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Local and Average Viewpoints

Average viewpoint:

Local viewpoint:




Introduction

Information contained in a

diffraction pattern:
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Diffraction angle (°260)
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Introduction

What is total scattering?

A powder diffraction based technique in which the Bragg and diffuse scattering
are measured and analysed simultaneously.
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Introduction

What is total scattering?

A powder diffraction based technique in which the Bragg and diffuse scattering
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Introduction

The pair distribution function (PDF)

A histogram of pairwise interatomic distances produced by Fourier transformation
of the total scattering function.

n n
: : 1do — _
Differential — = Z Cicjbibj[Aij(Q) — 1] + Z c; biz
cross section N dQ =1 =
n
“Distinct scattering” FlO)= .Zl €i6bibj [Aij(Q) - 1]
L,]=
°° . sin Qr
Pair distribution function G(r) = (2m)3p 4t Q°F(Q) T aqQ
070

or PDF
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Introduction

The pair distribution function (PDF)

4
3_ . .
—, This is the neutron PDF for
.(C,_)) quartz-type SiO, (measured
L 2- on Polaris).
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Introduction

The pair distribution function (PDF)

Si-O

Visual inspection can provide
information about:

3. 0-0 - bond lengths

- coordination numbers

—
% - level of disorder
L 2- - identities of species involved
a
o
...more detail comes from modelling!
1 4

Si-Si
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Measuring total scattering data
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Measuring total scattering data

Measure diffraction data to a high maximum Q
* the spatial resolution of the PDF depends on Q...
* need high energy (short wavelength) X-rays or spallation neutrons
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Measuring total scattering data

The importance of Q-range
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Measuring total scattering data

The importance of Q-range
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data

Measuring total scattering

The importance of Q-range
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Measuring total scattering

The importance of Q-range
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Measuring total scattering

The importance of Q-range
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Measuring total scattering

The importance of Q-range
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Measuring total scattering

The importance of Q-range
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Measuring total scattering data

Choose the Q-range that is right for YOUR sample

0.03

SiO, glass

Tio,

15 20
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Measuring total scattering data

Use an instrument with good reciprocal space resolution
 broadened Bragg peaks result in a dampened PDF
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Measuring total scattering data

The effect of Q-space resolution

S(Q)
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Higher resolution in reciprocal space = less damping in PDF
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Measuring total scattering data

Maximise signal-to-noise ratio
* brighter sources
* lots of detectors
* long (enough) measurement times
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Measuring total scattering data

Maximising signal-to-noise ratio

New, brighter neutron sources
offer a much greater flux of
neutrons.

They will only be useful for
total scattering if the right
instruments are built!

SNS has NOMAD, also second
target station coming?

J-PARC has NOVA.

ESS ???
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Measuring total scattering data

o Sample Tark Barks 6&7
GEM : 142°-171°

Maximising signal-to-noise ratio

- Less bright sources can ”
maximise count-rate by using
as many detectors as possible | o= GEM
around the sample. AR bl b Since 1399

5°-120 13°-21° 24°-45°  Speom4e 79°-106° 106°-114°

- This also increases the d/Q
range accessible, BUT...

- ..theinstrument resolution
varies with 20 and flight path.
Polaris upgrade

- Which makes data processing Since 2012

somewhat more complicated!
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Measuring total scattering data

Maximising signal-to-noise ratio
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- Itis not surprising that shorter
measurements produce noisier data.

- How much of a problem this is will depend

on the specifics of the sample and
experiment! &
—
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Measuring total scattering data

Measure all background contributions carefully
* non-sample scattering must be removed
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Measuring total scattering data

In an ideal situation we would have a sample floating in “mid-air”,
but in most cases this isn’t going to be possible...

- Sample
- Container(s)

, Sample environment(s)

/ Instrument

\
~ 0
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Measuring total scattering data

- Removing “background” is easy if the sample
is in a thin vanadium can or TiZr cell.

- Itis much more difficult when the
environment is more complicated, e.g. in situ

cells or the Paris Edinburgh press.

- More, and longer, background
measurements will be required.

- SE design should seek to minimise
background contributions.

- Data quality may always be compromised?

£
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Measuring total scattering data

Minimising and removing background scattering

2.0
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1.5
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This is the first Ce-O peak!
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- These data are from several grams of CeO,
in a glass tube.

- Although CeO, Bragg peaks are clearly
visible, the total scattering is dominated by &
the tube!

e tube
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Measuring total scattering data

Process the data carefully and appropriately
* put the data on an absolute scale
e understand instrument geometry and calibration
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Measuring total scattering data

Going from raw counts to F(Q)
- Generally for diffraction

analysis, the raw spectra
12 A are grouped into “banks”
of similar scattering angle.
10 A
- What about total
8 - scattering?
P
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Measuring total scattering data

The dangers of incorrect calibration

Intensity

U aves iy
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Measuring total scattering data

The dangers of incorrect calibration

Intensity

Q/A!
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Modelling total scattering data
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Introduction

The pair distribution function (PDF)

Si-O

Visual inspection can provide
information about:

3. 0-0 - bond lengths

- coordination numbers

—
% - level of disorder
L 2- - identities of species involved
a
o
...more detail comes from modelling!
1 4

Si-Si
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Modelling total scattering data

Modelling techniques

There are two main ways in which detailed structural information can be extracted from total
scattering data: small box and big box modelling.

Small box modelling:
- Crystal structure refined to fit the

. Data PDF: “real-space Rietveld”
—— Calculated - Limited to crystallographic
— Difference descriptions of structural

parameters.

- ldentify discrepancies between
average and local structure.
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Modelling total scattering data

Modelling techniques

There are two main ways in which detailed structural information can be extracted from total
scattering data: small box and big box modelling.

Big box modelling:

bt K Sl By - Reverse Monte Carlo (RMC).

—> PRPAAS f'";',ﬂ.j! - Supercell of >10,000 atoms,

‘ P ¥ moved at random to obtain best
possible agreement with all data.

,. - Atomistic model that is consistent

5 with input data.

—— Data - Not constrained by symmetry.

moves

D()
D(r)

T T T T T T T T
1.0 15 2.0 25 3.0 35 . . . X .
r (A) icieSnci &S'I'echnology Facilities Council




The Reverse Monte Carlo Algorithm

Atomic configuration € - = - - - === — - - - I

Calculate scattering functions and compare with data

Calculate goodness-of-fit parameters

L e e - -

> Move a random atom a random amount € = == — = — —

Recalculate scattering functions

v

Calculate change to goodness-of-fit

Improves Worsens

Move accepted |€— Move rejected or accepted
(dependent on probability)

v
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Atomic configuration |é ———————————— I

Calculate scattering functions and compare with data
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L e e - -
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Recalculate scattering functions

v

Calculate change to goodness-of-fit

Improves Worsens
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v
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5A

The Reverse Monte Carlo Algorithm N—
Atomic configuration @ o o
* Thisis a “box of atoms” ° ° °
Single unit cell
* Needs to be fairly large: 10,000 — 100,000 atoms B 50 A S

e Crystalline material:
- supercell of the (refined) unit cell
- careful if partial/mixed occupancy
- check for unphysical distances

*  Amorphous material:
- distribute atoms randomly
- molecular dynamics simulation
- other possibilities?

10 x 10 x 10 supercell

& Science & Technology Facilities Council




The Reverse Monte Carlo Algorithm
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The Reverse Monte Carlo Algorithm
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The Reverse Monte Carlo Algorithm

Atomic configuration € - = - - - === — - - - I

Calculate scattering functions and compare with data

Calculate goodness-of-fit parameters

L e e - -

>| Move a random atom a random amount k— ———————

Recalculate scattering functions

v

Calculate change to goodness-of-fit

Improves Worsens

Move accepted |€— Move rejected or accepted
(dependent on probability)

v
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The Reverse Monte Carlo Algorithm

The power of randomness

- Without the constraints of symmetry, the
RMC algorithm can explore more of phase
space.

- This can be necessary to model certain
types of systems.

- Take this doped CeO, as an example...

£
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The Reverse Monte Carlo Algorithm

| —— Nb-doped CeO,

The power of randomness 41 ——Ceo,

- Without the constraints of symmetry, the
RMC algorithm can explore more of phase
space.

G(n)

- This can be necessary to model certain
types of systems.

r (A)
- Take this doped CeO, as an example...
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The Reverse Monte Carlo Algorithm

1 —— Nb-doped CeO

The power of randomness 41 ——Ceo,

2

- Without the constraints of symmetry, the
RMC algorithm can explore more of the
phase space.

G(n)

- This can be necessary to model certain
types of systems. N

- Take this doped CeO, as an example...

i,
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The Reverse Monte Carlo Algorithm

Atomic configuration € - = - - - === — - - - I

Calculate scattering functions and compare with data

Calculate goodness-of-fit parameters
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Recalculate scattering functions

v

Calculate change to goodness-of-fit

Improves Worsens

Move accepted |€— Move rejected or accepted
(dependent on probability)
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The Reverse Monte Carlo Algorithm

Why accept some “bad” moves?

- If only “good” moves are
accepted, you risk getting stuck
in a local minimum.

- The probability of accepting a
“bad” move depends on how
much it worsens the goodness-
of-fit.

“Energy”

\

Local minima

- Moves that violate hard T
constraints are always rejected. |

Global minimum
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Time for a break!
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Case Study: Gallium Oxide
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Case Study: Gallium Oxide

A disordered polymorph of Ga,0,

6.5 1
60{ R,,=1.36%
5.5 1

5.0 - Potential photocatalyst and
40 catalyst support

4.0
3.5 1
3.0 1
2.5+ X
2.0 1
1.5

1.0 £ 8x¥ TW WV,

0.5 y h
0.0

-0:5 L N Y O [ [

06 08 10 12 14 16 18 20 22 - Rietveld refinement reveals four
d-spacing / A partially occupied Ga sites

- Structure poorly understood

Diffracted intensity / a.u.

- Cubic spinel structure

- Nanocrystalline

Science & Technology Facilities Council
H. Y. Playford, A. C. Hannon, E. R. Barney, and R. |. Walton, IS I S
Chem. Eur. J., 2013, 19, 2803-2813. —



Case Study: Gallium Oxide

2.5

: = Observed
20 ] —— Calculated

1.5+

|

¥ 1

& Y
LB

5 4
X
e

—— Difference

- Small-box modelling of the PDF

o
c - Medium-to-high r agrees well
§ with average crystal structure
a 15 n - Large discrepancies in local
2.0 ‘UWMV"V e r A A S Pt structure
-2.5 1
o 5 10 15 20 2 - Improved fit when lower

r/A symmetry model is used, but it is
a purely local effect

D(r) / barns A
D(r) / barns A

-2.0
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Case Study: Gallium Oxide

- Improved fit when lower
symmetry model is used, but it is
a purely local effect

D(r) / barns A
D(r) / barns A

-2.0
-2.5
1.0
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Case Study: Gallium Oxide Random starting model:
Ga-Ga< 1A
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Case Study: Gallium Oxide
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Case Study: Gallium Oxide

X Data

—Rue RMC refinement using 6x6x6 supercell
51 % ' - vastly improved fit to local structure

O
\Avavavavaes S

BROOK
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IO

RMC

Ideal cubic model
' 1 ' 1

1
2.0 2.5 3.0 3.5 4.0
r/A
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Case Study: Gallium Oxide

- maintains correct average

Collapsed RMC box Unit cell
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Case Study: Gallium Oxide

Weighted Ga-O partials

1 % —Ga, -0
167 —Ga_-O _

‘ — Gcao RMC provides bond length and
1.2 S 48f ) ) )

] ——Ga, -0 angle distributions:
0.8 - Sum

G(r)

X

] Data - these distributions are the
0.4

G(r)

sum of 200 refined “boxes of
00 _ atoms”
— T
He ri'(;\ v - the O, sites are highly
Non-weighted Ga-O partials distorted
1 —Ga, -0
10 ——Ga, -0
8 —Ga,, O
6 —Ga, O
4
5
0

T T T T T T T T T

1.6 1.8 2.0 2.2 24
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& Science & Technology Facilities Council
H. Y. Playford, et al., J. Phys. Chem. C, < > IS I S

2014, 118, 16188-16198.




Spinel T site

Case Study: Gallium Oxide ——
1 — Refined
% 0.05 1
o
RMC provides bond length and
angle distributions: "0 I
0 20 40 60 80 100120140160180
- these distributions are the 0-Ga-0 bond angle (°)
sum 01"’200 refined “boxes of Non-spinel T, site
atoms — Starting
|—— Refined
% 0.05
- the crystal structure defines “ ]
two very different T, sites 0.00 N

_ but |Oca||y these Sites are 0 I2IOI4IOI6IO 80 Il(I)OI12IOI14I‘rOI1(I50I18O

. e 0-Ga-0 bond angle (°)
very similar
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Case Study: Gallium Oxide

A disordered polymorph of Ga,0,

O O O 18 20 22 24
[4+2] [3+3] /A

The data clearly show the octahedra are distorted, but what do they actually look like?

- multiple RMC runs provide ensemble of >700,000 polyhedra to analyse!

- 50% all 6 bonds shorter than the mean bond length
- 40% [3+3] type

& Science & Technology Facilities Council
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Case Study: Gallium Oxide

A disordered polymorph of Ga,0,

O O O 18 20 22 24
[4+2] [3+3] /A

The data clearly show the octahedra are distorted, but what do they actually look like?

- multiple RMC runs provide ensemble of >700,000 polyhedra to analyse!

- 50% all 6 bonds shorter than the mean bond length
- 40% [3+3] type

Thermodynamically stable 3-Ga,0; has [3+3] type...

Locally, cubic y-Ga,0; = monoclinic 3-Ga,0,

& Science & Technology Facilities Council
H. Y. Playford, et al., J. Phys. Chem. C, < > IS I S
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A closer look at RIVICProfile
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RIVICProfile

* Implementation of the RMC algorithm particularly suited to crystalline
materials.

* “Profile” refers to the Bragg profile — a very important constraint for average
structure.

* Based on the original RMCA code of McGreevy and Puzstai, extended by
Matt Tucker (now at ORNL).

* Developers from many institutions including ISIS, ORNL, QMUL, Oxford,
Cambridge, NIST, Chalmers...

* The program is available online at www.rmcprofile.org

* It can fit multiple datasets (X-ray and neutron PDF, F(Q), Bragg)...

e ..and use “chemical sense” in the application of appropriate constraints.

& Science & Technology Facilities Council


http://www.rmcprofile.org/

RIVICProfile

PDF

F(Q)

Bragg profile

EXAFS

Single crystal diffuse

_- Hard sphere cutoff

//
&

«———— Distance window

<+<--— Polyhedral constraints

‘\

~~= Molecular potentials

~~ Bond valence sum

& Science & Technology Facilities Council




RIVICProfile

e Current version: RMCProfile 6.7.x R I I C

- was developed at ISIS by Wojciech Slawinski
- incorporation of various user requested features RO FI l— E
- improved usability
www.rmcprofile.org

* RMCProfile 6.8
- final release of version 6 (coming soon)
- incorporation of developments from Igor Levin’s team at NIST

« RMCProfile 7.0
- being developed at ISIS by Wojciech Slawinski
- big news: multiphase RMC (multiple ‘boxes’ of atoms)
- currently in need of input from users
- available now for interested beta testers!

 RMCProfile 7.1 and later
- speed and efficiency improvements
- developments for nanostructured systems
- improved support for X-ray data
- regular incremental updates

& Science & Technology Facilities Council
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RIVICProfil
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Unit cell

A “live” demonstration Q C Q
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- Perovskite </ o '

supercell
- Surprisingly complex phase diagram!
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RIVICProfile G H
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RIVICProfile

A “live” demonstration
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RIVICProfile
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[=] batio3_4hr dat EH]

TITLE :: BaTiO3 4hr
MATERIAL :: BaTiO3
PHASE :: Tetragonal
TEMPERATURE :: 253
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RMCPrOfile 26 NEUTRON REAL SPACE DATA :: 1

27 > FILENAME :: batio3 rmc 4hr 32.55%.gr
DATA TYPE :: G(r)

FIT TYPE :: D(r)

START POINT :: 1

END POINT :: 1000

CONSTANT OFFSET :: 0.00

WEIGHT :: 0.003

NO FITTED OFFSET

NO FITTED SCALE

L
(%]
WOONOONON NN NN

NEUTEON RECIPROCAL SPACE DATA :: 1
38 > FILENAME :: batio3 rmc 4hr 32.55%.fg
DATA TYPE :: F(Q)

FIT TYPE :: F(Q)

START POINT :: 1

END POINT :: 1620

CONSTANT OFFSET :: 0.00
CONVOLVE

WEIGHT :: 0.100

NO FITTED OFFSET

NO FITTED SCALE

L
WOONOONON NN N YW

45 BRAGG
BRAGGE SHARPE :: gsas3
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RECALCULATE
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RIVICProfile

DISTANCE WINDOW
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RIVICProfile

RMCProfile

C:\RMCProfile package>cmd.exe/K "“call exe\setup_cmds.bat C:\RMCProfile package"

C:\RMCProfile package>echo OFF
C:\RMCProfile package>cd C:\Users\jjm23479\Desktop\Demo\batio3 demo

C:\Users\jjm23479\Desktop\Demo\batio3 demo>rmcprofile batio3 4hr > log.txt
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RIVICProfile

A “live” demonstration

- In most cases, the y?
drops quickly at first,
and then gradually
approaches
convergence.

0.5

convergence is reached
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\
A
X within an hour or so...
X

Convergence reached - Let’s have a look at the
results (live!)
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1 10 100
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RIVICProfile

A “live” demonstration
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RIVICProfile

A “live” demonstration
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RIVICProfile

A “live” demonstration
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RIVICProfile

Requirements for a successful RMCProfile refinement:

* Quality data

* Multiple datasets

e Single phase sample

e Good powder average

* Average structure well-characterised
* Understanding of structural chemistry

* Targeted analysis of refined configurations
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RIVICProfile

Why was the gallium oxide case study successful?
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v

- Data were from GEM, a TOF diffractometer optimised for TS measurements
- The instrument was well calibrated

- The data were of good statistical quality
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v
* Multiple datasets v

- Bragg diffraction pattern and TS data fitted simultaneously
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v
* Multiple datasets v

e Single phase sample v
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v
* Multiple datasets v
e Single phase sample v

e Good powder average v
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v

* Multiple datasets v

e Single phase sample v

e Good powder average v

e Average structure well-characterised v

- | did a very thorough Rietveld investigation before beginning the PDF analysis
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v

* Multiple datasets v

e Single phase sample v

e Good powder average v

e Average structure well-characterised v

* Understanding of structural chemistry v

- | knew what kinds of bonding environments Ga “preferred” and how close it could
get to other atoms.
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RIVICProfile

Why was the gallium oxide case study successful?

* Quality data v

* Multiple datasets v

e Single phase sample v

e Good powder average v

e Average structure well-characterised v
* Understanding of structural chemistry v

* Targeted analysis of refined configurations v

- | wanted to understand how the octahedral sites were
distorted, and my analysis reflected that.
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And another thing...
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Conclusions

* Total scattering is an extension of powder
diffraction that changes the viewpoint from
average to local.

e Itisincredibly useful (and we have not yet
found its limits) but it is NOT magic.

* The pair distribution function is simple and
intuitive, but real structural information
requires modelling!

* Reverse Monte Carlo refinements using
RMCProfile produce atomistic models that are
consistent with all available data

: * Requirements for success include prior
Z * characterisation and an understanding of what
gf‘? ', you want to know about your structure.
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