

The neutron spin echo spectrometer J–NSE

July 2017 | <u>Olaf Holderer</u>

Examples of slow dynamics

a)

A. Stadler et al., JACS (2015)

S. Jaksch et al., Scientific Reports (2017)

https://de.wikipedia.org/wiki/Antikörper Julian Voss-Andreae Angel of the West, 2008 Height 12' (3.70 m) Stainless steel Location: The Scripps Research Institute Florida

Immunoglobuline and NSE: \rightarrow L. Stingaciu et al., Scientific Reports (2016)

L. Hong et al., Biophysical Journal 2014 https://doi.org/10.1016/j.bpj.2014.06.013

S. Bucciarelli et al., Science Advances (2016)

Examples of slow dynamics

Volume 10 Number 36 28 September 2014 Pages 6859-7134

L. Willner, et al., Soft Matter (2010)

"Bulk Contrast"

Kerscher M. et al., Phys. Rev. E (2011)

S. Maccarrone et al., Macromolecules (2016)

Bending elastic properties of a block copolymerrich lamellar phase doped by a surfactant: a neutron spin-echo study[†]

H. Egger,‡^a G. H. Findenegg,*^a O. Holderer,^b R. Biehl,^c M. Monkenbusch^c and T. Hellweg*^d

Juli 3, 2017

Jülich Centre for Neutron Science (JCNS)

Folie 3

Time- and lengthscales

http://europeanspallationsource.se/feature-series-ess-instrument-suite

Instrument State of the Art

- High stability
- Low background
- Large dynamic range (more than 4 decades)

h-PI-d-PDMS cylindrical micelles 1.0 0.8 0.6 I(Q,t)/I(Q) 0.4 0.8 0.2 0 0.0 0.08 0.10 0.12 0.14 0.16 0.18 -0.2 -10-2 10⁰ 10¹ 10^{2} 10⁻¹ time [ns] Willner L. et al. Soft Matter (2010) Juli 3, 2017

Neutron Guide System schematically

J-NSE: Polarization

Figure of merit Old config: J-NSE has been rotated by 4° for λ>8Å → single reflection at second polarizer

Figure of merit 20000 init • • init 4 deg 15000 new pol, pol guide new pol, unpol guide > × 10000 5000 10 20 25 15 $\lambda/
{A}$

New:

Same instrument setting for all λ .

- → Easier handling
- → Slightly better FOM around main wavelengt (λ =8Å)

J-NSE upgrade 2017 \rightarrow S. Pasini

Optimized field shape coils

Meas. Sci. Technol. 26 (2015) 035501

S Pasini and M Monkenbusch

Jülich Centre for Neutron Science (JCNS)

Correction Coils

J-NSE science example: The "hidden" interface dynamics

- Solid liquid interface
- Difficult to access: Advantage of neutrons
- Structure GISANS
- Dynamics? Modified by rigid boundary condition?
- \rightarrow intensity issue

Scattering geometry

Structure: GISANS

Count rate direct geometry

Very low background due to new PE-shielding of TofTofneutron guide. Count rate: 3-8 cps Background: 3 cps

Q=0.08 A^-1

Leads to reasonable echos (acquisition time 395 sec./point²⁰⁰ Displayed sum of middle ¹/₄ area of detector (show3-command))

Near interface dynamics

 \rightarrow Modified dispersion relation at the interface (Seifert) \rightarrow Long wavelength undulations modified:

Bulk: $\omega(k) \sim k^3$ Interface: $\omega(k) \sim k^2$

Frielinghaus H. et al., Phys. Rev. E (2012)

GINSES at a spallation source: **SNS-NSE**

- \rightarrow Varying incident angle
- •Intensity weaker scattering samples

Prism corrected GINSES

 Continuous source: change wavelength setting without readjustment of sample (ease of operation/reliability)

Intensity?

Towards other samples than strongly scattering microemulsions...

e.g. polymers at interfaces

Gawlitza K., et al, Macromolecules (2015)

Phospholipid membranes

Jaksch S., et al, Phys. Rev. E (2015)

Jülich Centre for Neutron Science (JCNS)

GINSES with a Resonator

Waves at interfaces

Lamellar structure at interfaces

SoyPC

Summary/Outlook

- J-NSE: The past and the future
- Access to interface dynamics
- Polymers/Gels/Membranes
- Intensity 1 : Good (cold) source
- Intensity 2 : advanced neutron optics
 + Prism
 - + Resonator

