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S qð Þ~
ðz?

{?
djG jð Þcos jqð Þ ð10Þ

and hence

G jð Þ~
ðz?

{?
dqS qð Þcos jqð Þ ð11Þ

the normalized visibility can be put as

Vs jGIð Þ=V0 jGIð Þ~
ð?

{?
dq S qð Þcos jGIqð Þ~G jGIð Þ ð12Þ

being directly proportional to the real space correlation function.
This result means, that grating based, and in general cosine modu-

lation based (dark-field) SAS measurements36, perform a back-trans-
formation of the scattering function into real space and hence allow
direct measuring of the real space correlation function of a system.

However, the measured signal might also contain un-scattered
radiation. In order to account for that the macroscopic scattering
cross section S and the sample thickness t have to be taken into
account and with St defining the fraction of scattered radiation

Vs jGIð Þ=V0 jGIð Þ~ 1{Stð ÞzStG jGIð Þ ð13Þ

This situation and solution can be found equivalent to that of the
well-known and well described spin-echo small-angle neutron scat-
tering (SESANS)37, where the response function can be written as a
cosine dependence of the beam polarization, rather than a spatial
function, on jSEq with jSE being the auto-correlation length of such
set-ups referred to as spin-echo length37. It can be shown, as has been
shown for SESANS, that taking into account multiple scattering leads
to38

Vs jGIð Þ=V0 jGIð Þ~eSt G jGIð Þ{1ð Þ: ð14Þ

Evidently the simple multiplication with the sample thickness is only
valid for a homogeneous sample, which one might assume in a SAS
experiment but not so much for samples investigated in imaging,
where such multiplication hence has to be replaced by the common
integral along a specific path of the beam through the sample as

Vs jGIð Þ=V0 jGIð Þ~e
Ð

path
S G jGIð Þ{1ð Þdt ð15Þ

with S and G being position dependent functions.
This establishes a complete description of the dark-field signal and

its constitution, by replacing previously used so-called material
dependent constants referred to as linear diffusion coefficient26,29

and random Gaussian distributions describing scattering phe-
nomenological by well defined and established material parameters
like the macroscopic scattering cross section and the real space cor-
relation function. The latter finally provides the direct correlation of
the signal with the structural parameters of the scattering structures,
which is fundamental for every scattering method, but could not be
established before for grating based dark-field contrast. The equival-
ence of the solution with the one found for SESANS allows for
directly applying modeling and analyses tools developed and
described for this technique. In particular, the considerations and
calculations provided in Ref. 34 can be directly applied to the case
addressed here. In this reference Andersen et al. translate many of the
so-called form factors for conventional SAS, describing spheres,
cylinders, spheroids etc. for the given case and some theoretical
and model distributions are shown in order to highlight the applic-
ability for the study of anisotropic density distributions. This further
implies that such approach allows for applying grating interferom-
eters not only for imaging applications but also as a powerful tool for
conventional SAS studies especially in the ultra small angle regime
utilizing the orders of magnitude of efficiency gain previously

restricted to imaging applications only. This in turn enables multi-
scale measurements bridging Fourier space and real space methods
with low brilliance lab based x-ray and with neutron sources.

In addition, this solution for grating based dark-field measure-
ments implies that S G jGIð Þ{1ð Þ can even be reconstructed for a
tomography for every correlation length jGI probed and hence the
functionS G jGIð Þ{1ð Þ can be retrieved for any position (x,y,z) in the
sample corresponding to the spatial resolution of the set-up (voxel).
This corresponds to a 3D resolved quantitative SAS measurement in
case the tomography is performed for a sufficient number of correla-
tion length values.

Discussion
In order to demonstrate the potential of this approach an example
shall be given. Assuming a specimen of diluted hard spheres with
radius r, for which the real space correlation function, like many
others, is well known from SESANS39 being
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and which has been stressed earlier27,28,29, allows comparing the the-
ory presented here with calculations and measurements presented in
Ref. 27. For that purpose the data presented in Fig. 3a (from Fig. 4 in
Ref. 27) is extracted and sorted by sample, i.e. different radii r of
spherical SiO2 particles measured in a dispersion of H2O, and by
autocorrelation lengths used for the specific measurements like given
in Ref. 27. This data27 md9(r,jGI) is multiplied by the autocorrelation
length jGI in order to get a correspondence with the function
2r(G(jGI)-1) in the description derived here. Fig. 3a also demon-
strates, that the calculation and data presented in Ref. 27 corresponds
to 2rjG(jGI)-1j/jGI. In the presented theory the factor r is an integral
part of the macroscopic scattering cross section S for spherical part-
icles which is defined as

X
~ 3=2ð ÞwVDp2l2r: ð17Þ

Other parts of S like the scattering length density contrast Dr, wave-
length l and volume fraction wV on the other hand are not taken into
account as they have been normalized with in Ref. 27 according to
equ. d71 ibid. With these values a normalized visibility correspond-
ing between the theory here and the data extracted from Ref. 27 is
achieved with

V ’s
V0

~e{md’jGI ~e2r G jGIð Þ{1ð Þ ð8Þ

and the results of both are plotted in Fig. 2b as a function of jGI. A
very good agreement is found, which proves that the theory very well
describes the measurements. Furthermore, it is clearly visualized that
important sample characteristics can not only be quantified, but
easily be read from the data in particular for such kind of structure.
The autocorrelation value at the saturation point, i.e. where the vis-
ibility does not decrease anymore with increasing autocorrelation
length, directly provides the diameter of the hard spheres responsible
for the scattering signal. This can already be seen from the trans-
formation performed in Fig. 3a as compared to the representation in
Ref. 27. At 2r/jGI # 1, jG(jGI $ 2r)-1j51. On the other hand it is
obvious, that the visibility value of the saturation is directly related to
the macroscopic scattering cross section S of the system, i.e. to the
volume fraction of the particles and the scattering length density
contrast. That means at jGI 5 2r the visibility value stabilizes
atVs jGI§2rð Þ=V0 jGI§2rð Þ~e{St . The information content of such
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V=(Imax-Imin)/(Imax+Imin) 

Forget	about	SE	and	polarisation!

Whatever	kind	of	modulation	source!	

V=(I+-I-)/(I++I-) 
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Figure 2 X-ray imaging of a test sample consisting of a PTFE (Teflon) plastic tube and a natural rubber tube. a, Conventional X-ray transmission image (normalized to
the empty beam). b, Dark-field image of the same sample (normalized visibility, see text). c, Differential phase-contrast image. All images are shown on a linear grey scale.
d, Intensity oscillations for three detector pixels extracted from a series of eight images taken at different values of xg. Clearly visible is the loss of fringe visibility in the
detector pixel behind the natural rubber tube due to the strong small-angle scattering produced by microscopic density fluctuations (pore structure). The total exposure time
for the whole data set was 40 s.

10 mm

a b

Figure 3 Imaging of a biological specimen (chicken wing). a, Conventional transmission image. b, Dark-field image. The X-ray scattering due to the porous
microstructure of the bones and the reflection at internal or external interfaces produce a strong signal in the dark-field image. The total exposure time to obtain the whole
data set, from which the images were processed, was 40 s. Both images are shown on a linear grey scale corresponding to four times the standard deviation of the range of
pixel grey-scale values.

images were obtained from the same data set, the radiation dose
was identical in both cases.

In agreement with what was observed in the images of the tube
sample (Fig. 2), we find that also in this biological specimen the

boundaries and interfaces produce a strong signal in the dark-field
image (see Fig. 3b). Furthermore, we observe that the chicken
bones obviously consist of a highly porous and strongly scattering
microstructure, because they are clearly visible in the dark-field

136 nature materials VOL 7 FEBRUARY 2008 www.nature.com/naturematerials
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Figure 2 X-ray imaging of a test sample consisting of a PTFE (Teflon) plastic tube and a natural rubber tube. a, Conventional X-ray transmission image (normalized to
the empty beam). b, Dark-field image of the same sample (normalized visibility, see text). c, Differential phase-contrast image. All images are shown on a linear grey scale.
d, Intensity oscillations for three detector pixels extracted from a series of eight images taken at different values of xg. Clearly visible is the loss of fringe visibility in the
detector pixel behind the natural rubber tube due to the strong small-angle scattering produced by microscopic density fluctuations (pore structure). The total exposure time
for the whole data set was 40 s.
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Figure 3 Imaging of a biological specimen (chicken wing). a, Conventional transmission image. b, Dark-field image. The X-ray scattering due to the porous
microstructure of the bones and the reflection at internal or external interfaces produce a strong signal in the dark-field image. The total exposure time to obtain the whole
data set, from which the images were processed, was 40 s. Both images are shown on a linear grey scale corresponding to four times the standard deviation of the range of
pixel grey-scale values.

images were obtained from the same data set, the radiation dose
was identical in both cases.

In agreement with what was observed in the images of the tube
sample (Fig. 2), we find that also in this biological specimen the

boundaries and interfaces produce a strong signal in the dark-field
image (see Fig. 3b). Furthermore, we observe that the chicken
bones obviously consist of a highly porous and strongly scattering
microstructure, because they are clearly visible in the dark-field
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Simulation, Sine fit period=31
Measurements, Sine fit period=31

B1 =-2.56 mT, B2 =-4.44 mT

 

 

c) Lambda = 2.91 Å
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Simulation, Sine fit period=34
Measurements, Sine fit period=34

−48 −16 15 47 78 110 141
 

 

j) Lambda = 4.00 Å
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Figure 4: Comparison between experimental and simulation results
for selected wavelengths in fig. 2 and 3. The data has been fitted
with sine curves, and as shown, the experimental period is reproduced
well by simulation. The experimental amplitudes are matched in sim-
ulations by using an initial polarisation of 80% as an approximatiion
to the non-perfect initial polarisation as well as depolarising e↵ects
caused by non-perfect fields and alignments in the experiment.
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Figure 5: Simulation with a x-position sensitive ToF monitor at the
’focus’ position. Left is when the spin-echo condition is met and right
is o↵ echo. Top is wavelength vs x-position at the detector and the
intensity is polarisation. Bottom is polarisation vs x-axis for selected
wavelengths. It can be seen that an asymmetry is introduced when
the spin-echo condition is not met (e.g. by adjusting the position of
the spin-flipper composed of the middle V-coil pair). Colour version
online.

sample. All these figures exhibit an asymmetry of the
beam profile where the modulation amplitude is drop-
ping from one side of the beam to the other. Fig. 5
shows simulated outputs of an x-position and ToF sensi-
tive detector in and out of echo. It is evident that a more
easily analysable modulation is obtained when the spin-
echo condition is met, and the simulation results suggest
that the spin-echo not being met is the reason for the
asymmetry found in [8, fig. 2-3]. The only di↵erence
between the two simulations in fig. 5 is the position of
the flipper (middle V-coils pair).

4. Conclusion

Our experiments backed up by simulations show that
the theoretically expected spatial modulation is present
when triangular field coils are used. The results sup-
port the usability of SEMSANS – a technique that is
uniquely useful for measurements of magnetic struc-
tures up to µm range with or without depolarising sam-
ple environment. The combination of real and virtual
investigations of a SEMSANS instrument has allowed
us to gain insightful knowledge on the modulation pat-
terns dependency of the field settings. Specifically the
importance of tuning the set-up to keep the signal in
the spin-echo condition has been shown as an important
factor in avoiding asymmetries and less than optimal
modulation amplitudes in obtained signal. The devel-
opment of Monte Carlo ray-tracing simulation counter-
parts to real instruments could help deconvoluting the
instrument signal from the one created by an investi-
gated sample. It has also been shown that SEMSANS
experiments can be performed by using gratings and
a ToF detector without the need for a more complex
and expensive position sensitive time resolved detector,
though there is a loss of intensity in the grating.

5. Outlook

In future SEMSANS experiments it will be important
to know the influences of being out of echo, for example
in cases where a wavelength independent static mod-
ulation pattern can be obtained, through neutron pulse
synched ramping of triangular coils, only if an extra
precession field field is ramped accordingly to bring the
system back in echo. Such a set-up could be used in e.g
spatially resolved SEMSANS or energy resolved dark
field imaging Reference?, and could be modelled in
simulation by expanding on the investigation presented
here.
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<<ζ =	π tanθ0/(cλ(B2-B1))

SEMSANS DFI Imaging Resolution 
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Slit
1.0

m
m

w
ide

Simulation, Sine fit period=34
Measurements, Sine fit period=34

Figure 4: Comparison between experimental and simulation results
for selected wavelengths in fig. 2 and 3. The data has been fitted
with sine curves, and as shown, the experimental period is reproduced
well by simulation. The experimental amplitudes are matched in sim-
ulations by using an initial polarisation of 80% as an approximatiion
to the non-perfect initial polarisation as well as depolarising e↵ects
caused by non-perfect fields and alignments in the experiment.
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Figure 5: Simulation with a x-position sensitive ToF monitor at the
’focus’ position. Left is when the spin-echo condition is met and right
is o↵ echo. Top is wavelength vs x-position at the detector and the
intensity is polarisation. Bottom is polarisation vs x-axis for selected
wavelengths. It can be seen that an asymmetry is introduced when
the spin-echo condition is not met (e.g. by adjusting the position of
the spin-flipper composed of the middle V-coil pair). Colour version
online.

sample. All these figures exhibit an asymmetry of the
beam profile where the modulation amplitude is drop-
ping from one side of the beam to the other. Fig. 5
shows simulated outputs of an x-position and ToF sensi-
tive detector in and out of echo. It is evident that a more
easily analysable modulation is obtained when the spin-
echo condition is met, and the simulation results suggest
that the spin-echo not being met is the reason for the
asymmetry found in [8, fig. 2-3]. The only di↵erence
between the two simulations in fig. 5 is the position of
the flipper (middle V-coils pair).

4. Conclusion

Our experiments backed up by simulations show that
the theoretically expected spatial modulation is present
when triangular field coils are used. The results sup-
port the usability of SEMSANS – a technique that is
uniquely useful for measurements of magnetic struc-
tures up to µm range with or without depolarising sam-
ple environment. The combination of real and virtual
investigations of a SEMSANS instrument has allowed
us to gain insightful knowledge on the modulation pat-
terns dependency of the field settings. Specifically the
importance of tuning the set-up to keep the signal in
the spin-echo condition has been shown as an important
factor in avoiding asymmetries and less than optimal
modulation amplitudes in obtained signal. The devel-
opment of Monte Carlo ray-tracing simulation counter-
parts to real instruments could help deconvoluting the
instrument signal from the one created by an investi-
gated sample. It has also been shown that SEMSANS
experiments can be performed by using gratings and
a ToF detector without the need for a more complex
and expensive position sensitive time resolved detector,
though there is a loss of intensity in the grating.

5. Outlook

In future SEMSANS experiments it will be important
to know the influences of being out of echo, for example
in cases where a wavelength independent static mod-
ulation pattern can be obtained, through neutron pulse
synched ramping of triangular coils, only if an extra
precession field field is ramped accordingly to bring the
system back in echo. Such a set-up could be used in e.g
spatially resolved SEMSANS or energy resolved dark
field imaging Reference?, and could be modelled in
simulation by expanding on the investigation presented
here.

4

<<ζ =	π tanθ0/(cλ(B2-B1))

V=(I+-I-)/(I++I-) 
can in principle be extracted 
for (nearly)every pixel, but
meaningful only over at least
one period!
Resolution dependent on relevant
width of scattering function!

Distinguish spatial resolution
wrt scattering signal and 
attenuation!

SEMSANS DFI Imaging Resolution 

Visibility	is	a	characteristic	of	a	modulated	function		(here	in	space)

V=(Imax-Imin)/(Imax+Imin) 
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Q		

𝛿SE

Hence	any	smaller	definition	of	the	spatial	resolution	of	scattering	not	useful	

à

S qð Þ~
ðz?

{?
djG jð Þcos jqð Þ ð10Þ

and hence

G jð Þ~
ðz?

{?
dqS qð Þcos jqð Þ ð11Þ

the normalized visibility can be put as

Vs jGIð Þ=V0 jGIð Þ~
ð?

{?
dq S qð Þcos jGIqð Þ~G jGIð Þ ð12Þ

being directly proportional to the real space correlation function.
This result means, that grating based, and in general cosine modu-

lation based (dark-field) SAS measurements36, perform a back-trans-
formation of the scattering function into real space and hence allow
direct measuring of the real space correlation function of a system.

However, the measured signal might also contain un-scattered
radiation. In order to account for that the macroscopic scattering
cross section S and the sample thickness t have to be taken into
account and with St defining the fraction of scattered radiation

Vs jGIð Þ=V0 jGIð Þ~ 1{Stð ÞzStG jGIð Þ ð13Þ

This situation and solution can be found equivalent to that of the
well-known and well described spin-echo small-angle neutron scat-
tering (SESANS)37, where the response function can be written as a
cosine dependence of the beam polarization, rather than a spatial
function, on jSEq with jSE being the auto-correlation length of such
set-ups referred to as spin-echo length37. It can be shown, as has been
shown for SESANS, that taking into account multiple scattering leads
to38

Vs jGIð Þ=V0 jGIð Þ~eSt G jGIð Þ{1ð Þ: ð14Þ

Evidently the simple multiplication with the sample thickness is only
valid for a homogeneous sample, which one might assume in a SAS
experiment but not so much for samples investigated in imaging,
where such multiplication hence has to be replaced by the common
integral along a specific path of the beam through the sample as

Vs jGIð Þ=V0 jGIð Þ~e
Ð

path
S G jGIð Þ{1ð Þdt ð15Þ

with S and G being position dependent functions.
This establishes a complete description of the dark-field signal and

its constitution, by replacing previously used so-called material
dependent constants referred to as linear diffusion coefficient26,29

and random Gaussian distributions describing scattering phe-
nomenological by well defined and established material parameters
like the macroscopic scattering cross section and the real space cor-
relation function. The latter finally provides the direct correlation of
the signal with the structural parameters of the scattering structures,
which is fundamental for every scattering method, but could not be
established before for grating based dark-field contrast. The equival-
ence of the solution with the one found for SESANS allows for
directly applying modeling and analyses tools developed and
described for this technique. In particular, the considerations and
calculations provided in Ref. 34 can be directly applied to the case
addressed here. In this reference Andersen et al. translate many of the
so-called form factors for conventional SAS, describing spheres,
cylinders, spheroids etc. for the given case and some theoretical
and model distributions are shown in order to highlight the applic-
ability for the study of anisotropic density distributions. This further
implies that such approach allows for applying grating interferom-
eters not only for imaging applications but also as a powerful tool for
conventional SAS studies especially in the ultra small angle regime
utilizing the orders of magnitude of efficiency gain previously

restricted to imaging applications only. This in turn enables multi-
scale measurements bridging Fourier space and real space methods
with low brilliance lab based x-ray and with neutron sources.

In addition, this solution for grating based dark-field measure-
ments implies that S G jGIð Þ{1ð Þ can even be reconstructed for a
tomography for every correlation length jGI probed and hence the
functionS G jGIð Þ{1ð Þ can be retrieved for any position (x,y,z) in the
sample corresponding to the spatial resolution of the set-up (voxel).
This corresponds to a 3D resolved quantitative SAS measurement in
case the tomography is performed for a sufficient number of correla-
tion length values.

Discussion
In order to demonstrate the potential of this approach an example
shall be given. Assuming a specimen of diluted hard spheres with
radius r, for which the real space correlation function, like many
others, is well known from SESANS39 being

G fð Þ~G j=rð Þ~ 1{
f

2

# $2
" #1=2

1z
1
8

f2
# $

z
1
2

f2 1{
f

4

# $2
" #

ln
f

2z 4{f2% &1=2

" # ð16Þ

and which has been stressed earlier27,28,29, allows comparing the the-
ory presented here with calculations and measurements presented in
Ref. 27. For that purpose the data presented in Fig. 3a (from Fig. 4 in
Ref. 27) is extracted and sorted by sample, i.e. different radii r of
spherical SiO2 particles measured in a dispersion of H2O, and by
autocorrelation lengths used for the specific measurements like given
in Ref. 27. This data27 md9(r,jGI) is multiplied by the autocorrelation
length jGI in order to get a correspondence with the function
2r(G(jGI)-1) in the description derived here. Fig. 3a also demon-
strates, that the calculation and data presented in Ref. 27 corresponds
to 2rjG(jGI)-1j/jGI. In the presented theory the factor r is an integral
part of the macroscopic scattering cross section S for spherical part-
icles which is defined as

X
~ 3=2ð ÞwVDp2l2r: ð17Þ

Other parts of S like the scattering length density contrast Dr, wave-
length l and volume fraction wV on the other hand are not taken into
account as they have been normalized with in Ref. 27 according to
equ. d71 ibid. With these values a normalized visibility correspond-
ing between the theory here and the data extracted from Ref. 27 is
achieved with

V ’s
V0

~e{md’jGI ~e2r G jGIð Þ{1ð Þ ð8Þ

and the results of both are plotted in Fig. 2b as a function of jGI. A
very good agreement is found, which proves that the theory very well
describes the measurements. Furthermore, it is clearly visualized that
important sample characteristics can not only be quantified, but
easily be read from the data in particular for such kind of structure.
The autocorrelation value at the saturation point, i.e. where the vis-
ibility does not decrease anymore with increasing autocorrelation
length, directly provides the diameter of the hard spheres responsible
for the scattering signal. This can already be seen from the trans-
formation performed in Fig. 3a as compared to the representation in
Ref. 27. At 2r/jGI # 1, jG(jGI $ 2r)-1j51. On the other hand it is
obvious, that the visibility value of the saturation is directly related to
the macroscopic scattering cross section S of the system, i.e. to the
volume fraction of the particles and the scattering length density
contrast. That means at jGI 5 2r the visibility value stabilizes
atVs jGI§2rð Þ=V0 jGI§2rð Þ~e{St . The information content of such
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Open for discussion

• Dark-field	contrast	a	
correct	term	for	this?

• Coherence	and	
scattering	resolution	
in	this	case

(and	USANS)
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