

EUROPEAN SPALLATION SOURCE

Engineering realities Good practices

Clara Lopez Senior Mechanical Engineer

www.europeanspallationsource.se 7 July, 2018

Unexpected events!!

Unexpected events!!

EUROPEAN SPALLATION SOURCE

Earthquake & Tsunami J-Park 2011.02 300km from the epicenter (magnitude 9) 2011.03.11 Earthquake (Seismic Intensity 6+)

In front of Linac

Unexpected events!! Earthquake & Tsunami J-Park 2011.02

EUROPEAN SPALLATION SOURCE

Displacement of Bunker shields (designed for a tolerance to 0.25G of Seismic Int. 5+)

Collapsed steel shields

Unexpected events!! Earthquake & Tsunami J-Park 2011.02

EUROPEAN SPALLATION SOURCE

BL04: Ge Detector Shielding collapsed

200t target moved out by the quake by breaking a stopper.

Unexpected events!!!

EUROPEAN SPALLATION SOURCE

Key answer:

Risk evaluation and contingency plans!!!!

Unacceptable mistakes!!

EUROPEAN SPALLATION SOURCE

Engineering Disasters: Hyatt Regency Hotel Walkway Collapse (1981) 114 fatalities and 200 injure people

- Functional requirements: requirement which specifies what the system should do
- Non-functional requirements: requirement which specifies how the system performs a certain function

Non – functional Requirements

- Performance
- Upgradeability
- Capacity
- Availability
- Reliability
- Recoverability
- Maintainability
- Serviceability

- Security
- Regulatory
- Manageability
- Environmental
- Data Integrity
- Usability
- Interoperability

- Manipulation and difference between 3D and reality
- Limit weight, lifting features
- Storage and inventory
- Tolerances for manufacturing and complexity
- Provision of space
- Transportation costs
- Provisions for installation
- Shielding normally increase, no opposite!

EUROPEAN SPALLATION SOURCE

From 3D to installation

Plinths and complexities

Plinths and complexities

Lifting: tests, capacity, eye lifts,

Crane capacity – safety factors

Tolerances and streaming paths

EUROPEAN SPALLATION SOURCE

Tolerances must be consider, fewer blocks as possible to reduce streaming paths

Tolerances and fitting

Integration and tolerances – cost of fix errors

EUROPEAN SPALLATION SOURCE

Rework caused by different level on the floor that was not in the drawings.

The importance of the as built drawings

Integration and tolerances – cost of fix errors

EUROPEAN SPALLATION SOURCE

Source: FRM II

Integration and tolerances – cost of fix errors

EUROPEAN SPALLATION SOURCE

20

Extra shielding!!

EUROPEAN SPALLATION SOURCE

Source: 4\$IS

Inventory control

EUROPEAN SPALLATION SOURCE

Inventory control

- Lost time
- Theft
- 2 x 18 tonne slabs

missing

cience & Technology Facilities Council

Very simple exercise

EUROPEAN SPALLATION SOURCE

Lets consider LoKI cave: Ignore the roof – Just walls L=15m W= 5m Thickness: 0.6 m H= 5m Heavy concrete Calculate the weight of concrete to transport ? Space provisions/ Integration activities

- Experimental halls are crowded
- Access to maintenance is required, some components more than other
- Space available for utilities upgrades spare cables services
- Consider properly space for envelops ex: sample environment preparation and loading

The importance of integration – crowded halls- As build drawings

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

From 3D preliminary design to detailed design for manufacturing

EUROPEAN SPALLATION SOURCE

Source: 4SIS

Integration, space provisions and proper tagging

Space for utilities

Source: ISIS

28

Access to maintenance

EUROPEAN SPALLATION SOURCE

Fast Disk-Chopper Single Disk Type

Source: ISIS

Instrument overview main components

Chopper utilities ESS

Utilities considerations - ESS

From 3D to reality: cabling, piping space envelope and sample environment loading

EUROPEAN SPALLATION SOURCE

ZAT – Central Institute of Technology

Experimental halls- provisions for maintenance

EUROPEAN SPALLATION SOURCE

Source: Multiple sans instruments

Safety for construction and commissioning – Crowded spaces

EUROPEAN SPALLATION SOURCE

 Lack of empty space for construction preparation

2008

- Activities in narrow areas
- Busy schedule for cranes
- Limited period of time when beam off

2010

- Design for the whole lifecycle- even design of tools for assembly and installation considerations
- Proper consideration for lifting operations and fitting big vessels
- Levelling and alignment
- Tolerances: civil and mechanical
- SAG Survey and alignment group: Fiducials (references), scans, VR visualization

Design for entire lifecycle

Design for entire lifecycle

Big vessels: lifting considerations

EUROPEAN SPALLATION SOURCE

TOPAS

Time-of-Flight Spectrometer with Polarization Analysis

 Spectrometer housing:

 Vacuum housing

 Pressure
 < 10⁻⁵ mbar

 Material
 1.4571 (1.4429)

75 m³

Diameter 6.5 m

3 m

JÜLICH

FE - calculation of the vacuum housing Equivalent stress in N/mm²

Detector system with ³He-Detectors

- Lifting equipment
- Access to halls
- Maintenance
- Floor distribution
- Levelling
- Tests after welding at site

Height

Volume

Design considerations

Pressure difference – specially when there is a damage caused by gamma radiation

Source: FRM II

Design considerations

EUROPEAN SPALLATION SOURCE

Vacuum window caused by implosion of a neutron guide. The particles get a high acceleration and act like projectile

Source: FRM II

Consider proper space for assembly

EUROPEAN SPALLATION SOURCE

Vacuum tank fracture

Importance of regulation Differences in tests in manufacturor and defaults at installation

Aluminum window at 90 degree-bank of iMATERIA broken on Jan, 22, 2009

Narrow working space caused the defaults

Other integration activities

- Truview scans
- VR remote handling in Target and NSS
- Navisworks /CAD

Questions

