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Basic introduction to diffraction 

• The lattice 

• Crystal systems 

• Centering 

• 3-D lattice types 

• Miller indices/planes 

• Bragg equation 

• Ewald Sphere 

• Reciprocal lattice 

• Conditions for observing diffraction 

• Laue diffraction 

 

 



Lattice & unit cells: 1-D 

Lattice + Motif = Structure 

 

The motif can be an atom, molecule, part of a molecule or several molecules 



Lattice & unit cell: 2-D 

All the cells highlighted are equally valid. All will reproduce the 2-D lattice 
array. The convention is too choose the smallest cell that also represents the 
symmetry of the structure. 



Lattice & unit cell: centering 

Rules for unit cell selection: 

• Unit cell should show the symmetry of the crystal 

• Origin should be a geometrically unique point, priority given to an 
inversion centre 

• Basic vectors should be as short as possible and the angle between them 
as close to 90° as possible. 

• ALL angles diverting from 90° should be larger or smaller (convention is 
larger) 



Lattice & unit cell: 3-D 

The unit cell has lattice 

parameters defined by the cell 

length a, b, and c, and the cell 

angles a, b, and g: 

g is angle between a and b 

b is angle between a and c 

a is angle between b and c 

 

Atomic positions are given as 

xyz coordinates: 

x is fraction of a axis 

y is fraction of b axis 

z is fraction of c axis 
Conventions 

• cell parameters are in Å or pm  

• Angles are in ° 



Lattice & unit cell: 3-D crystal systems 

Triclinic 
 

Monoclinic 
 

Orthorhombic 
 

Trigonal 
 

Hexagonal 
 

Tetragonal 
 

Cubic 

a ≠ b ≠ c 
 

a ≠ b ≠ c 
 

a ≠ b ≠ c 
 

a = b = c 
 

a = b ≠ c 
 

a = b ≠ c 
 

a = b = c 

a ≠ b ≠ g ≠ 90° 
 

a = g = 90°    b ≠ 90° 
 

a = b = g = 90° 
 

a = b = g ≠ 90° 
 

a = b = 90°    g = 120° 
 

a = b = g = 90° 
 

a = b = g = 90° 



Lattice & unit cell: 3-D cell setting 

NB: Atom types are identical even  
though coloured differently  

Primitive 
P 

Body centred 
I 

Face centred 
F 

Side centred 
C (A/B) 



Lattice & unit cell: 3-D lattice types 

7 crystal classes 
14 Bravais Lattice types 
230 space groups 



Miller indices / planes 

Unit cell planes can be defined by the notation 
called Miller indices. The Miller index is given as a 
hkl number where h, k, and l are reciprocals of the 
plane with the x, y, and z axes. 
 
To obtain the Miller indices of a given plane 
requires the following steps: 

Step 1. The plane in question is placed on a unit cell.  
Step 2. Find its intercepts with each of the crystal axes.  
Step 3. The reciprocal of the intercepts are taken.  
Step 4. Multiply by a scalar to get a ratio of integers. 



Miller indices 

d001 

d100 

d010 

For higher symmetry cells 
interplane distances are identical 
d001 = d010 = d100 for cubic 

The higher the Miller index the 
less distance there is between 
equivalent planes, dividing the 
unit cell into ever smaller slices 

http://upload.wikimedia.org/wikipedia/commons/e/ed/Miller_Indices_Cubes.svg


The Bragg equation 

• Constructive interference occurs when the waves reflected from adjacent 
scattering planes remain in phase – diffraction peak is observed 

• The path difference travelled by waves between adjacent planes must be 
an integral multiple of the wavelength 

 n = 2dsin 



Distance between Miller planes 



Ewald sphere 

• A sphere of radius 1/λ (2-D projection shown above) 

• Potential diffracted X-rays/neutrons can be along any radius from the 
centre of the sphere to the circumference (including out of plane in the 
projection above). This represents the experimental possibilities (λ, 
possible 2θs) 



Reciprocal lattice 

• Alternative view of the crystal structure (hk0 plane illustrated)  

• The reciprocal lattice consists of points which represent diffraction 
possibilities 

• Each point can be labeled with a Miller index 

• The units of this lattice are a*, b* and c* and any point can be reached 
using the vector equation d* = ha* + kb* + lc* 



Condition for observing Bragg 
diffraction 

• Diffraction observed when a reciprocal lattice point intersects Ewald sphere  

• Crystal rotation brings other lattice points into contact with Ewald sphere 

• The vector from origin to lattice point is d* (reciprocal lattice spacing) is red 
– it is exactly equal to 1/d and its direction is perpendicular to the hkl plane 

• The direction of the diffracted ray is indicated in green 



Laue Diffraction 

• Wavelength band to sample a larger 
volume of reciprocal space 

• A wide wavelength band covers a large 
reciprocal space volume 

• Limits are λmin, λmax, the accessible 
scattering angle of the instrument and the 
diffraction limit of the crystal 

• All reciprocal lattice points that lie in the 
shaded region will be sampled 
simultaneously 

• More chance of spatial overlap of 
reflections, particularly with large unit 
cells 

• Detector technology becomes paramount 
– image plate v continuous output 

• Wavelength band must be well 
characterised for data normalisation 



Diffraction measurements 



Single crystal diffraction 



Single Crystal Diffraction 

Direct observation of the reciprocal lattice 



Powder diffraction in reciprocal space 
• Many crystallites with random 

orientation mean that each reciprocal 
lattice point will occur in every 
orientation possible, broadening into 
the surface of a sphere with radius d* 

• The intersection of the Ewald sphere 
and the reciprocal lattice becomes a 
cone (intersection of 2 spheres) 

• The directions of the vectors are lost 
and only the lengths of the reciprocal 
lattice vectors are measurable with 
powder diffractometers 

• 3-D information collapsed into 1-D 



Powder diffraction 



Powder diffraction 



Not enough crystallites or a non-powder average 

When number of crystals is too 
small, the pattern becomes “grainy” 
-- diffraction from individual crystals 
dominate. 

• Increase sample size 

• Grind the sample to decrease 
domain size 

• Oscillate or rotate the sample 

• Use area detection & integrate 
the entire ring 

 



Not enough crystallites or a non-powder average 



Miller plane equivalence in powder diffraction 
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All equivalent planes occur at same scattering angle  
All planes separated by the same distance occur at one scattering angle in powder 
diffraction 
e.g. (511) and (333) occur at same 2θ for a cubic material 

http://upload.wikimedia.org/wikipedia/commons/e/ed/Miller_Indices_Cubes.svg


Diffraction and periodicity 



Diffraction: Order and periodicity 
• It was long thought that to give rise to diffraction a structure must be both 

ordered and periodic – in order to fill all available space and requires 
translational symmetry. 

• This is represented by the crystallographic restriction theorem where 
only 2-, 3-, 4- and 6-fold rotational symmetries are allowed in periodic 
arrays. 

• Aperiodic tiling patterns were discovered by mathematicians in the 1960s 
– popularised by Penrose tiling in the 1970s. 

• Quasicrystals, displaying 5- or 10-fold rotational symmetry were 
discovered in the 1980s by Dan Shechtman and caused a paradigm shift in 
crystallography. 

• Quasicrystals are ordered, aperiodic structures that lack translational 
symmetry but are formed from a large number of elements with regular 
spacing – hence they diffract. 



Dan Shechtman’s lab book and first 
published electron diffraction pattern 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/
2011/shechtman-lecture_slides.pdf 



Quasicrystals and diffraction 



Using X-rays or neutrons for powder 
diffraction? 



X-ray cf. neutron for diffraction 

X-rays 

Small samples 

Strong sample absorption 

High energy (1 Å = 12.4 keV) 

Low penetration depth 

Light elements hard to detect 

Scattering power highly Q dependent 

Neighbouring elements cannot be 
discriminated 

High availability (lab) 

Cannot distinguish isotopes 

Magnetic structures not easily probed 

Neutrons 

Large samples 

Low sample absorption 

Low energy (1 Å = 81.81 meV) 

High penetration depth 

Light elements scatter well 

Scattering power almost Q independent 

Neighbouring elements can be 
discriminated 

Low availability (large scale facility) 

Isotopes can be distinguished 

Magnetic structures easily probed 

 



X-rays and neutrons are complementary  
probes for diffraction 

Neutrons 

X-rays 

Electrons 

Neutron diffraction is used for problems that X-rays cannot address or 

inadequately address 



Structure solution & refinement 



Structure solution and refinement 



Process for structure solution 



Another view of structure solution 



Intensity and structure factor 

Ihkl  |Fhkl|
2 

 

 

 

Fhkl  Σ fi exp[2i(hxi + kyi + lzi)] exp(-UiQ
2/2) 

Measured intensity proportional to Fhkl
2 and so we cannot tell 

whether Fhkl is positive or negative – the Phase problem 

fi is the scattering 
power (form factor of 
the ith site i.e. (xi,yi,zi) 
and incudes 
fractional occupancy 

Contribution of the ith 
site to the Fhkl in 
question 

Atomic 
displacement of 
the ith atom site 



The phase problem 

Illustrated by the Fourier duck and cat  

A duck  FT of a duck  

Credits to: 

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html 



The phase problem 

Illustrated by the Fourier duck and cat  

A cat  FT of a cat  

Credits to: 

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html 



The phase problem 
Let’s go a step further and mix them up. What happens if we take the 
magnitudes of the duck transform and the phases of the cat transform? 

FT with the brightness (magnitudes) of the duck 
FT and the colours (phases) from the cat FT 

Credits to: 

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html 



The phase problem 

And the other way round? Cat FT magnitudes and duck FT phases… 

In each case the image that contributed the phases is still visible, whereas the 
image that contributed the magnitudes is gone! 

Credits to: 

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html 



The phase problem 

Ihkl  |Fhkl|
2 

In diffraction we measure the magnitudes and not the phase. The phases 
contain the bulk of the information. This is why crystallography is hard…. 

 

 
…but not impossible. We can recover phase information from: 

• Related or isostructural materials 

• Knowledge of atom positions (heavy atoms from X-rays) 

• Known motifs (molecules) 

• Brute force 

 

 



Other factors contributing to measured intensity 

IK=SMKLK|FK|2PKAKEK 
 

• S is an arbitrary scale factor 
– used to adjust the relative contribution of individual phases to the 

overall diffraction pattern 

• M is the multiplicity of the reflection 
– accounts for the fact that some observed diffraction peaks are 

actually the product of multiple equivalent planes diffracting at the 
same position 2θ (for example, (001) (100) (010) etc in cubic) 

– automatically calculated based on the crystal structure 

• L is the Lorentz polarization factor 
• P is the modification of intensity due to preferred orientation 
• A is the absorption correction 
• E is the extinction correction 
• F is the structure factor, which is the amplitude of the scattering 

due to the crystal structure 

 



Process of structure refinement 



The Rietveld method 

• Originally written to analyse neutron powder 

diffraction data 

• Both nuclear and magnetic structure refinement 

• Adapted for X-ray methods in 1977 by Young 

• Thousands of publications per year published 

using the method 

• It is the reason powder crystallography is so 

successful!! 

Hugo M. Rietveld 1932-2016 

“NASA would never have sent an X-ray powder diffractometer to 

Mars without the Rietveld method” (David Blake, 2012) 



Rietveld refinement software 

Many programs out there. Well used examples include: 

• GSAS 

• GSAS-II 

• Fullprof 

• Topas 

• Jana 

• Maud 

• Reitan 

• BGMN 

• Etc… 

 



The Rietveld method 
What it is not: 

• For phase identification 

• For structure solution 

 

What it can tell us: 

• Phase quantities 

• Unit cell dimensions 

• Atomic coordinates / bond lengths / substitutions and vacancies 

• Strain and texture effects 

 

What you need: 

• Good quality data 

• A good starting structural model 

• An instrument description file 

 



• The intensity, Yic, of each individual data point i is calculated using the equation:  

 

 

 

• We already know how to calculate IK, the intensity of the Bragg diffraction peak k: 
IK=SMKLK|FK|2PKAKEK 

• Yib is the intensity of the background at point i in the pattern 

• k1 - k2 are the reflections contributing to data point i in the pattern 

– sometimes multiple Bragg diffraction peaks overlap, resulting in multiple contributions 
to the observed intensity at a single data point 

• Gik is the peak profile function 

– this describes how the intensity of the diffraction peak is distributed over a range of 
2theta rather than at a single point 

– this profile is due to instrument broadening, sample broadening, etc 

The Rietveld method 

Y Y G Iic ib ik k

k k

k
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
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The Rietveld method 



Basic refinement procedure 

Experimental 
diffraction pattern 

Starting crystal 
structure (.cif, ICSD) 

Instrument file 
(.inst, LaB6 
standard) 

Refine: 
• Background 
• Lattice parameters 
• Peak intensities 
• Peak shapes 
• Peak positions 
• Phase fractions 

Assess: 
• Goodness of fit/R 

factors 
• Impurity phases 
• Peak/background 

shapes 
• Difference pattern 



Initial model  



Final refined model 



Common mismatches in data and model 



Peak position mismatch 

Wrong peak positions? Refine: 

 

• Unit cell dimensions 

• Zero point 

• Sample height 

 

 



Lattice parameters / zero point refined 



Wrong absolute intensities 

Incorrect overall scaling factor 

 

 



Refined scale factor 

Better but still not fixed 

Refine atomic model, site occupancy factors, displacement 
parameters, preferred orientation 

 

 



Refined atomic model 

Better but still not complete 

Refine peakshape, crystallite size and micro-strain 

 



Final fit 



Complete guide for Rietveld refinement 



Wise words… 



Background and theory 



Some common challenges/problems 

• Incorrect starting crystal structure 

• Poor quality data! 

• False minimas 

• Refinement diverges (“blows up”) 

• Over interpretation 

• Refine unnecessary variables 

• Parameter correlation 

• Which goodness of fit to choose? R vs. Chi sq? 

• Preferred orientation 

• High background 

• Ignores non-Bragg diffraction peak information 

 



Links to useful information 

Rietveld videos… 

• https://www.youtube.com/watch?v=rG14YjLK9xQ 

• https://www.youtube.com/watch?v=mnxd5ACqR9E 

• https://www.youtube.com/watch?v=mcuLF0Szd4w 

 

Rietveld Tutorial links 

• http://www.ccp14.ac.uk/solution/gsas/gsastutorials.html 

 

Quasicrystal books and structure analysis 

• https://www.jstor.org/stable/24936867?seq=1#page_scan_tab_contents 

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099788/ 
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