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The CASTEP Project
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The Theory of Everything
“The underlying physical laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus completely known, 
and the difficulty is only that the application of these laws leads to equations 
much too complicated to be soluble.”

   P.A.M. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Why?

Each electron interacts with the nucleus
Every electron also interacts with every other electron. 

In Lithium (Z=3) there are 3 e-e interactions to consider.
In Boron (Z=5) there are 10 e-e interactions to consider.
In Iron (Z=26) there are 325 e-e interactions to consider.
In Uranium (Z=92) there are 4186 e-e interactions to consider.

.. and that's just isolated atoms.  We need to model crystals and molecules 
containing hundreds of atoms.

QM of multi-electron atoms still too complex to solve on
Powerful supercomputers in 2016.
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The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn 
"for  his development of the density-functional theory"  and John A. Pople 
"for his development of computational methods in quantum chemistry".

Key developments dating back to 1960s and 70s were  approximate quantum 
theories which were nevertheless “good enough”.  

Density Functional Theory- Local Density Approximation

Hartree-Fock approximation, MP2, CI, CCSD(S,T)

Walter Kohn 1923-2016 John Pople 1925-2004
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Modified from Mattsson et al., (2005) 
Modeling. Simul. Mater. Sci. Eng. 13, 
R1.

Approximate e-e interaction with 
● local density approximation (LDA)
● generalized gradient approximation (GGA)
● Hybrids, DMFT, GW, … 
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Kohn-Sham equations
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Parameterized from uniform electron gas
● Cohesive energies ~ 1eV too large 
● lattice parameters and bond lengths -1-2%
● Band gaps too small
● Hund's rule for open shells not always obeyed
● Van der Waals forces not included 

Parameterized from non-uniform electron gas and atoms
● Cohesive energies ~ 100 meV
● lattice parameters and bond lengths -1-2%
● Band gaps too small
● Hund's rule for open shells not always obeyed
● Van der Waals forces not included

e.g. PBE, PW91, BLYP, ...
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Pseudopotential for ionic interactions

 “All electron” method but 
frozen core.

  Retain chemically relevant

valence electrons
 Good scaling/large systems 

Plane-wave basis set
 Well-adapted for crystalline

and solid/liquid modelling
 Systematic control of basis 

set convergence
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Ionic bonding in NaCl

Charge transfer from Na to Cl

Unlike Si, no build up of charge between atoms
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Covalent bonding in silicon

Covalent bonding arises from build up of -ve charge 
between +ve nuclei.

Chemical bond is emergent property of electron-ion 
system

Not merely qualitative description – can compute bond 
and cohesive energy.
(E

coh
=5.45 eV; expt 4.62 eV)

Lattice Parameter a
0
=0.549nm (0.5431nm)
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Metallic bonding in aluminium

Valence electrons are spread out – metallic 
state.

Calculation shows no band gap; correctly 
predicts Al is metallic.
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DFT Simulation Codes
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Electronic Structure
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•Accurate prediction of:
•Geometry of defects
•Band Gap
•Formation Energies

Clark, Zunger, et al., PRB 81, 115311 (2010)
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Crystal Structure
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From electronic to crystal structure

Polymorphs of Mg
2
SiO

4
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AIRSS: Prediction of Crystal Structures 

methane polyethane graphane
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Predicting Structure



Vibrations, Phonons and Spectroscopy
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Vibrational Spectroscopy
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Modelling the spectrum

Orientationally averaged infrared absorptivity
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Spectral response to light depends on response of 
electrons; for neutrons only nuclei.
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Rattler mode in thermoelectric Na
0.8

CoO
2       

                                       

zT=
S2T σ
κ

Thermoelectric 
“figure of merit”

Roger, M., et al., Patterning of sodium ions and control of 
electrons in sodium cobaltate. Nature 445, 631 (2007)

“Square Phase” Na ordering at 150K

Inelastic X-Ray spectrum
measured at ESRF
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Ab initio Lattice Dynamics 
of Square Phase Na

0.8
CoO

2

D. Voneshen et al.,Suppression of thermal conductivity by rattling modes in 
thermoelectric sodium cobaltate. Nature Materials 12, 1028 (2013) 
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Vibrational spectroscopy of C
60

• Above 260K takes Fm3m structure 
with dynamical orientational disorder

• m3m point group lower than I
h
 

molecular symmetry
• Selection rules very different from gas-

phase.
• Intramolecular modes and factor group 

splitting seen.
• Try ordered Fm3 model for crystal 

spectral calculation.

Parker et al, PCCP 13, 7780 (2011)
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GGA Raman spectrum of C
60
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C
60 

INS -Tosca
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GGA infrared spectrum of C
60

 



Phonons and Diffraction
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Thermal Diffuse
 Scattering in Titanite
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Motivation

T. Malcherek et al., J. Appl. Cryst. 34 (2001), 108.
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Experiment

SXD at ISIS BW5 at DESY
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Diffuse scattering

Neutron

X-Ray
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Phonons and diffraction
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R. Xu and T. C. Chiang, Z. Kristallogr. 220 (2005), 1009.
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Comparison with data

Obs
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DFT

DFT
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Dynamics and Dynamic Structure
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With forces calculated from DFT
Can also calculate dynamics:
● Molecular dynamics – time evolution
● Lattice dynamics - spectroscopy

r t t =r t v t  t
1
2

at  t 2

v (t+δ t)=v(t)+
1
2
[a (t)+a(t+δ t)]δ t

at t =
1
m

F t t 
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Li, Probert, Alavi, Michaelides, PRL 104, 066102 (2010)



Superionic conductivity in LiBH
4
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Fast-ion conduction in  LiBH4

 5
0

< 390 K
Orthorhombic (Pnma)

> 390 K
Hexagonal (P63/mmc)

Disordered
Superionic conductivity

> 560 K: liquid
> 650 K: decomposition
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Ab Initio Molecular Dynamics

December 5, 2011 51

 Code: CP2K

 Born-Oppenheimer molecular dynamics in 
isokinetic ensemble (Gaussian thermostat)

 Forces evaluated by DFT using the QUICKSTEP 
method

 Supercell: 288 atoms (48 formula units)

 Time step: 0.5 fs

 Run lengths 20-30 ps after equilibration

 PBE exchange-correlation functional

 Dual basis set (Gaussian DZ orbitals & plane 
waves up to 280 Ry) and Goedecker 
pseudopotentials are used
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5
2

BH4 rotational disorder:

298K

473K
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5
3

Li dynamical disorder:

BH4 rotational disorder:
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Measurements of Li mobility

December 5, 2011 54

A/C impedance measurements Li-7 NMR measurements

Motoaki Matsuo et al., Applied Physics Letters 91, 224103 (2007).

At 535K: D
Li
 = 2.28  10∙ 10 -6 cm2/sσ = 0.139 S/cm

n

l
D

2
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dt

trd

n
D

)(1
2



Diffusion coefficient calculated by...

Einstein-Sutherland equation Green-Kubo formula

∫



0

)()0(
2

tvvdt
n

D

Lennard-Jonesium
(mimicking liquid Argon)

LiBH4 at 535 K

Fast diffusion

Diffusion by ion jumps
(rare events)

which are often 
followed by a jump back 
to the original position

Limits of AIMD: diffusion in fluids with D > 10-5 cm2/s
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 An external field Fe is applied that couples to a fictitious 
atomic property (“colour”, ci):

 The (fictitious) field and its induced response are related by 
(real) transport coefficients:

 NEMD functionality implemented in CASTEP and CP2K

 ab initio nature of the method allows mechanism discovery
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Results – F
e
 = 0.05 eV/Å

December 5, 2011 57

D
Li
 = 1.34∙ 1010-6  cm2/s

(Measured: D
Li
 = 2.28∙ 1010-6  cm2/s) 

D
Li 

= 5.82∙ 1010-6 cm2/s 

dt

trd

n
D

)(1
2

 vs( )Compare:
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Diffusion Pathway

 5
8

hopping is via jumps from a lattice site into an empty interstitial site (2 & 3),
 and from there on to another lattice site (4).

Inspection of the NEMD trajectory:

P.C. Aeberhard, S. Williams, D. Evans, K. Refson, and W.I.F. David, Physical Review 
Letters 108, 095901 (2012).
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Na
x
CoO2 again- Na-ion Batteries
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• Expanding use of Li-ion batteries into new areas of 
energy storage:

• High-capacity and large-scale deployment?

– Automotive

– Load-levelling for renewable energy

• Problem Li is scarce and expensive 

• Large-scale deployment for high-capacity poses 
significant challenge to world’s Li resources.

• Can we replace Li by other cheaper, more abundant 
elements?

• Na is obvious choice: Na-analogues exist, esp. Na
x
CoO

2  
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CoO2 layer

CoO2 layer 

CoO2 layer

A
C
B

B
C
A

A
C
B

 Tunable number of Na+ ions 
 x = 0  to 1 per CoO2 

Na can occupy A or C position

allowed positions

Na1 if C position

Na2 otherwise

Na
x
CoO

2

Na can occupy B or C position
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L=7

Experiment Calculation Model

Superstructures

           T = 250 K                Ordered Stripe Phase
  

Unable to detect superlattice reflections using powder 
diffraction…
Need the sensitivity of single-crystal diffraction 
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L=7

Experiment Calculation Model

          T = 350 K      Disordered Stripe Phase   

Superstructures

 Dynamic or static disorder along the stripes?
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AIMD Simulations of diffusion
Ordered stripe phase (T = 350 K)

Ideal superstructure
• Na1 – Na2 hops perpendicular to stripes
• Translation of tri-vacancy clusters along stripes
• No bulk self-diffusion
T. J. Willis et al. Sci. Rep 8 3210 (2018)
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Vacancy on Na1 site in stripe
• Na1 – Na2 hops with components along stripes
• Chains of correlated hops of different ions
• Bulk self-diffusion along stripes

Disordered stripe phase (T = 350 K)

AIMD Simulations of diffusion
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