
“Software”

Jon Taylor
Erice school 2018

10 June 2018

 1

Microsoft Office

�2

“Software”

Jon Taylor
Erice school 2018

10 June 2018
 3

Open Data & Open Science. How Scientific Software

Development Can Make Data FAIR

Jon Taylor

Head of ESS Data Management and software Centre

Mari instrument scientist at ISIS facility
Project scientist for Mantid project
Build and commissioning for Merlin and LET
Neutron scatterer INS and polarised neutrons
Photon scatterer Compton scattering / XMCD
Very occasional MuSR user

Interests
Strongly correlated electron systems
Frustrated magnetism
Scientific Computing �4

Data Management and Software Centre

�5

MAGIC
T-REX

VESPA

FREIA
ESTIA

ODIN

BEER
CSPEC BIFROST

MIRACLES

LoKI

DREAM

NMX

SKADI

HEIMDAL

TO DO:
Scientific
computing

for this

Data Management and Software Centre  

Construction budget 20M euro
Staff 2018 27 + 8
Staff 2028 60

Scientific Software development.
Experiment control
Data acquisition system
Data reduction, analysis & modelling

Data centre operations.
Dual location - Lund & Copenhagen
Data management and curation

User programme support
Instrument Data scientists
User office software
Remote access to data and software tools

Data
Analysis

Data
Management

Stream Events
&

Meta Data
Experiment

Control

Data
Acquisition

 & Event
Formation

Data
Reduction

Data
Visualisation

Provide world leading scientific software and scientific computing support for neutron scattering at ESS

European facilities landscape

�7

�8

Open Science and Open Data in the EU

�9

What is FAIR

�10

Scientific Efficiency needs to be FAIR

�11

Findable Accessible Interoperable Reusable

Searchable rich meta
data

Persistant identifiers

Experiment type

Sample parameters

Instrument
parameters

Applies to raw and
proceed data

What software?

What parameters

what is the repository

Where is it stored

Data policy

Data format

Storage architecture

Data catalogues

APIs

Authentication

Security

Applies to raw and
processed data

Applies to software

Compatibility

Data format

Meta data standards

Allow for multi modal
data analysis

Software APIs

Catalogue
interoperability

Standards

Data shelf life

Software shelf life

Open access

Backwards
compatibility

90%* of neutron users are not computing
experts

Scientific Computing adds value

* This is an estimate �12

At some point in everyones career …

What to think about to avoid disasters ?
Make your data and code FAIR

�13

Collaborative Free Open Source Software

�14

Sustainability …

Will todays software be available in 2025 ?
What happens if the developers all leave or worse?
What if you’re the developer?

Open Source is not ‘Free’

�15

Software developers have to eat

Licenses are Complex

�16

Software developers have to protect their IP (if they want)
Licenses of dependencies matter

Take a Professional Approach …

Think About Architecture
Design Software
Code Quality

Think about infrastructure
Version Control
Testing
Review

Don’t Reinvent

Keep It Simple

Be Agile ?

�17

Architecture

There are a lot!
The point is to make code reusable / modular / testable

Take a look on wikipedia or at …
 https://github.com/faif/python-patterns

�18

https://github.com/faif/python-patterns

Model View Controller design pattern

Idea : Keep the GUI code separate from the logical code

If you write a GUI - use this architecture

�19

Code Quality

If you do one thing, write quality code

The code documents itself (or not!)

�20

Infrastructure - Version Control

Would you jump out of a plane without a parachute
Version control is like a parachute

�21

CR E AT E A
B R A N CH

Create a branch in your
project where you can
safely experiment and

make changes.

O P EN A P U L L
R EQ U E ST

Use a pull request to get
feedback on your changes
from people down the hall

or ten time zones away.

M ERG E A N D
D EP LOY

Merge your changes into
your master branch and

deploy your code.

A D D CO M M I T S D I S C U S S A N D R E V I E W

GitHub provides tools for easier collaboration and
code sharing from any device. Start collaborating
with millions of developers today!

GitHub is the best way to build software together.

WORK FA ST
WORK SMART
THE GITHUB FLOW

The GitHub Flow is a lightweight, branch-based workflow
that's great for teams and projects with regular deployments.
Find this and other guides at http://guides.github.com/.

Infrastructure - Testing

How do you know its correct

Do test your code (or get Jenkins to do it, CI rocks)
* see later examples on python for why

�22

Infrastructure - CI

�23

Everything looks fine …

Infrastructure - Review

Nothing happens anymore without looking a review website

�24

CR E AT E A
B R A N CH

Create a branch in your
project where you can
safely experiment and

make changes.

O P EN A P U L L
R EQ U E ST

Use a pull request to get
feedback on your changes
from people down the hall

or ten time zones away.

M ERG E A N D
D EP LOY

Merge your changes into
your master branch and

deploy your code.

A D D CO M M I T S D I S C U S S A N D R E V I E W

GitHub provides tools for easier collaboration and
code sharing from any device. Start collaborating
with millions of developers today!

GitHub is the best way to build software together.

WORK FA ST
WORK SMART
THE GITHUB FLOW

The GitHub Flow is a lightweight, branch-based workflow
that's great for teams and projects with regular deployments.
Find this and other guides at http://guides.github.com/.

Don’t Reinvent - Be agile

Agile is a ‘thing’ now.
Be able to adapt to changes in requirements in a rapid way

�25

Keep it Simple

Sounds simple right?
Avoid Technical Debt

�26

Documentation is Difficult to Write

The code documents itself
Manually Written Manuals are Mostly Moribund

�27

Quick Tour of

Learn Python, it’s easy!
https://www.learnpython.org/

Interpreted

Not strongly typed

Object Oriented (if you want)

Fast with Numpy

Very Popular �28

Is OOP important in

Classes provide safety for

Data and Logic*

Most modules are OO.

*Private functions are not entirely private in Python if you
know where to look �29

Syntax basics

Indentation delineates code
PEP8 defines 4 spaces as standard - not tabs

def myFunc():
‘’’
A doc string for myFunc
‘’’
 print ‘Hello World’ #Python 2.x
 print(‘Hello World’) #Python 3.x & 2.x

In[1]: myFunc()
Hello World �30

Syntax basics 2

Careful with the namespace…

�31

Syntax basics 3

Careful with the types…

�32

Python Essentials for Science

�33

NumPy

Fast array manipulation

Slicing and dicing n dimensional data

�34

�35

Plotting 1D 2D & 3D data and images

Python (non) Essentials for Science

�36

Manipulation of table like named data (spreadsheets)

Standard data type object called a data frame

Python (non) Essentials for Science

�37

Pandas container schema for NumPy arrays

Typing for n dimensional arrays

SciKits

�38

Python installation

Take a distribution - enthought

Use python package manager pip
on the command line

>> pip install numpy

�39

Python in a notebook

Install Locally or Remotely

https://hub.mybinder.org/user/ipython-ipython-in-
depth-vhas6tnx/notebooks/binder/Index.ipynb

�40

https://hub.mybinder.org/user/ipython-ipython-in-depth-vhas6tnx/notebooks/binder/Index.ipynb
https://hub.mybinder.org/user/ipython-ipython-in-depth-vhas6tnx/notebooks/binder/Index.ipynb

where does everyone go for answers …

�41

Examples of design decisions from ESS 1

�42

Experiment control framework.
All facilities have their own developed from scratch.
ESS did not want to generate another.

High level requirements (based on software best
practice and functionality generate)

Existing open source developments were reviewed
against requirements.

Experiment Control

• Feature complete solution from FRMII
• Python & Qt
• Acts as a high level interface to low level controls
• High quality python code base

 43

Examples of design decisions from ESS 2

�44

Data acquisition data streaming system.
All facilities have their own developed from scratch.
ESS did not want to generate another.

High level requirements
Based on software best practice and required functionality

Existing open source developments reviewed against
requirements.

Next generation data acquisition

• Event mode data collection using Kafka streaming

• Fast capture of experimental metadata

• Big data technology

• FAIR data from the start

• High performance infrastructure, software data storage & data management

• Remote access to infrastructure

�45

Why Apache Kafka

- It’s open source
- It’s actively developed
- It’s the technology used by Netflix and Linkdin

�46

Where is my data?

�47

How do I get it

How do I look at it

What does it mean

Is there software to read it

FAIR Findable & accessible

�48

Findable Accessible Interoperable Reusable

Searchable rich meta
data

Persistant identifiers

Experiment type

Sample parameters

Instrument
parameters

Applies to raw and
proceed data

What software?

What parameters

what is the repository

Where is it stored

Data policy

Data format

Storage architecture

Data catalogues

APIs

Authentication

Security

Applies to raw and
processed data

Applies to software

Compatibility

Data format

Meta data standards

Allow for multi modal
data analysis

Software APIs

Catalogue
interoperability

Standards

Data shelf life

Software shelf life

Open access

Backwards
compatibility

Digital Object Identifiers

Essential for FAIR

DOIs are minted again digital artefacts

Store meta data and persistent location

DOIs cost money (borne by RIs & University services)

�49

https://www.doi.org/

Data Management Plans

Required for external funding

Depth of detail depends on agency

There are online services to generate DMPs

https://libraries.mit.edu/data-management/plan/write/

Often provide as a service by Libraries

�50

https://libraries.mit.edu/data-management/plan/write/

Complexity defines the ESS science case

SANS

Powder diffraction

Single crystal diffraction

Reflectometry

Spectroscopy

�51

Imaging
Courtesy of PSI NIAG

Data policies at research infrastructures

• Most European facilities are moving to an open data policy

• Data is open access after an initial embargo period (3 years)

• Requires infrastructure and a catalogue to make data FAir

• Infrastructure is still not federated for Neutrons and Photons
in Europe - that is the task of EOSC

• Findable and Accessible are not not the same.

�52

Open data & software

�53

Fair applies to software as well as data
Everyone Benefits from Open Data

A new open source meta data catalogue

 54

• Raw Data
• Meta Data
• Analysed Data
• Optimised for ESS
• Deployed at MAXIV & PSI

European Open Science cloud

 55

• My data are your data…
• Photon and Neutron Open Science Cloud

• Data Federation
• Open Services for data treatment and analysis
• Access to compute services

Pan European FAIR Data

Interoperability and Reuse

 56

• Interoperability starts with data formats

• Photon and neutron sources converge towards a
common format

• Based on HDF5

Nexus and HDF

 57

• Hierarchical Data Format

• Tree based Data model
• Stores data and meta data

• various APIs including python

• H5Py (http://docs.h5py.org/en/latest/quick.html)

• NEXUS is a set of scattering specific classes to standardise neutron
photon and muon data

• including geometry meta data and experiment meta data

http://docs.h5py.org/en/latest/quick.html

HDF Compass

 58

• HDF group application to view HDF files
• Works with nexus files

NexPy - Ray Osborne

 59

Physical Information File

 60

A standard for materials information

http://citrineinformatics.github.io/pif-documentation/index.html

A schema to store materials structure and meta data from
calculations and measurements

Versatile

Python interface
https://github.com/CitrineInformatics/pypif

http://citrineinformatics.github.io/pif-documentation/index.html

Interoperable software example -
SASView

• Small angle scattering analysis
• Fitting and visualisation
• Photons and Neutrons

�61

faiR software example

• Meta data saved to file for data processing
• History of data processing preserved

• DOI against each build for version compliance

�62�62

Data management is key for success

�63

Ensure your data, software and results are FAIR

Detector
tank 3D
position
voxel dets

TOF Neutron scattering data treatment

The neutron energy is encoded in its Time of Flight

�64

Neutron
choppers

Neutron
source

Neutron
guide

Neutron
instrument

Sample
position

T

Data processing for TOF experiments

• Convert T.O.F to energy, wavelength, momentum transfer, d-
space.

• Precise knowledge of flight paths

• Precise knowledge of scattering angle

• Geometry information is essential

�65

M S

D

L1

L2

theta, phi

P+

Data Acquisition

Two types

• Data are collected as histograms
DAQ system has to configure histogram storage for each
pixel ID

• Data are collected in event mode (list mode)
Each detected neutron is assigned a Pixel ID and time
stamp.
Meta data is also collected in event mode
The event list can be filtered to generate histo data

�66

Instrument Geometry

• Dependent on installation and technique

• Ask how is the instrument calibrated

• Mantid stores Geometry in xml format as x,y,z
• Instrument definition file.
• Timestamped files to account for variance over time
• All instrument components can be described.
• Mantid framework handles conversation to r,t,p

�67

Data reduction Workflows

• Loading data
• Filtering events
• Correct for counting efficiency
• Background
• Detector efficiency
• Normalisation to monitor / time / proton charge
• Units conversion
• Detector grouping
• Saving output data in analysis application format
• Visualisation
• Workflows wrapped as a script or a GUI
• Technique & facility dependent

�68

Data Corrections

• Multiple scattering

Sample
Instrument and Sample environment

• Absorption correction

• MonteCarlo ray tracing proves quite useful

�69

Generate Masked WB Integral workspace

Create instance of reduction class for selected

Load Instrument parameter file

load White beam run

Monitor / Current
Monitor Integral Normalise

Load Detector

LoadRaw(Filename=r'/Users/jon/mprogs/mari_data/RAW/MAR16637.raw',OutputWorkspace='wb_wksp',LoadLogFiles='0')

Collect Masked Spectra into a workspace called masking

DIAG WB
Zero counts in frame (OFF)

Median Rate in bank --> Reject outside of pre-determined
range

Find bad spectra for sample run
Zero counts in frame (OFF)

Median Rate in bank --> Reject outside of pre-determined
range

Run bleed test

Apply Hard Mask

FindDetectorsOutsideLimits(InputWorkspace='_wksp.spe-
white',OutputWorkspace='white_masks',HighThreshold='10000000000',LowThresh
old='1e-10')
MaskDetectors(Workspace='_wksp.spe-white',MaskedWorkspace='white_masks')
MedianDetectorTest(InputWorkspace='_wksp.spe-
white',OutputWorkspace='white_masks',SignificanceTest='0')
MaskDetectors(Workspace='_wksp.spe-white',MaskedWorkspace='white_masks')
MaskDetectors(Workspace='_wksp.spe-white',MaskedWorkspace='white_masks')
MaskDetectors(Workspace='background_int',MaskedWorkspace='_wksp.spe-
white')
MedianDetectorTest(InputWorkspace='background_int',OutputWorkspace='mask_
bkgd',SignificanceTest='3',LowThreshold='0',HighThreshold='2',LowOutlier='0',High
Outlier='1e+100',ExcludeZeroesFromMedian='1')
MaskDetectors(Workspace='_wksp.spe-white',MaskedWorkspace='mask_bkgd')
ExtractMask(InputWorkspace='_wksp.spe-white',OutputWorkspace='diag_mask')
RenameWorkspace(InputWorkspace='diag_mask',OutputWorkspace='masking')

Normalise

Load sample run

Load Detector Info

LoadRaw(Filename=r'/Users/jon/mprogs/mari_data/RAW/
MAR16652.raw',OutputWorkspace='run_wksp',LoadLogFiles='0')

NormaliseByCurrent(InputWorkspace='run_wksp',OutputWorkspace='run_wksp')

Calculate Ei

Move detectors to position specified in calibration file

Ei Guess

M2&M3 spectrum #s & flightpaths

Move instrument components to
define T0 as M2 position

GetEi(InputWorkspace='run_wksp',Monitor1Spec='2',Monitor2Spec='3',EnergyEstimate='100')

ChangeBinOffset(InputWorkspace='run_wksp',OutputWorkspace='_wksp.spe',Offset='-2379.33846378')
MoveInstrumentComponent(Workspace='_wksp.spe',ComponentName='Moderator',Z='-1.4419999999999999',RelativePosition='0')

LoadDetectorInfo(Workspace='_wksp.spe',DataFilename=r'/Users/jon/mprogs/mari_data/RAW/MAR16637.raw',RelocateDets='1')

ReBin

Detector efficiency correction

Units E trans meV

Tube

Ei

ConvertUnits(InputWorkspace='_wksp.spe',OutputWorkspace='_wksp.spe',Target='DeltaE',EMode='Direct')

Rebin(InputWorkspace='_wksp.spe',OutputWorkspace='_wksp.spe',Params='-10,0.2,95',PreserveEvents='0')

DetectorEfficiencyCor(InputWorkspace='_wksp.spe',OutputWorkspace='_wksp.spe')

CorrectKiKf(InputWorkspace='_wksp.spe',OutputWorkspace='_wksp.spe')

Apply mask to
MaskDetectors(Workspace='_wksp.spe',MaskedWorkspace='masking')

GroupDetectors(InputWorkspace='_wksp.spe',OutputWorkspace='_wksp.spe',
MapFile=r'/Users/jon/Work-computing/mantid_test_data/mari/mari_res.map',Behaviour='Average')ReMap

Solid Angle CorrectionWB Integral workspace Divide(LHSWorkspace='_wksp.spe',RHSWorkspace='_wksp.spe-white',OutputWorkspace='_wksp.spe')

Units Change ConvertUnits(InputWorkspace='_wksp.spe-white',OutputWorkspace='_wksp.spe-white',Target='Energy')

Rebin(InputWorkspace='_wksp.spe-white',OutputWorkspace='_wksp.spe-white',Params='20,160,100')

 MaskDetectors(Workspace='_wksp.spe-white',MaskedWorkspace='masking')

ReBin

Apply mask to

ReMap GroupDetectors(InputWorkspace='_wksp.spe-white',OutputWorkspace='_wksp.spe-white',
MapFile=r'/Users/jon/Work-computing/mantid_test_data/mari/mari_res.map',Behaviour='Average')

Import required python modules from qtiGenie import *
from PySlice2 import *

Define run numbers, Ei guess, rebin, mapfile and other
keyword arguments for reduction

inst='mar'
iliad_setup(inst)
ext='.raw'
mapfile='mari_res'
#det_cal_file must be specified if the reduction sends out put to a workspace
cal_file='MAR16637.raw'
whitebeamfile="16637"
ei=100
rebin_params='-10,.2,95'
runs=[16654]

Execute python line w2=iliad("whitebeamfile","runs",ei,rebin_params,mapfile,det_cal_file=cal_file,norm_method='current')

Data analysis overview for ESS

• Img & Eng

Imaging

• Engineering

• Diffraction

• Macro-molecular

• Single-crystal

• Powder
diffraction

• Large-scale

• Small-angle
neutron

scattering

• Reflectometry

• Spectroscopy

• QENS

• INS

• Molecular
Spectroscopy 71

MuRec, KipTool, Savu, Octopus, VGStuido

DIALs MXCUBE

CCSL, NSXTool, Mantid

SASView

GenX, MotoFit, Refl1D, BornAgain

SpinW, Horace, PACE

A/O Climax, Mantid, Multiple modelling codes

MAUD, GSASII, Fullprof, SScanSS

FullProf,GSASII MAUD, Topaz

Mantid functionality, multiple MD codes

Im
po

rt
an

t t
o

C
ap

tu
re

 A
na

ly
si

s
m

et
a

da
ta

Data analysis codes

Many key areas need support to ensure sustainability

Fullprof, GSASII
Single crystal diffraction (& polarised neutron diffraction)

Collaborative development across facilities is very common

Evaluation and inclusion of instrument resolution will benefit from MC development

Significant expertise is within the user community

�72

Analysis of DG INS data

ESS - PSI - ISIS Collaboration

“Rietveld for inelastic” required for over 60% of experiments

High performance generation of 4D datasets
Model fitting & resolution convolution on distributed architecture

�73

c:\data\Fe\sqw\Fe_ei787.sqw
-0.2 £ h £ 0.2 in [0, 0, h] , 140 £ E £ 150

z=-0.525:0.05:1.525 in [z, z, 0] , x=-1.525:0.05:1.525 in [-x, x, 0]

[z, z, 0] in 3.0961 Å-1

[- x
, x

, 0
] i

n
3.

09
61

 Å
-1

-0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

c:\data\Fe\sqw\Fe_ei787.sqw
-0.2 £ h £ 0.2 in [0, 0, h] , 140 £ E £ 150

z=-0.525:0.05:1.525 in [z, z, 0] , x=-1.525:0.05:1.525 in [-x, x, 0]

[z, z, 0] in 3.0961 Å-1
[- x

, x
, 0

] i
n

3.
09

61
 Å

-1

-0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Summary

• Write sustainable open source software

• Think about the design and IP issues ahead of time

• Learn python it is becoming very common for all code in
the data chain

• Develop a data management plan
Especially for meta data from analysis

�74

Caveat Emptor

There are no guarantees

Sweat the code and the data

�75

