

Australian Government

Reflectometry Instrumentation

Andrew Nelson

"Citius, Altius, Fortius"

- Faster measurements
- Higher Q
- Lower reflectivity
- Wide dynamic Q ranges
- Smaller samples

• More complicated sample environments

Overarching Reflectometry Requirements

- Detector copes with high count rate
- Detector copes with high local count rate
- Detector efficient for relevant wavelengths
- Calibrated wavelength/angles

Good source brilliance v. low background

Instrument types – angular vs energy dispersive

$$Q_z = \frac{4\pi}{\lambda} \sin \Omega$$

Monochromatic – Fixed λ , vary Ω (0 - 5°) λ = 1.54056 Å (for X-rays) λ = 4.75 Å (for neutrons)

Energy Dispersive – Vary λ (1.5 – 30 Å), fixed Ω

Conventional monochromatic at reactor

Footprint slit ~ 0.1 mm

Mezei Spin Flippers

Used to flip the spin state of monochromatic neutrons

Current coils <u>1</u> to the beam induce a field in a solid foil that causes the spins to precess.

Sensitive to stray fields; Current settings vary for every different wavelength

Energy Dispersive Reflectometry

10⁶

10⁵

10

Neutron Wavelength /Å

15

Time-of-flight at a reactor

discs 1 & 2: Δλ/λ ~1.1% discs 1 & 3: Δλ/λ ~3.3% discs 1 & 4: Δλ/λ ~7.7%

Incident Neutron Spectrum

Spectrum

First Data: Silicon Wafer

First Data: Silicon Wafer

Instrumental Resolution

$$R(Q_{z,0}) = \int_0^\infty dQ_z \, p(Q_z, Q_{z,0}) R(Q_z)$$

Smeared model reflectivity

Instrument resolution function model reflectivity

$$\begin{array}{c} 0 \\ -2 \\ -2 \\ -4 \\ -4 \\ -6 \\ -6 \\ -8 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.01 \\ 0.01 \\ 0.00$$

∝ -4 -

Beam intensity ∝ resolution

$$\left(\frac{dQ_z}{Q_z}\right)^2 = \left(\frac{d\lambda}{\lambda}\right)^2 + \left(\frac{d\Omega}{\Omega}\right)^2$$

- Thin films (< 200 Å) require low resolution dQ/Q ~ 8%
- Thick films (> 1000 Å) and multilayer stacks require high resolution dQ/Q ~ 2%
- Split angular + wavelength equally
- Much harder to tune angular dispersive resolution

van Well, A. A. & Fredrikze, H., Physica B-Cond. Mat., 2005, 357, 204

Angular resolution considerations

Collimation slit requirements

- Micron reproducibility
- Micron accuracy
- Optical encoding (w. tape)
- Absolute encoding
- Ball screws
- Low magnetic signature
- Hot pressed/sintered B₄C
- Chamfered edge (low albedo)

Wavelength resolution - TOF

Continuous source w. choppers

Pulse is rectangular

$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta d}{d} = \frac{\Delta t}{t}$$

d = flight length

- Δd = distance between choppers
- Δt = "burst time" of pulse
- t = time-of-flight

602 μ s for 10Å neutrons at 3% res.

Spallation source

- FWHM of neutron pulse:
 - $22\lambda(\text{\AA})\mu s$ (thermalised)
 - depends on moderator
- Pulse is fixed length (in general),
- Resolution dictated by instrument length

~220 μ s for 10Å neutrons

Andersen, K; Carlile, C., Journal of Physics: Conference Series 746 (2016) 012030

Detector considerations

• Detector copes with high count rates (longevity + deadtime):

200

175 150

125

100

75

50

25

100

- Globally
- Locally
- Instantaneous
- Efficiency
 - 3He Gas pressure
 - Scintillators
 - Future: 10B / advanced scinuliators
- 1D vs 2D
 - Offspecular + GISANS (higher background?)
 - Background subtraction
- Resolution:
 - better than 2 mm resolution
- Advanced data acquisition techniques
 - Event mode for neutrons / sample environment
 - Stroboscopic

Frame	x	У	time
0	100	122	100
0	101	123	120
1	110	120	90
1	105	121	400

 $=rac{h}{p}=rac{h}{mv}=rac{ht}{mD}$

Dealing with the kinetics is easier afterwards

Event mode – kinetic enabler

Generating Polarized Neutrons

Generating Polarized Neutrons

Generating Polarized Neutrons

RF Spin Flippers

Used to flip the spin state of variable wavelength neutrons

Induces Larmor precession similar to that used for NMR Diverging iron plates create a field gradient Rotating field produced by a RF signal in coils around the beam axis

Chopped TOF at Continuous Sources

Pros

- Good for kinetic processes (large dynamic Q range)
 - Stroboscopic
 - Single shot
- Only 2-3 angles required
- Easy to under-illuminate (larger angles)
- Easier liquid interfaces
- Constant dQ/Q
- Vary resolution
- Area detector
 - simultaneous background measurement
 - Offspecular
 - GISANS
 - Hi-res = act as a slit
- de Haan, V., et al., Nucl. Inst. Meth. A. 362 (1995) 434-453
- van Well, A., et al., *Physica B* **357** (2005) 204–207
- James, M., et al., Nucl. Inst. Meth. A. 632 (2011) 112-123
- Campbell, R., et al., *Eur. Phys. J. Plus* **126** (2011) 107

Cons

- Transmission typically <10%
- A little bit harder to operate
- Gravity effects (vertical scattering plane)
- End guide position
- Polarisation more difficult

NR using divergent beams/non-flat samples

Cubitt, R., et al. J. Appl. Cryst. 48 (2015), 2006-2011

- Improve resolution if incoming divergence > angular resolution of detector
 - $I \propto s1 \times s2$, use relaxed collimation without resolution penalty
- non-flat samples can be measured

RAINBOWS – refractive analysis of reflected beam

- TOF at continuous sources have low transmission, ~ 0.02
- Monochromatic have high transmission, but only use single wavelength (not suited to kinetic processes)

- MgF₂ refracts reflected beam
 - Potential for large gains
- Refraction angle is wavelength dependent
- High resolution detector is required

Cubitt, R., et al., J. Appl.Cryst. 51 (2018) 257-263

Spallation reflectometry - INTER

- Moderator design important (brilliance)
- T₀ stops the prompt pulse of fast neutrons (some instruments use bender to reduce background, poss. limits λ_{min})
- Disc choppers control wavelength band
- 10 Hz
- L = 25m
- Inclined at 2.3 degrees
- Wavelength range [1.5, 16]
- High pressure detector (12-15 bar ³He)

Webster, J., et al. *Physica B* **385–386** (2006) 1164–1166

Spallation reflectometry

Pros

- Good for kinetic processes (large dynamic Q range)
 - Stroboscopic
 - Single shot
- Only 2-3 angles required (depends on bandwidth)
- Easy to under-illuminate (larger angles)
- Easy to measure free liquid interfaces

Cons

- wavelength resolution fixed by instrument length + pulse characteristics
- Bandwidth dictated by source frequency:
 - − For a fast source f = 60 Hz, L=15 m → $\Delta\lambda$ = 4.4Å
 - Might take 9 angles for full Q range
 - Can extend by frame skipping, if there's no problem with contamination from missed pulses

- CRISP/SURF/OFFSPEC/INTER/POLREF (ISIS)
- Liquid/Magnetism Reflectometers (SNS)
- SOFIA/SHARAKU (JPARC)
- Reflectometer (CSNS)
- SPEAR (LANSCE)

CANDOR

CANDOR

All CANDOR descriptions sourced from NIST website: https://ncnr.nist.gov/equipment/msnew/ncnr/candor.html

Detection arm

https://ncnr.nist.gov/equipment/msnew/ncnr/candor.html

https://ncnr.nist.gov/equipment/msnew/ncnr/candor.html

Q range covered by CANDOR

Reflectivity

Incident beam optics

https://europeanspallationsource.se/instruments/freia#instrument-description

Freia proposal 2013: https://ess-public-legacy.esss.se/sites/default/files/freia_proposal.pdf

Intrinsic operation

No need to move the sample!

Ansto