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which would be represented by straight lines in Fig. 3. This appears qualitatively 
-I0 -If 

to be the case of ~ > 10 sec whereas the marked curvature in S(t) for t < 10 sec 

pecularity of the Cu-Mn of metallic spin glasses which is apparently a special __ type 

of the rapid reflects the influence Korringa relaxation mechanism discussed above. 
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Fig. 3 The measured time dependent spin correlation function for Cu - 5 at % Mn 
sample at various temperatures. The thick solid line corresponds to the simple ex- 
ponential decay e -Ft with F = 0.5 meV. The thin lines are guides to the eye ; the 
dashed line gives a plausible behaviour of the correlation function in the short 

time regime. 

The power of the spin echo technique lies in the measurement of relaxation type 

spectra and it is clear both from earlier measurements and the present results that 

the spin system can be best described in terms of a whole spectrum of relaxation times 
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ture and the first limit at q ¼ 3=2 is reached at"1:2Tg. The
most remarkable result, clearly demonstrated by Fig. 4, is
that the spin-glass transition temperature corresponds to
the limit q" 5=3. If Tg marks the transition to self-
similarity, as suggested by MC simulations [8] and experi-
mental findings [11], then the relaxation at Tg should
asymptotically follow the power law ðt=!Þ%y with y ¼
"ð2% qÞ=ðq% 1Þ. Using "" 0:3 and q ¼ 5=3 we obtain
an exponent y ¼ 0:15, which is very close to y" 0:13, the
value found previously for AuFe and CuMn 5% [11].

The correspondence between Tg and a mathematically
defined critical value for the extensivity parameter q,
which defines a transition to complex nonlinear dynamics,
is new and has profound repercussions. It appears that spin-
glass systems evolve from a state characterized by conven-
tional, extensive Boltzmann-Gibbs statistics at high tem-
peratures to one of extreme subextensivity at Tg. As q
increases long-range correlations become more and more
important and above q ¼ 3=2 the classical description
breaks down, necessitating the introduction of the Tsallis
q statistics. The strong disorder limit is reached at q ¼
5=3, where the complex dynamics are governed by the
power law tails of the Lévy-stable cluster size distribution
function [Eq. (6)]. Large-amplitude aperiodic fluctuations
and nonlinearity dominate this limit, which can be identi-
fied with the (spin) glass transition and with the point,
where self-similar relaxation sets in. Significantly, this

evolution appears to be universal, at least for the funda-
mentally different AuFe and CuMn spin glasses discussed
here suggesting that spin glasses are very similar to many
other complex disordered systems such as financial mar-
kets, earthquakes, turbulence, or jamming which are gov-
erned by self-similarity and the underlining Lévy-stable
distributions.
We wish to acknowledge Karina Weron for extremely

enlightening discussions. R.M. P. acknowledges financial
support from EPSRC.
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FIG. 4. The Tsallis subextensivity parameter q obtained from
the fits of Eq. (2) to NSE spectra of the AuFe and CuMn samples,
as function of reduced temperature. The values of q for the
Cu0:95Mn0:05 sample have been obtained by fitting the previously
published data of Ref. [22].
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Paramagnetic NSE also works for chiral scattering 
the case of MnSi

CP et al. PRL 2009, PRB 2011
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Measurement of Vortex Motion in the Type-II 
Nb-Ta  Superconductor 

energy change of neutrons after diffraction by a moving Flux Line Lattice : 

VOLUME 85, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 16 OCTOBER 2000

FIG. 1. (a) The phase and the amplitude of the spin echo mea-
sured at 2.2 K, 0.3 T, 12 A as functions of the Fourier time
without any corrections. The dashed lines are guides for the
eye. In the inset is shown a typical rocking curve for the diffrac-
tion signal from the FLL as the sample was rotated through the
Bragg condition, together with the background signal measured
at 10 K. These results were obtained with the sample in He
gas (0.2 T, 2.8 K, 7.5 A) to avoid any change in background
on heating to 10 K; in all other measurements with liquid he-
lium present, the background intensity was established from the
wings of a rocking curve. (b) The same data after subtraction
of the background signal.

to the critical current. Such an I-V characteristic implies
that the critical current density is very homogeneous and
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FIG. 2. The phase of the echo as a function of the Fourier time
at temperatures 2.2–2.5 K for different experimental conditions
of magnetic field and of voltage (measured between two contacts
spaced 24 mm along the long axis of the sample). The lines are
the calculated values of f if yL and E!B are equal. (To obtain
the correct calibration of the Fourier time and hence the value
of the slope of a line, one has to allow for the range of 15%
of the wavelength of the incoming neutrons [10].) Inset: The
vortex lattice velocity is shown as a function of the ratio E!B,
obtained varying the current at a fixed magnetic induction of
0.3 T, showing the equality between yL and E!B.

the vortex lattice velocity is also very homogeneous. This
was checked directly by measuring the voltage at different
places on the sample. In this case, the echo amplitude is a
constant versus Fourier time (Fig. 3a).

In the case of high Tc superconductors, it is often pro-
posed that the vortex velocities are very inhomogeneous
over short distances (a few intervortex spacings) [11]. This
should be seen directly in the amplitude of the echo, as is
the case in spin-echo measurements on liquids [7]. In order
to test the principles of such a measurement, we have modi-
fied the sample by cutting the edges in a zigzag shape. The
result (Fig. 3b) was a nonlinear I-V characteristic, typical
of a nonhomogeneous critical current [12]. In this case,
the echo amplitude decreases as a function of the Fourier
time (Fig. 3b) as expected.

If one assumes that there is a distribution of critical cur-
rents and therefore of vortex velocities in different regions
of the sample with a distribution p"yL#, the amplitude S
of the echo is

S"t# !
Ç
Z

exp"iq ? vLt#p"yL# dyL

Ç

, (5)

which is the Fourier transform of the function p"yL#. By
fitting the data in Fig. 3b with a Gaussian, and applying an
inverse Fourier transform, one may obtain an estimate of
the width of the distribution of vortex speeds which, within
errors, is independent of yL, and has a standard deviation
dyL ! 0.027 ms21. This result suggests other interesting
geometries with nonuniform flux flow to investigate, such
as the Corbino disk.

3490

Phase of the NSE group measured at 2.2 K, 0.3 T  and 20 Å 

E.M. Forgan et al.  PRL 2000
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…. and again the case of MnSi

S. Mühlbauer et al., Science 2009



A. Bauer et al. PRL 110 (2013)

existence of a TCP ? What are the implications ?

Phase diagram of MnSi
Hierarchy of energies – Bak and Jensen





Evolution of fluctuations  
Seen by with ferromagnetic NSE on IN15



RELAXATION DOES NOT CHANGE WITH FIELD !

B = 0.16 T

CP et al, PRL in print 



B = 0.24 T

RELAXATION DOES NOT CHANGE WITH FIELD !

CP et al, PRL in print 



EXCEPT  
for

B = 0.5 T

RELAXATION DOES NOT CHANGE WITH FIELD !

CP et al, PRL in print 



Fluctuations co-exist with the SKL phase

CP et al, PRL in print 
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spin-flip scattering on the 
helical Bragg peak of MnSi below Tc 
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first IMNSE measurements

emergence of magnons in Fe
B. Farago, F. Mezei, Physica B (1986)



• Magnetic scattering  

• Paramagnetic NSE 

• Ferromagnetic NSE: magnetic fields  

• Intensity modulated NSE: for samples depolarising the 

neutron beam: ferromagnets, superconductors 

• Polarimetric NSE: chirality



ferromagnetic neutron spin echo
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chiral fluctuations in MnSi above Tc



and you for your attention !
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