

Longitudinal Neutron Resonance Spin Echo (and MIEZE)

Christian Franz Technische Universität München

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Part I: Instrumentation

Neutron Spin-Echo Techniques

(longitudinal) Resonant Flipper

Resonant Flip: One Coil

Resonant Flip: Two Coils

1st coil

Flight path L, v

 $\varphi_{HF2} = \omega \frac{L}{M} + \varphi_{HF1}$

2nd coil

 $\varphi_{res} = 2 \varphi_{HF_2} + \omega t - (2 \varphi_{HF_1} + \omega t - \varphi_0)$ $= 2 (\varphi_{HF_2} - \varphi_{HF_1}) - \varphi_0$

 $\Delta \varphi$

$$\Delta \varphi = 2\left(\omega \cdot \frac{L}{v} + \varphi_{HF_{1}} - \varphi_{HF_{1}}\right) = 2\omega \cdot \frac{L}{v} = \begin{bmatrix} 2\frac{\gamma B_{0}L}{v} \end{bmatrix} = 2x \text{ NSE}$$

Semi-classical description

Limitations of conventional NSE

Limitations of transversal NRSE

B₀ field not symmetric to n beam sensitive to surface of B₀ coil

(Maximum Spin Echo Time few ns)

Golub & Gähler., Phys. Lett. A 123, 43 (1987)

Limitations of conventional NSE

Advantages of longitudinal NRSE

Parallel beam: **No corrections** $J(r) = B_0 L(0)$ necessary! Divergent beam: L_{coil} Fresnel correction reduced by

Häußler et al., Chem. Phys. 292, 501 (2003)

Towards High Spin-Echo Times

Towards High Spin-Echo Times

Towards Low Spin Echo Times

Remember the minus in front of the initial phase in the classical picture?

Krautloher, Rev. Sci. Inst. 87, 125110 (2016)

Extreme Dynamic Range – Long SE times – Large Fields

Kindervater et al., to be published

Longitudinal vs. transversal

Transverse field geometry

++

- Larmor diffraction
- Phonon focussing see T. Keller

• Field inhomogenities

• Beam divergence

Longitudinal field geometry

++

- Self-correction for nondivergent beams
- Fresnel, Pythagoras coils
- Large dynamic range

- no Larmor diffraction
- no inelastic focussing

Häußler, Schmidt, Chem. Phys., 2005, 7, 1245-1249

Longitudinal Modulation of Intensity with Zero Effort

Longitudinal Modulation of Intensity with Zero Effort

MIEZE Geometry Reduction Factor

Brandl et al. NIMA 654 394 (2011)

Technical Requirements: "Flat" Detector

Haussler, Rev. Sci. Instr. **82** (2011) Köhli et al. NIMA **828** 242–249 (2016) ^{10}B + n \rightarrow ^{7}Li + α

20x20cm, 128x128px

NRSE vs MIEZE

Neutron Resonance Spin Echo

- Similar to conventional NSE (smaller detector area)
- Very high resolution possible
- High momentum transfers possible
- × No external magnetic field
- Magnetic samples difficult (see K.Pappas)
- Strong incoherent scatterer reduce polarisation (deuteration)

Modulation of Intensity by zero effort

- Similar to high-resolution TOF (or SANS with energy resolution)
- Magnetic field possible (17T unshielded proven)
- Ferromagnetic samples possible (see data on Iron)
- Ideal for incoherent scattering (see data on Clays)
- Reduced resolution (0.5 at Reseda)
- Momentum transfer limited by sample geometry (and size)

Part II: Recent Science

What can you do with it?

MIEZE: Inelastic measurements on FM Iron

MIEZE: Ho₂Ti₂O₇, potential standard sample

MIEZE: Quantum phase transition in the ferromagnetic superconductor UGe₂

L-NRSE: PEP in d-decane

See talk C. Pappas Ferromagnetic Spin Echo

P. Rêsibois and C. Piette, Phys. Rev. Lett. 24, 514 (1970) E. Frey and F. Schwabl, Physics Letters A, 49 (1987) Kindervater et al. PRB, 95, 014429 (2017)

10⁻¹

100

150

10⁻¹

100

150

Elastic background to to reflections on Cadmium...

Background removed!

Lower Spin-Echo times in L-MIEZE possible – additional shoulder!

Conclusion

Compared to conventional Neutron Spin Echo, L-NRSE has ...

- (potentially) a higher resolution
- Shifted the technical challenge from magnetic fields to high frequency
- higher dynamic range (nominally 6 orders of magnitude!)
- a smaller detector area, can possibly be overcome by MIEZE-II with reduced resolution

• the MIEZE option for free