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Why catalysis? SIS

£36 bn
800,000 jobs




Inelastic neutron scattering
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Why use neutrons?
Vibrational spectrum
Complementary to infrared and Raman.

No selection rules:- interaction is with
nucleus not electrons.

Intensities straightforward to calculate:-
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Why new INS?
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Excellent agreement between
observed and calculated spectra.
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Getting access to neutrons

Free at the point of use

Two proposal rounds per annum (spring and autumn)
Industry, academia is eligible to apply for beamtime
For experiments where the PI is from the facility’s host
country, travel, subsistence and contribution towards
cost of preparation of samples are usually covered
Condition of acceptance is that data is public domain
(generally, three year embargo) and publication is
expected

ISIS/SNS run an Xpress system (nominally) available on
all instruments




Neutron scattering facilities
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Reactors and spallation sources
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Vibrational Spectroscopy Instruments

Target Station 1

ILL
IN1-LAGRANGE, IN4C

at ISIS

J-PARC
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Target Station 2
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Scattering in [SIS&:

Real space Reciprocal space
Sample Q
>
Ej
() (b)
Er=E; -k Q="k;—kf
E; = 0 Elastic scattering 217
E; # 0 Inelastic scattering “=7
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Neutron scattering:- elastic

Since the mass of the neutron (m) is known, as
are the neutron flight distances (d), for an
elastic scattering (diffraction) process the total
time-of-flight (7) enables the neutron velocity
(v,) to be determined and hence its energy,
wavelength, wavevector efc...
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Neutron scattering:- inelastic

Thus it is necessary to know the
distance from the source to the
sample, L,, the sample to detector
distance, L;, and either the incident,
E,, or final, E, energy as well as the
total time-of-flight. Instruments that
fix the incident energy are known as
direct geometry instruments and those
that fix the final energy are known as
indirect geometry instruments. Note
that this means that most of the flux
1s not used!
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Direct and indirect geometry

Direct geometry Indirect Geometry
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(Q,w) trajectory for a low final energy instrument
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Comparison of infrared, Raman
and INS spectra of
N-phenylmaleimide
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Why do chemists need chopper spectroscopy?

But: Few instruments

Insensitive
(but improving)

Spectra similar to No useful information
IR and Raman in C-H/O-H stretch region

Easy to use E; ~ 160?
Good-to-excellent At 3000 cml, O ~ 13.5 Al

o U 2n
energy resolution ¢ (0.nw) o (0 n') exp(_ QU )2)0_
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MAPS

® Direct geometry

Nimonic
Water CloRper , chopper spectrometer
Target moderator Monitor Fermi  Monitor s d | Monitor
T O 1 ? chopper . 2 gample|* " 2 Angular coverage:
0
low angle 3° - 20°
. O o
. high angle 20° - 60

¢ Energy resolution:

%
.
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A chopper spectrometer on a pulsed source

The source operates at S0Hz.

The neutron beam 1s under-moderated to preserve a high
flux of epithermal neutrons and a short pulse width.
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Neutron scattering:- inelastic

Scattering triangles for a direct geometry instrument. (a)

Detectors at different angles give different Q at constant

energy transfer and (b) an individual detector measures
energy transfer at constant Q.
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Neutron scattering:- inelastic
0% =k’ + k} —2kk . cos 0

hZQZ
2m

~E, + E;—2{EE, | cos 0

2 M2
th = 2E, —ho - 2{E,(E, - ho)V2 cos 0
144

Thus a detector positioned at a scattering angle & will perform a scan in time whose
locus is a parabola in (Q, w) space. This gives rise to a characteristic “bishop’s mitre”
type of plot. As the incident energy increases, the Q-range also increases.
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Wavenumber / cm

(O, w) trajectories for MARI and TOSCA
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Direct geometry - resolution
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AE At I E % flight from the moderator to
M _ 2 M 1+ =2 _ = the chopper.
E { F E At , 1s the opening time of the
i ch 3 i Fermi chopper.
- - Generally, all the detectors are

i & at the same distance from the
% sample, so the resolution is

1+ Ll T Lg B P constant for all detectors.

Note that for a chopper instrument the resolution is

usually given as a fraction of the incident energy whereas
for the crystal analysers it is as a fraction of energy
transfer. 7
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Flux and resolution: 1

The resolution 1s
determined by:
Pulse width

Fermi chopper
Sample-to-detector
0 20 40 60 80 100 dlStanCE

Energy Transfer [meV]
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Flux and resolution: 1

[ntensity / Arb. units

(a)

28

00

T
3200

-1
Wavenumber / cm
L)

3600

4000

[ntensity / Atb, units

400

T
800

-1
Wavenumber / cm

T
1200

1600

INS spectra (MERLIN
(blue) and MAPS (red)
spectrometers) of
clean, activated
ZSM-5.

(a) Spectral region
4000—-2800 cm'1,
recorded with an
incident energy of
5244 cm1;

(b) spectral region
1800-0 cm',
recorded with
incident energies of
2017 and

807 cm-.
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Flux and resolution: 2
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Flux and resolution: 3
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Why do chemists need chopper spectroscopy?
Access to small 0
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Availability!
Sensitivity
Complexity:

1000
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Choice of instrument (x3 @ ISIS) 0 2 4 6 8 01214 1
Momentum transfer (Q) / A

Choice of Fermi chopper slit package (x3 @ MAPS)
Choice of Fermi rotation speed (50 — 600 Hz @ MAPS)

Choice of incident energy (120 — 16000 cm:L @=NIiii
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Propyne: on MAPS
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50, 0)

Propyne on TOSCA and MAPS
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INS and Raman spectra of O, [PtH]*
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The more general form of S(Q,nw) is:

S(Q,nw,) < (QUi) n exp(— (QUTot )2)0

n!

By differentiation, the maximum in S(Q,nw), occurs when:
n=0°U:
Tot

thus providing a method to distinguish fundamentals (n = 1)
from higher order (n = 2) transitions such as overtones and
combinations.
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S(Q,n)
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[SIS&.
Hydrous palladium oxide,
PdO.H,0 or Pd(OH),?

From empirical formula to mechanism:
a case study in neutron capabilities

S.F. Parker, K. Refson, A.C. Hannon, E. Barney, S.J. Robertson and P. Albers,
J. Phys. Chem. C, 114 (2010) 14164.
S.F. Parker, Chem. Comm., 47 (2011) 1998-1990




Differential cross section 7 (0)

.-l
steradian

-1

/ barns atom

— Anhydrous PdO
—— Hydrous PdO, as received
—— Hydrous PdO, 100°C treated

LT Lk Al ol

10 15 20

Momentum transfer O / A™

Bulk structural characterisation
by powder diffraction.

Neutron cross-section:

Pd =4.39 barn, O =4.23

X-ray cross-section:
Proportional to atomic number:
Pd=46,0=38
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Difterential correlation
function D" (#) / barns A~

(8]

.
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—— Anhydrous PdO
—— Hydrous PdO
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Model PdO as periodic lattice
and hydrous PdO as 18 A

nanoparticle.

Differential correlation
function D"(») / barns A~

(b)

Interatomic distance »/ A
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Analysis of neutron data shows that the
hydrous PdO is poorly crystalline and that
most of the disorder is due to the oxygen.
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Surface characterisation by vibrational spectroscopy
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Model hydrous PdO as a slab capped by hydroxyls

with hydrogen-bonded water. P
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S(Q,0)
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S(Q )

INS spectra of PdO-0.31H,0:
(a) 5243 and (b) 2017 cm!
incident energy at room
temperature
(¢) 5243 and (d) 2017 cm™!
incident energy and at 5 K
recorded on MARI.

(e) TOSCA at 20 K.

(e)
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Gas ratioed to He / arb. units

Operando study of: 2CO + O, —» 2CO,

—— Water ratioed to He
—— CO ratioed to He - 50
‘\\ —— O2 ratioed to He

\ —— CO2 ratioed to He
L Temperature | 40

—_
]
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Temperature / °C
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Operando INS study at 300 K:
PdO.H,0 + CO — Pd(0) + CO, + H,O

H,0
librations
Pd-O-H
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Sometimes you get lucky...

' I I ' I ' I '
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Reaction is stoichiometric in hydroxyls not catalytic:
CO + 20H — CO, + H,O

1000

& | Science & Technology
Facilities Council



How does it work?
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Summary

Vibrational spectroscopy with neutrons provides a unique view of materials.

» Access to the complete “mid-infrared” 0 — 4000 cm! is a major advantage.
Indirect and direct geometry instruments are highly complementary: both are essential.

e Direct geometry instruments allow the high energy X—H (X =B, C, N, O, Si...)
stretch modes to be observed.

* They can also mitigate the effect of the Debye-Waller factor allowing room temperature
(and above) measurements, as well as kinetics.

Thank you
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Thank you
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