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Career Path Step 1 - Helmholtz Zentrum Berlin




Career Path Step 1 - Helmholtz Zentrum Berlin

1993 - 1996

PhD in neutron scattering

(mostly powder diffraction)

G. Ehlers et al., PRB 63 224407 (2001)
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Career Path Step 2 - Institut Laue-Langevin




Career Path Step 2 - Institut Laue-Langevin
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1997 - 2003

Instrument Scientist at a
Spin Echo Spectrometer
(IN11 & IN15)
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Career Path Step 3 — Oak Ridge National Lab




Career Path Step 3 — Oak Ridge National Lab

2003 - present Instrument Scientist at a
Time-Of-Flight Spectrometer
Built and Operate CNCS at ORNL
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P.Das et al., PRL 113 246403 (2014)
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NSE as a FOURIER technique

In the scattering process the neutron exchanges momentum and
energy with the sample. These are picked up as changes in
direction and speed. The strong property of neutron scattering is
that these two quantities are measured simultaneously (as
opposed to, for example, local probes).

In order to measure a change, conventional wisdom dictates that
these quantities need to be established independently before
and after scattering (we want to calculate a difference). The finer
the difference desired, the less intensity one is left with.
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NSE as a FOURIER technique

The basic idea of spin echo is to use the neutron spin to
intrinsically encode direction or speed on both sides of the
sample. The difference then can be determined, on average for
the beam ensemble, without knowing the actual numbers for a
neutron individually.

This can be done for the energy (speed) and momentum
(direction).

In my talk | will essentially only consider the former case, but
both cases will be dealt with by others.
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NSE as a FOURIER technique

The benefit is that the reciprocal correlation between resolution
and intensity is broken. One can have high intensity and high
resolution at the same time.

The drawback is that polarized beam is required, which costs
intensity in itself and adds complexity.

We will spend one week here of discussing the ins and outs of all
this.
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The Place of NSE in the neutron scattering landscape

Things to note:

Energy resolution can be pushed to <1 neV but doesn’t have
to be (can be relaxed to 1 meV).

Measures in the time domain.

Requires polarized neutrons (that's good or bad depending
on what you are after).

In practice, so far, it has been proven to work best for quasi-
elastic scattering. However, inelastic scattering is also
possible (this is perhaps a bigger area for future growth).
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Reactor vs Pulsed Source
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NSE at reactor source

Velocity selector | Polarizer| |- Hipper coil  Sample/ | Sample  Supermirror
field coil analyser

T flipper coil
Small echo

IN 11 Triple-Axis Option
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NSE as it was first realized
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Echo Function with monochromatic beam
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NSE at reactor source (NIST)
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NSE at reactor source (HZB)




Spin Echo Spectrometers at Reactor Sources

* IN11, IN15 @ILL (IN20 used to have an option, WASP is
being built)

* NS, RESEDA @FRM-II

 MUSES @LLB

*  NG-5 @NIST

* INSE @JRR-3M

* TRISP, MIRA @FRM-I|

«  FLEXX @HZB (SPAN has been decommissioned)
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Spin Echo Spectrometers at Pulsed Sources

. SNS-NSE @SNS
+ VIN-ROSE @J-PARC
- OFFSPEC & LARMOR @ISIS
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S(Q,t) area coverage at a reactor source

1
—

+
w

~ O
g 8
>, >

Time (arb. units)
IIIIII T IIIIIIII T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIIII T IIIIIIII T IIIIIIII T T

Q (arb. units)

% OAK RIDGE | i

National Laboratory | SOURCE



S(Q,t) area coverage at a pulsed source
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Echo Function with polychromatic beam
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Such installations exist ...

http://neutrons.ornl.gov/nse

H. Seto et al., BBA 1861 3651 (2017)

Fig. 13. Schematic view of VIN ROSE. (a) MIEZE type, (b) NRSE type.
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Wide-band polarizer performance
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NSE at a pulsed source first proposed in 1979

NUCLEAR INSTRUMENTS AND METHODS 164 (1979) 153-156; © NORTH-HOLLAND PUBLISHING CO.

THE APPLICATION OF NEUTRON SPIN ECHO ON PULSED NEUTRON SOURCES

FERENC MEZEI

Institut Laue-Langevin, 156X, 38042 Grenoble, France and
Central Research Institut for Physics, 1525 Budapest, Hungary

Received 27 December 1978 and in revised form 17 April 1979

In the neutron-spin-echo technique a comparison is made between the before and after scattering times-of-flight for each
neutron. On a pulsed source the most readily available quantity is the total time from neutron pulse to detection, i.e. the sum
of the times-of-flight from source 10 sample and from sample to detector. These two items of information can be very
naturally combined for high resolution inelastic spectrometry. The principle of such a spectrometer for ueV resolution is
described. It is shown that the neutron-spin-echo method on a pulsed source makes it possible to utilize a large band of the
wavelength spectrum at the same time, thus providing a substantial (up to 1000-fold) gain in neutron economy as compared to
the classical methods of comparable resolution.
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NSE at a pulsed source

Delectors

SM analyser s temg_... .‘ ,
ye 2

Source

Lox5-10m Precession fields
Fig. 1. Schematic lay-out of a neutron spin echo high resolution inelastic spectrometer on a pulsed neutron source.

Mezei, 1979
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Inelastic TOF NSE
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Fig. 2. (a) The time-of-flight diagram for pure NSE type of
operation. (b) The principle of time-of-flight filtering for NSE-
TOF type of operation.
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Inelastic NSE on top of TOF - is it possible?
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Inelastic NSE on top of TOF —is it possible?

1.00 m 8.54 m 23.54 m 30.54 m 36.26 m 39.76 m
Tapered guide
Straight guide Straight guide iheight reduced
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Ry = D e
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Inelastic NSE on top of TOF “host” - is it possible?

Precession Field

B = const.

Graphite (ki)
Analyzer
Precession Field

7/2 and Spin

/2 Analyzer

B(t) varies with time
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Inelastic TOF NSE - on top of Backscattering Host?
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Complementarity with other
techniques in the energy domain
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Spin Ice

Spin Ice Crystal Structure
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Defect-assisted relaxation in a spin ice
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Complementarity with techniques in the energy domain
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Complementarity with techniques in the energy domain
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Complementarity with techniques in the energy domain

i T T IIIIII| T T TTTTT T T IIIIII| T T TTTTT T I TTTTTT T I_
1.0 *__“*§§ —
i JooK ?$ i + T NSE )
0.8 by ]
i BS ++ + 4 K i
g *°f AV ' \ ]
= i 150 K + SOK\ |
d 04t \K* N
0.2_ | + \1&‘ Q%
i Ho, glLag 4TioO7 M | H‘E | :MH JL 8
0.0 ..?Tffﬁ
i IIII| | 1L 111l | | IIIIII| | | IIIIII| | 1 11111l
0 1

10" 10° 102 10 10 10
Time (107 s)

OAK RIDGE SPALLATION
G. Ehlers et al., J. Phys. Condensed Matter 20 235206 (2008) National Laboratory SOURCE "



Complementarity with techniques in the energy domain
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“Odd” things to measure
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Fermi pseudo-Potential in Schrodinger Equation
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(3) magnetic field @ o< A
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Two-Beam Method @IN15
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Two-Beam Method @IN15
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Two-Beam Method @IN15
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Effect from Neutron Refraction
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Anisotropic diamagnetic susceptibility of graphite

PHYSICAL REVIEW

VOLUME 104,

NUMBER 3 NOVEMBER 1, 1956

Diamagnetism of Graphite

J. W. McCLure
Department of Physics, University of Oregon, Eugene, Oregon
(Received April 19, 1956)

The conduction-electron magnetic susceptibility of graphite has been calculated by using the Wallace
two-dimensional band structure. The energy levels induced by the magnetic field are calculated by the
method of Luttinger and Kohn, taking into account the large (in this case) effects of band-to-band transitions
which are not included in the Landau-Peierls treatment. Agreement with the susceptibility observed at
high temperatures is obtained with a choice of 2.6 ev for the resonance-integral parameter v,. The details
of the de Haas-van Alphen effect cannot be reproduced, indicating that a more complicated band structure
is needed to account for the low-temperature experiments.

1. INTRODUCTION

HE diamagnetic susceptibility of pure crystalline
graphite is large and anisotropic. The difference
between the susceptibility parallel to the principal axis
and that perpendicular to the principal axis is —21.5
X 10~% emu/g at room temperature, and the magnitude
increases with decreasing temperature.! The suscepti-
bility perpendicular to the principal axis? is about equal
to the free-atom susceptibility of —0.5X10-% emu/g.
Ganguli and Krishnan! showed that the temperature
dependence of the anisotropic part of the susceptibility
is the same as that of a two-dimensional free-electron
gas with certain characteristics. Their model has been
extended by Mrozowski.* However, such a model is
not in accord with recent calculations of the electron

IN. Ganguli and K. S. Krishnan, Proc. Roy. Soc. (London)
Al17, 168 (1941).

2 K. S. Krishnan, Nature 133, 174 (1934).
- 38, Mrozowski, Phys. Rev. 85, 609 (1952).

energy band structure of graphite.4-¢ Further, the work
of Hove” and the present paper demonstrate that the
temperature dependence of the susceptibility is princi-
pally due to the Fermi-Dirac statistics.

Several calculations of the susceptibility”® have been
made on the Wallace model, using the Landau-Peierls®
formula for the diamagnetic susceptibility of conduction
electrons. The most detailed calculation is that by
Hove. He found that though the correct dependences
of the susceptibility upon temperature and impurity
concentration were obtained, the magnitude of the

4 P. R. Wallace, Phys. Rev. 71, 622 (1947).

5C. A. Coulson and R. Taylor, Proc. Phys. Soc. (London)
A65, 815 (1952).

$D. F. Johnston, Proc. Roy. Soc. (London) A227, 349 (1955).

7J. E. Hove, Phys. Rev. 100, 645 (1955).

8 R. Smoluchowski, Revs. Modern Phys. 25, 178 (1953).

9 W. P. Eatherly, see discussion following reference 8.

0 R. Peierls, Z. Physik 80, 763 (1933). See also A. H. Wilson,
Proc. Cambridge Phil. Soc. 49, 292 (1953).
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Effect from Neutron Refraction
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Translation to Susceptibility

translate Ato
diamagnetic susceptibility .= B/ By

=(-0.574 £ 0.003) x 103
measured Y = (-0.563 £ 0.005) x 10
translate B to o
scattering length density Pp=(72£0.1) x 10°A~2
table value 0, = 7.56 x 106 A2
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Alternative way to measure, D3 (polarized diffraction)

J. Phys.: Condens. Matter 1 (1989) 3833-3839. Printed in the UK

The neutron diamagnetic form factor of graphite

C Wilkinsont, D A Keenti, P J Brown§ and J B Forsyth||

T Physics Department, King's College London, Strand, London WC2R 2LS, UK

§ Institut Laue-Langevin, 38042 Grenoble Cédex, France

| Neutron Science Division, Rutherford Appleton Laboratory, Chilton, Oxfordshire
0X110QX, UK

Received 17 October 1988

Abstract. The form factor of the diamagnetic moment induced by a field of 4.62 T in a
single crystal of graphite has been measured by polarised neutron diffraction. The data are
consistent with a s-electron orbital current having a radius of 1.38(8) A, slightly smaller
than that of the carbon rings in the planar sheets of the graphite structure (1.42 A). The
corresponding effective mass ratio for the 7-electrons is m*/m = 0.019(3).
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Alternative way to measure, D3 (polarized diffraction)
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