

Polarised Neutron Capabilities at ANSTO

Wai Tung Hal Lee Australian Centre of Neutron Scattering

ANSTO – OPAL Reactor

Present

- 20 MW research reactor
- 14 operating instruments
 - 5 Diffractometers
 - 3 Inelastic scattering instruments
 - 1 Backscattering spectrometer
 - 2 SANS
 - 1 Reflectometer
 - 1 USANS
 - 1 Imagining

Happening

- Polarised neutrons on 7 instruments
 - 2 Diffractometers
 - 3 Inelastic scattering instruments
 - SANS & reflectometer
- 1 new reflectometer + Larmor

Before the expansion of polarised neutron capability, only the reflectometer uses polarised neutrons.

> PLATYPUS Reflectometry Supermirror Polariser & Analyser

Comparison of neutron polarisation techniques (2008)

	³ He	Heusler	Supermirror (transmission)
Wavelength / Energy range and bandwidth	Epithermal to very cold. Works with monochromation or TOF. Wide bandwidth. Lower transmission for cold neutrons. Can tune to appropriate wavelength/energy.	5 meV (4 Å) - 105 meV (0.9 Å). Monochromation technique. Narrow bandwidth. Energy range & resolution ~ PG 002.	 2.3 Å (15 meV) to cold. Work with monochromation or TOF. Wide bandwidth. Lower transmission for cold neutrons.
Spin-selection	Integrated ³ He spin-flipper	Separate neutron spin-flipper	Separate neutron spin-flipper
Flipping ratio	High flipping-ratio (comparable Figure of Merit with Heusler), varies over slightly a broad energy band	High flipping ratio (comparable Figure of Merit with ³ He), constant over a broad energy band	High flipping ratio for cold neutrons. Constant over a broad band Low flipping ratio for thermal neutrons.
Transmission / Reflectivity of unpolarised beam	Up to 0. 3, wavelength dependent	Up to 0.3, wavelength dependent	Up to 0.4, mild dependence on wavelength over working range.
Divergence, Angular span, Focusing beam	Accepts high divergence. Covers wide angular span. Works with focusing beam.	Accepts high divergence. Divergence limited by crystal mosaic Focusing	Limited divergence.
Beam direction	Does not change beam direction	Change beam direction	Does not change beam direction
Cross-section	Polarisation uniform across large beam	Polarisation and transmission may vary	Polarisation and transmission may vary
Sensitivity to interference	To magnetic field gradients. Magnetic shielding needed.	No sensitive	Not sensitive
Preparation and Operation	In-situ SEOP: >10 h setup and polarising. MEOP, off-situ SEOP: 1-3 h or >10 h to set up and polarise. 15 min every 12-24 h to exchange gas and check polarisations. >100 hour relaxation of polarisation	Can changed to polarised in automated way. Setup once, calibrate occasionally	Can changed to polarised in automated way. Setup once, realign occasionally
Maintenance	Filling station maintenance	Zero maintenance.	Zero maintenance.

Supermirror

Heusler alloy

Polarised ³He

Polarised ³He Neutron Spin Filters has been introduced to expand the use of polarised neutrons.

Prior to the polarised 3He project, ANSTO has polarising supermirrors for specular reflectivity measurements on PLATYPUS and installed polarising supermirror on QUOKKA SANS as polariser. To expand the use of polarised neutrons in scattering works, ANSTO has acquired from the Institute Laue-Langevin:

- MEOP ³He polarising station
- Silicon-windowed spin filter cell + "magic box" Wide-angle analyser cell + "Pastis" coils
 "Local filling" setup + Transporter

With the acquisition, ANSTO has built the infrastructure

- Integration to 6 instruments (now 7) TAIPAN thermal triple-axis spectrometer PELICAN chopper spectrometer SIKA cold triple-axis spectrometer WOMBAT high-intensity diffractometer ECHIDNA high-resolution diffractometer QUOKKA SANS instrument PLATYPUS reflectometer
- ³He lab for polarising station operation

Wai Tung Hal Lee WTL@ansto.gov.au

Polarised ³He Neutron Spin Filters has been introduced to expand the use of polarised neutrons.

Prior to the polarised 3He project, ANSTO has polarising supermirrors for specular reflectivity measurements on PLATYPUS and installed polarising supermirror on QUOKKA SANS as polariser. To expand the use of polarised neutrons in scattering works, ANSTO has acquired from the Institute Laue-Langevin:

- MEOP ³He polarising station
- 500mm 3-section Magic Box, 300mm "Super Box" Modified "Tetra-coil" for vertical field Magnetube 2.0 (to be tested)

With the acquisition, ANSTO has built the infrastructure

- Integration to 6 instruments (now 7) TAIPAN thermal triple-axis spectrometer PELICAN chopper spectrometer SIKA cold triple-axis spectrometer WOMBAT high-intensity diffractometer ECHIDNA high-resolution diffractometer QUOKKA SANS instrument PLATYPUS reflectometer
- ³He lab for polarising station operation

Wai Tung Hal Lee WTL@ansto.gov.au

The ³He polariser is completely operational and all its circuits are functioning perfectly.

> 70% ³He Polarisation in neutron spin-filter cell at instrument

Wai Tung Hal Lee WTL@ansto.gov.au

3 in user program now 4 more in 2016/2017

WOMBAT Diffraction, high-intensity ³He Polariser & Analyser

TEKE

PELICAN Inelastic scattering Time-of-flight Supermirror Polariser & ³He Analyser

³He polarising station Polarised ³He isotope gas for instrucments

PLATYPUS

Reflectometry Supermirror Polariser & Analyser Large-Coverage ³He Analyser

ECHIDNA Diffraction, highresolution ³He Polariser & Analyser

QUOKKA

Small Angle Neutron Scattering Supermirror Polariser + ³He Analyser

3 in user program now 4 more in 2016/2017

DINGO

Imaging ³He Polariser & Analyser Need monochromatic/TOF beam

SIKA Inelastic scattering Cold neutron ³He Polariser & Analyser

TAIPAN

Inelastic scattering Thermal neutron ³He Polariser & Analyser

New instrument – collaboration with HZB

Wai Tung Hal Lee WTL@ansto.gov.au

Milestones Achieved: Transfer from HZB

Started in Hamburg with stops in:

- Rotterdam,
- Le Harve,
- Fos-Sur-Mer,
- Genova,
- Reunion Island,
- Fremantle,
- Melbourne...

...and finally Port Botany. 45 days at sea covering approximately a distance of 26,254 km.

Wai Tung Hal Lee WTL@ansto.gov.au

Italy, 1-8 July 2017

Spatz instrument Layout This will likely be the first to use Larmor technique at ANSTO

Capabilities for structural characterization at OPAL

Wai Tung Hal Lee WTL@ansto.gov.au

Capabilities for Dynamics and Excitations at OPAL

Wai Tung Hal Lee WTL@ansto.gov.au

Highlights of polarised neutron scattering experiments at ANSTO

TAIPAN measurements definitively identified the chiral magnetic structure. J. Bertinshaw, et. Al., Nature Communications 7, 12664 (2016)

Spin wave

Phonon

TAIPAN measurements showing the separation of phonon and spin wave.

Wai Tung Hal Lee WTL@ansto.gov.au

Current usage of polarised ³He for neutron polarisation analysis

- Neutron tests began in 2014.
- First user experiment in 2015, available on
 - PLATYPUS (reflectometer)
 - TAIPAN (triple-axis)
 - WOMBAT (diffractometer)
- First scientific publication in 2016.
- User demand increasing. Conducted 14 user experiments in the past 18 months.
- On-going collaboration with J-Parc on exploring new techniques and on scientific experiments.

Important lessons from upgrading existing instruments

- Good: Instruments reserve space and avoided using magnetic materials where they may interfere with the polarised neutron setup
 Do it even if it would mean more expensive for the instrument. Any complacency can eliminate the upgrade possibility all together.
- Bad: Modelling and planning of new components are usually insufficient.
 Space needed for new components can either be in the wrong place or used for something else, resulting in costly and time-consuming remaking of existing instrument components.
 Upgrades should be modelled at the same time of new instrument design as if they are being built.
- Often overlooked (we didn't...):
 - Interconnection of different components.
 - Magnetic field from one component both connect but also interfere with the functionality of another component.
 - Real component is often different from first-principle calculation.
 Infinitely thin wire with harmonic expansion correction is nice for a first-cut calculation. But don't build the real thing on that result.
 - MUST DO:
 - Finite element calculation using the most realistic geometry

Evaluate spin-transport / field interference from the FE calculation to identify troubles Monte Carlo ray-tracing simulation using field profiles generated from FE calculation

Measurement methodology and polarisation correction of data

Wai Tung Hal Lee WTL@ansto.gov.au

Measurement methodology and polarisation correction of data

$$\begin{pmatrix} I++\\ I+-\\ I+-\\ I-+\\ I-- \end{pmatrix} = \begin{pmatrix} \frac{1+A_{+}}{2} & \frac{1-A_{+}}{2} & 0 & 0\\ \frac{1-A_{-}}{2} & \frac{1+A_{-}}{2} & 0 & 0\\ 0 & 0 & \frac{1+A_{+}}{2} & \frac{1-A_{+}}{2}\\ 0 & 0 & \frac{1-A_{-}}{2} & \frac{1+A_{-}}{2} \end{pmatrix}$$

A+ = Analyser spin+ analysis efficiency A- = Analyser spin- analysis efficiency 1=perfect, 0=unpolarised $\begin{pmatrix} \frac{1+P_{+}}{2} & 0 & \frac{1-P_{+}}{2} & 0 \\ 0 & \frac{1+P_{+}}{2} & 0 & \frac{1-P_{+}}{2} \\ \frac{1-P_{-}}{2} & 0 & \frac{1+P_{-}}{2} & 0 \\ 0 & \frac{1-P_{-}}{2} & 0 & \frac{1+P_{-}}{2} \end{pmatrix} \qquad \begin{pmatrix} S++\\ S+-\\ S--\\ S-+\\ S-- \end{pmatrix}$

P+ = incident spin+ neutron degree of polarisation P- = incident spin- neutron degree of polarisation 1=perfect, 0=unpolarised

Measurement methodology and polarisation correction of data

To get P and A:

- Periodically measure either direct beam transmission or chemical peak with only the polariser / only the analyser in the beam, e.g. Analyser only spin+ count-rate=T_N
- 2. Just before changing a cell, depolarise the cell and measure the same transmission or chemical peak, e.g. Depolarised, analyser only count-rate= T_0

Analyser efficiency A+ =
$$\sqrt{1 - \frac{T_0^2}{T_N^2}}$$
 = $\tanh\left(O P_{He}(t_0) \exp\left(-\frac{t - t_0}{T_1}\right)\right)$

Polarisation correction is still possible if you cannot measure P & A independently but it rely on assumption that P and A are highly polarised and also depends on the sample scattering characteristics, such as S+- = S-+.

Wai Tung Hal Lee WTL@ansto.gov.au

SEOP Polarised ³He Filling Station for MRI

- We have constructed a Spin-Exchange Optical Pumping based Helium-3 and Xenon-129 polarising station for medical imaging uses at the Monash Medical Imaging Centre. Commissioning tests are underway.
- GE180 cell, Titanium gas transfer piston, compensated solenoid, Volume-Bragg-grating laser bandwidth narrowing, 240W laser each from both sides of optical pumping cell, ³He gas recycling.
- Key components can be adopted for neutron scattering works.
- We are putting together EPR frequency shift device to measure the gas polarisation.

Gansto MONASH University

Murdoch Childrens Research Institute Healthier Kids. Healthier Future.

Wai Tung Hal Lee WTL@ansto.gov.au

Summary: Polarised neutrons at ANSTO

TAIPAN Triple-axis spectrometer

WOMBAT High-intensity diffractometer

PLATYPUS Polarised specular and off-specular scattering

Available for users

Full polarisation analysis with

- 1. 3-dimensional guide field and cryostat (RT to 4K)
- 2. mirror furnace (RT to 500° C)
- 1. Full polarisation analysis with 3-dimensional field & RT to 4K.
- 2. Incident polarised beam with up to 2.5 T vertical field & RT to 3K.

Full polarisation analysis with up to 2 T vertical field & RT to 3K.

Available in 2017

Polarised inelastic scattering on 2 instruments: PELICAN (friendly user), SIKA (installation)

Polarised neutron diffraction: ECHIDNA (testing)

Polarised SANS for magnetic nanoparticles & organic materials: QUOKKA (friendly user soon)

Future – 2018 and beyond

BioRef -> SPATZ: Polarised option later in 2018, Larmor setup in 2018/2019

Second guide hall: Larmor setup using resonance coils? Collaboration to build conventional NSE?

We will continue to innovate!

Ginsto