siqin Meng, HZB, Germany

Thomas Krist, HZB, Germany

<u>NRSE</u>

Felix Groitl – now at EPFL and PSI, Thomas Keller, MPI Stuttgart, Germany

Probing Material Structures: Scattering Techniques

dynamics

Neutron scattering techniques probe static or dynamic correlations

Probing Material Structures: Scattering Techniques

Neutron scattering techniques probe static or dynamic correlations

NRSE Motivation: Quasiparticle Linewidth

Dispersion relates quasiparticle energy to quasiparticle momentum Energy *width* in the dispersion encodes quasiparticle lifetime

Quasiparticle Linewidth and Lifetime

$$\Gamma = \hbar/T_D$$

The Upgraded Cold Neutron TAS FLEXX

new primary spectrometer optimized for high flux and low background and optional polarized neutron capabilities Heusler Double analyzer focusing monochromator Velocity Optional Polarizer selector collimators Elliptical Virtual ³He detector quide source gain factor 2-10 for flux at sample

M. D. Le, et al., Nucl. Inst. Meth. A 729, 220-226 (2013)

FLEXX Options

FLEXX standard TAS mode

XYZ polarization analysis

MultiFLEXX backend

Neutron Resonance Spin Echo Option

FLEXX Polarizer: S-Bender

beam cross section: 60 mm x 125 mm

400 wafers 0.15 x 125 x 120 mm³

Fe-Si multilayer with m = 3

anti-reflecting Gd-layer/Si/Gd-layer

magnetization field > 300 G

FLEXX S-Bender Transmission

FLEXX S-Bender Transmission

polarizer rocking scans k_I=2.56 Å⁻¹ (measurements by Mirrotron)

polarizer rocking scan at FLEXX k_1 =2.66 Å⁻¹ as measured with monitor at sample position

FLEXX Primary Spectrometer Guide Field

M. Skoulatos, K. Habicht, NIM A 647 100 (2011)

Guide Field Design Checks

- Calculations using Radia code from ESRF in Mathematica
- Magnetic field from Radia used to calculate beam depolarization using a depolarization formalism by Rosman and Rekveldt [1]

Guide Field Design Checks

- Calculations using Radia code from ESRF in Mathematica
- Magnetic field from Radia used to calculate beam depolarization using a depolarization formalism by Rosman and Rekveldt [1]

[1] Rosman and Rekveldt,Z. Phys. B – Cond.Mat. **79**, 61-68 (1990)

FLEXX Guide Field Realization

FLEXX Monochromator Helmholtz Coils

experimental polarization

- decreases towards larger wavelengths as expected from MC simulation
- does depend on virtual source width and monochromator curvature

FLEXX Heusler Analyzer Performance

3 rows, 15 crystals each Cu₂MnAI (111) Bragg peak 0.42° mosaic (individual crystals) fixed vertical, variable horizontal curvature vertical 0.17 T magnetization field beam cross section: 60 mm x 125 mm

horizontal focussing gain ~2.5-3

NRSE Option at V2/FLEXX

Upgrade of NRSE Option at V2/FLEXX

New bootstrap coils for the NRSE option at FLEX (in collaboration with MPI Stuttgart / FRM II)

- increase in accepted beam width
- access to steeper dispersion by larger coil tilt angles
- access to larger scattering angles for Larmor diffraction
- improved magnetic shielding in the NRSE arms

courtesy: Max Planck-Institut

für Festkörperphysik Stuttgart

F. Groitl *et al.*, Rev. Sci. Instrum. 86, 025110 (2015) Klaus Habicht, Master Class on Neutron Precession Techniques, Erice, 4th July 2017

Upgrade of NRSE Option at V2/FLEXX

NRSE Coupling Coils

F. Groitl et al., Rev. Sci. Instrum. 86, 025110 (2015)

NRSE Option at V2/FLEXX

F. Groitl et al., Rev. Sci. Instrum. 86, 025110 (2015)

Direct Beam Calibration Measurements

NRSE Science at V2/FLEXX and TRISP !

Thermoelectric SrTiO₃

SrTiO₃ phonon dispersion

experimental line broadening

beam divergence

$$P = \frac{1}{N} \int S(\mathbf{Q}, \Delta \omega) T_{TAS}(\mathbf{k}_i, \mathbf{k}_f) e^{i\phi(\mathbf{k}_i, \mathbf{k}_f)} d^3 k_i d^3 k_f + c.c.$$

- use Gaussian approximation of TAS transmission probability T_{TAS}(k_i,k_f)
- expand total Larmor phase $\phi(k_i,k_f)$ to second order
- expand energy conservation to second order
- integrate by matrix technique

at very large spin echo times instrumental resolution has to be considered

upper limit typical phonon measurements

Development of Resolution Theory

Development of *analytical resolution function for NRSE spectroscopy* Data correction: no convolution \Rightarrow divide data by calculated resolution function

K. Habicht *et al., J. Appl. Cryst.* **36**, 1307 (2003) K. Habicht *et al., Physica B* **350** E803-E806 (2004) Klaus Habicht, Master Class on Neutron Precession Techniques, Erice, 4th July 2017 ²⁹

Neutron Spin-Echo: Semi-Classical Model Thank you for your attention! VFTNSE - V_2 V₁ **V**_{phonon} lacksquare \otimes ${\bf B}_{2}=-{\bf B}_{1}$ $V_{I}\tau_{NSE}$ \mathbf{B}_1

Dispersive excitations require tilted magnetic field regions