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Myself
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Myself

* MSc Mathematics
* BSc Physics
* PhD Physical Chemistry

» Postdoc at University of
Milwaukee

 Assistant professor
Argentina

* Fellow CONICET,
Argentina

* Postdoc Reading
University

e TOSCA Instrument
Scientist at ISIS
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The S(Q,w) Map

g-alumina 14.3g 1.81AT=4.2K

2.5x10"
g-alumina 14.3g 1.81AT=4.2K 2.0x10°
1.5x10°
1.0x10°
5.0x10°

28

E (meV)

2 4 6
lQl (A"

»=0 Elastic Scattering Diffraction

Structural Information
#‘,OAKRIDGE

- National Laboratory

Instrument Webinar
June 2018



Energy transfer (cm-1)

"Let there be light"
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Scanning Technigues
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The easy part: Neutron Diffraction
Instrument layouts

CW TOF

detector
, detector

Source

Ll
Source 3] I
I sample

| = 3956 _ 3956 (t—to)

n AA ~ 6ty 6t, 6L
AL 6d No correlation between| and 6
= = T + cot 6866

Correlation between | and 6,

Science & Technology Facilities Council
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The hard part: Neutron Spectroscopy

CW

,/  detector

In order to discriminate the final energy, we need 2 crystals instead of
one!

This is a triple axis instrument (in a continuous source)

We need to work twice as hard!

#,OAK RIDGE

Instrument Webinar National Laboratory

June 2018



Instruments

Spectrometer configurations

moderator

Direct geometry

Inverted geometry

monochromatic beam:;

white beam . energy = E; Q

monochromator
(e.g., chopper,
crystal, filter,...) ho = E; - E;

sample

o / \ detector

(by monochromator) measured
white beam O

moderator

{‘E/v
Instrument Webinar
June 2018

X @
measured fixed

ho = E; - E sample
(by monochromator) detector

ho = E, - E; ¥ OAK RIDGE

National Laboratory



How to measure INS (1)
Direct Geometry Instrumentation

Incident neutron beam is
monochromatic
determining the incident
energy E;.

That determines T,. We
measure the ToF and we
can work out T,.

Instrument Webinar
June 2018

Distance

Direct geometry instruments

measure Q trajectory is
determined by the angle
and energy transfer.

Examples: ARCS, CNCS,

HYSPEC, SEQUIOA

Energy transfer (cm™)

time

4000 4
3500 4

3000

N
a
o
[s)

n
o
o
=]

=
ul
(=
=]

1000

500

Intensity (A.U.)

Neutron counts

T T T T
0 10 20

Momentum transfer (A™)

T T T T 1
20 30 4 50 60 70
Energy (mevg

r T : : : ! : T ;
12000 13000 14000 15000 16000
ToF (ns)

Resolution is almost
constant in units of E;
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How to measure INS (2)

Indirect Geometry Instrumentation

<>
-

WA

Energy transfer (cm™)

Distance

time

Incident neutron beam is white. We
fix the energy of the scattered
neutrons using a analyzer and filter
device.

That fixes T,. We measure the ToF
and we can work out T,.

Instrument Webinar
June 2018
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TOF method

distance * Use distance to separate wavelengths

t * Need choppers to prevent frame overlap
* Moderator pulse-width and distance determine resolution
* Source repetition rate determines available time-window
* Beam transport crucial

& Science & Technology Facilities Council




Vibrational spectroscopy

As a first approximation, a

W chemical bond between two
molecular potential atoms can be thought of as a
energy curve spring connecting two masses:

K
M AW Ms

', .' Classical mechanics shows
' | that this system vibrates
R with a characteristic frequency:

= (N

where p is the reduced mass:

1 1 1
harmonic approximation ﬁ N\ my T mp

#OAK RIDGE

Instrument Webinar National Laboratory

June 2018



Vibrational spectroscopy

Dynamics at the atomic level is determined by quantum mechanics rather than
by classical mechanics. The relevant problem here is the quantum harmonic
oscillator.

This is still an elementary problem of quantum mechanics. The energy levels of the
oscillator are quantized and given by:
Vibrational energy levels

1 00 .l
E,=hvin+= ir
2 50000 /
0 SRR
(n=0,12,3,..) S
E; 0001
but the characteristic frequency, v, & 2000
is still given by the classical value:
10000
V= (i)w/k/ﬂ E-Il]-.I}S 01 015 02 035 03 035 04 045 05

Interatomic distance / nm

OAK RIDGE

Instrument Webinar LeNational Laboratory
June 2018



Vibrational spectroscopy A

- A molecule with N atoms is a collection
of N masses connected with harmonic

springs. s

- Classical mechanics tells us that such a §
systems has 3N degrees of freedom.

- Three of these degrees of freedom correspond

to translation of the molecule (position of its

center of gravity in space), and three correspond N\ P's
to the orientation of the molecule in space

(rotation about the center of gravity). This leaves

3.N-3-3=3.N-6 R
vibrational modes.

- For example H,0O (N=3) has 3.3 - 6 = 3 modes \
of vibration.

#OAK RIDGE

Instrument Webinar National Laboratory

June 2018



Vibrational spectroscopy
bending

Several types of vibrational modes
In molecules

stretching

4

(bond angle changes)

Two quantities define a vibrational mode:
(bond distance changes)

torsion - frequency

- set of atomic displacements

Notice that in a normal mode of
vibration all atoms move in phase.

(rotation about bond axis;
dihedral angle changes) &

Instrument Webinar
June 2018

OAK RIDGE
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Vibrational spectroscopy

Molecular vibrations are useful to chemists because;

- they depend on molecular structure and interatomic or
intermolecular forces (chemical bonding)

- specific bonds and functional groups are easily identified
(analytical tool)

Table 1 Absorption frequencies of some common bonds (shown in bold type)

bond type of compound frequency
—&| -H (stretch) alkanes 2800-3000
=LL- H (stretch) alkenes, aromatics 3000-3100
=C-H (stretch) alkynes 3300
~-0=-H (stretch) alcohols, phenols 3600-3650 (free)
3200-3500 (H-bonded) (broad)
-O-H (stretch) carboxylic acids 2500-3300
-lll-H (stretch) amines 3300-3500) (doublet for NH,)
E—H (stretch) aldehydes 2720 and 2820
—A‘:é- (stretch) alkenes 1600-1680
—LL =& - (stretch) aromatics 15001600
-CmC-H (stretch) alkynes 2100-2270
B .
- (stretch) aldehyde, ketones, 1680-1740
carboxylic acids

~-CEN (stretch) nitriles 2220-2260

C=N (stretch) amines 1180-1360
-C-H (bending) alkanes 1375 (methyl)
-C=-H (bending) alkanes 1460 (methy] and methylene)
-C-H (bending) alkanes 1370 and 1385 (isopropyl split) %OAK RIDGE

liosuunicie vweuiia National Laboratory

June 2018



Vibrational spectroscopy

How do we observe vibrational modes experimentally ?

Crystallographers use diffraction of some form of radiation (light, electron, x-ray,
neutron,...) to obtain information on the periodic arrangement of atoms in space.
The wavelength of the radiation is comparable to interatomic distances.

Spectroscopists use (inelastic) scattering of radiation (light, x-ray, neutron,...) to
excite vibrational modes. The energy of the radiation is comparable to the
energy associated with the vibrational excitations.

incident E E scattered
neutron \/ neutron

(conservation of energy)

Upon interacting with a vibrational mode, the incident neutron loses
energy (from E; to E;). The difference in kinetic energy is used to

create a vibrational quantum.
¥ OAK RIDGE

National Laboratory
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Vibrational spectroscopy

As long as we have a way to determine E; and E; and the number of particles
with energy E; and E;, we can determine the number of excitations
(vibrational modes) created with an energy of ho = E;-E;. The result is the
vibrational spectrum:

AN ~u
"\* )/'
" -
Y ¥
~ ~ ~

LI
Q
O | | |
Symmetric Antisymmetric In-plane T
stretching stretching scissoring o V2
O — —
il > ~, P > 0
WP QO @ g |
[
q-) e —
]
~ N ~ R i i
In-plane Out-of-plane Out-of-plane 0 5
rocking wagging twisting _.% o
o
§ -
incident scattered * g
neutron \/ neutron o

o I} 1 1 1 I 1 1 1 1
\\/\/\/\’ 0 1000 2000 3000 4000

— energy transfer {cm—1
ho= E;- E; gy ( )

#OAK RIDGE

Instrument Webinar . National Laboratory

June 2018



Vibrational spectroscopy

VISION (INS) Raman/Infrared

Measures dynamics of nuclei (direct)

No selection rules
Great sensitivity to H
High penetration (bulk probe)

Easy access to low energy range
(librational and translational modes)

Q trajectories in the (w,Q) map;
averaging over the Brillouin zone

Weighted by neutron scattering cross
section

Easy to simulate/calculate
No energy deposition in sample

Instrument Webinar
June 2018

Measures response of electrons
(indirect)

Selection rules apply
Cannot always see H
Low penetration (surface probe)

Low energy cutoff applies (on the
order of 100 cm-1)

Gamma point only

Weighted by change in polarizability
or dipole moment

Difficult to simulate/calculate
Heating, photochemistry, ...

#OAK RIDGE

National Laboratory



SNS Instrument Suite

SPALLATION
NEUTRON
SOURCE

¥ OAK RIDGE
-National Laboratory World’s most intense pulsed, accelerator-based neutron source

NEUTRONS.ORNL.GOV

Wide Angular-Range

Nanoscale-Ordered Materials
Diffractometer (NOMAD) - BL-1B

Backscattering

Spectrometer [BASIS) -

Chopper Spectrometer

(ARCS) - BL-18

Liquids, glasses, y and
partially ordered complex materials

neueteind,

BL-2

D: ics of

in materials sclence,
chemistry, condensed matter sciences

Fine-Resolution Fermi Chopper
Spectrometer (SEQUOIA) - BL-17

Dynamics of complex fluids, quantum fluids, magnetism,
condensed matter, materials science

molecular systems, polymers, biology,
chemistry, materials science

USAN BL-1R

™ naliar

Life sclences, polymers, materials sclence,
carth and environmental sciences

Vibrational dynamics in molecular systems, chemistry

Vibrational Spectrometer (VISION) -

BL-16B

Materials science, geology, earth
and environmental sciences
- YABTEA - b

Magnetism Reflectometer *
BL-4A

Chemistry, magnetism of layered
systems and interfaces

Liguids Reflectometer -
BL-4B

Interfaces in complex fluids,
polymers, chemistry

Cold Neutron Chopper
Spectrometer [CNCS) - BL-5

Condensed matter physics, materials science,
chemistry, biology, environmental science

Extended Q-Range Small-Angle Neutron
Scattering Diffractometer (EQ-SANS) - BL-6
Life science, polymer and colloldal systems, materials science,

earth and environmental sciences

Elastic Diffuse Scattering
Spectrometer
[CORELLD - BL-9

Detailed studies of disorder in
crystalline materials

*Scheduled commissioning date

Neutron Spin Echo Spectrometer
(NSE) - BL-15
dynamics of slow

polymers, biological

Michos! O

Hybrid Spectrometer

(HYSPEC) - BL-14B

Hiah.
&l

y in single
crystals, magnetism, condensed

matter sciences

Versatile Neutron
Imaging
Instrument at SNS
(VENUS) - BL-10

Energy selective imaging in
materials science,
engineering, materials

Engineering Materials Diffractometer

[ Opcrating instrument in user program
[ 1+ cosign or construction
I U e consideration

15.G00337A/gim

(VULCAN) - BL-7

Mechanical behaviors, materials sclence,
materials processing

processing, environmental
sciences and biology

Fundamental Neutron
Physics Beam Line - BL-13

Fundamental properties of neutrons

Macromolecular Single-Crystal Diffractometer
Neutron
Diffractometer
(MaNDi) - BL-11B

Atomic-level structures of
membrane proteins, drug

(TOPAZ) - BL-12

Atomic-level

in Y.
biology, earth science, materials science,
condensed matter physics

fractometer

Atomic-level structures in chemistry,
materials science, and condensed matter
physics including magnetic spin structures

ational Laboratory,

%OAK RIDGE

Instrument Webinar National Laboratory
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analyzers

V|S|ON neutron

beam

diffraction
detectors

inelastic

detectors Vibrational spectroscopy with neutrons

« Beam line started commissioning 3 years ago

* Multifunctional beam line: simultaneous
spectroscopy and diffraction

« Dynamic range: 0-1000 meV; resolution: < 1.5%

 Diffraction: 1.5 - 30 A

« Temperature range: 5-700K

« Sample environment: high pressure, electric field,
gas loading, ...

» Great sensitivity to hydrogen, no selection rules,
penetration through matter, ...

%OAK RIDGE

National Laboratory

Instrument Webinar
June 2018



TOSCA

TOSCA

25/10/2005

Detectors

Forward scattering
analysers

Backscattering
analysers

Neutron
beam

%()AK RIDGE

National Laboratory
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Sample environment

A

Largest
single crystal
diamond for
DAC!

JANIS closed-cycle
refrigerator (5-600K)

optical
gas spectrometer

“ut

=

refrigeration

- chamber in situ electrochemical impedance

spectroscopy (EIS)

laser
helium
_~~ gas
temperature
control

15cm

vacuum
" I/ chamber

J vacuum-tight
i: optical
.~ coupling
sample
container ortho/para H,
converter

12cm

L~

8.5cm

imsituesimedtaneous Raman and INS
June 2018




) : : WO, 0~ _ _CHs
High throughput: INS in minutes o S Lo _d\
OctaMethyl POSS (1 gm) Measured at VISION 0/ | c{\ SQ'CHSXO
HiC-si i~
I T I I I [ I I I I I I I I I I I I I I I ,\Siés :?S{?DIS CH
[ * — Run time: 0.18 min | ™° CHy
B - Run time: 1.45 min .
g I Run time: 5.72 min | |
= 1000 - — Run time: 23.3 min |
N - Run time: 92.1 min .
1)
E so0 [ _
3 - 1
L) N Rl | s :

0 10 20
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40 50

Energy transfer / meV

400

200

Normalized intensity

OctaMethyl POSS (1 gm) Measured at VISION

— Run time: 1.45 min
Run time: 5.72 min
Run time: 23.3 min

1 1 I | 1 1 1 I | 1 1 1 1 | 1 1 1 1
10 20 30 40 50
Energy transfer / meV

With 14 inelastic banks and 16 diffraction

banks, VISION has the highest data rate

(up to millions of events per second) among
all neutron beamlines in the world.

 |INS database
 Parametric studies

« INS study of kinetics %OAKRIDGE

National Laboratory



VISION Sample changer

The high throughput rate of VISION
requires very rapid sample changes
to make the best use of neutron
beamtime and run mail-in program.
A sample changer has been tested
in January 2017 and will be
commissioned this cycle.

Instrument Webinar
June 2018



High Throughput

Instrument Webinar

June 2018

Challenges Opportunities

- Large volume of Data - Databases and Libraries

« How to handle large number of < Parametric studies
samples

— Sample changers
— Sample environment

» Kinetic studies
* In-situ studies

— Gas handling - Small signals in large
- How to model and interpret the ~ Packgrounds
results * Modeling

%OAK RIDGE

National Laboratory



The energy spectra
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National Laboratory
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Integrated modeling for data interpretation

Today this is what we do at
VISION using VirtugeS

(Virtual Experiments in
1 Fundamental transitions
SpeCtrOSCO py) 5 1st overtones and combinations
2nd overtones and combinations
1600 cores cluster - 310 quaium evenis
s g 1 otal calculate
dedicated to VISION . Measured at VISION
e P— — T e
2 ]
(%]
z
14
0
CASTEP Neutron Energy Loss (1/cm)
VASP Vibrational modes INS simulation Simulated INS
Quantum —> and frequencies —> (OClimax) —> spectra
Espresso
Gaussian - Measured INS
Data reduction and spectra
Sample —> VISION | —> analysis (Mantid) . .
—>» | Measured diffraction
Structure- : : : :
dynamics —>| Understanding mechanisms and properties at atomic level
correlation
Peak assignment — Mapping out the local potential energy profile using finite
(An)harmonicity displacement, frozen phonon, molecular dynamics
| . Phase transition | =>| Revealing the kinetics and the transition pathway
nstrument Webinar

June 2018



Comparison

Fundamental transitions

1st overtones and combinations
2nd overtones and combinations
3-10 quantum events

Total calculated

Measured at VISION

[}
|

INS Intensity (arb. unit)

\\\\\\\‘
NN LA\ SETE

)
D) S
1000 1500 2000
Neutron Energy Loss (1/cm)

sample is hexamethybenzene
gOAK RIDGE
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DFT codes

Molecular
Mechanics, DATABASES (RMG-DFT,
Dynamics CP2K, abinit
(LAMMPS, Quantum

GROMACS) Espresso)

[of=

Real Space Eclipse Eigenvectors
Rietveld Visualization Tracking
(PdfGUI) + Anharmonic Effects

Interpreter

Reciprocal Inelastic Response

Space 'Clim
Rietveld (©c ax)

RMC
Reverse Monte

Carlo (RMCProfile) ICE MAN

Instrument Webinar . National Laboratory
June 2018




ICE
Eclipse Eigenvectors

Visualization Tracking
+ Anharmonic Effects
Interpreter

Inelastic Response
(O’Climax)

RMC
Reverse Monte
Carlo (RMCProfile)

‘corettl || Topaz || snap || poween [ HB2a || wanD |

OAK RIDGE

Instrument Webinar ENarional Laboratory
June 2018



[yyc@or-condo-login02 CF3SO20H]$ Is -Ihtr

-rw-r--r-- 1 yyc users 3.6K Nov 4 15:50
-rw-r--r-- 1 yyc users 1.1K Nov 4 15:50
-rw-r--r-- 1 yyc users 3.9K Nov 4 15:51
-rw-r--r-- 1 yyc users 735 Nov 4 15:52

-rW-f----- 1 yyc users 1.1M Nov 4 16:46
-rw-r----- 1 yyc users 7.3M Nov 5 06:15
-rw-r----- 1 yyc users 232K Nov 5 06:15
-rw-r--r-- 1 yyc users 3.3M Nov 5 08:56

VirtuES helped users to make decisions on-the-fly

cell

param
'PhonDOS.cell
PhonDOS.param
castep

' PhonDOS.phonon
_ PhonDOS.castep

aclimax

[yyc@analysis-node02 manualreduce]$ Is -lhtr

-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov
-rw-rwx---+ 1 yyc users 2.2M Nov

Simulation was started at the beginning of the experiment. By the time when experimental data were
collected, the calculation was already finished with theoretical predication available to be compared
n. With experiment. This eventually led to a critical decision made by the user (see next slide).

JUiie cuao

512:34 VIS_20557_5K_for_0.9hr.nxs
513:28 VIS_20559 50K_for_0.9hr.nxs
514:23 VIS_20561_ 75K _for_0.9hr.nxs
515:56 VIS 20563 100K _for_0.9hr.nxs
517:21 VIS_20565 125K for_0.9hr.nxs
5 18:44 VIS_20567_150K_for_0.9hr.nxs
520:23 VIS_20570_175K_for_1.2hr.nxs
521:58 VIS_20572_200K_for_1.2hr.nxs
523:29 VIS_20574 225K _for_1.2hr.nxs
6 01:00 VIS_20576_250K_for_1.2hr.nxs
6 02:28 VIS_20578 275K _for_1.2hr.nxs
6 03:57 VIS_20580_300K_for_1.2hr.nxs

3



VirtukES helped users to make decisions on-the-fly

3[] I I I I | I I I I | I | I I
| — quenched -
| — Sample simulation -
| slow cooling '[ i
£ _
7]
c20 | -
3 i
b=
- _
@ _
N
= _
£ 10
]
Z
U ] I ] |
0 50 100 150

Energy transfer (meV)
% OAK RIDGE
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VISION: Unprecedented capabilities and opportunities

3 mg of nanothread sample

Comparison of the experimental data from

VISION and a series of DFT calculations of

hypothetical structures that contain sp® carbon

and the correct stoichiometry (C:H ratio 1:1)

allows us to determine which structure
nstu  COrresponds to the measured spectra.

June zuio

Collaboration with Malcolm
Guthrie, John Badding, Vin
Crespi. Original publication on
carbon nanothreads: Nature
Materials, 14, 43 (2014)

%()AK RIDGE

National Laboratory




High sensitivity: milligrams of samples

Instrument Webinar
June 2018

1.25 mg of table sugar

0.06

0.05 ~

Normalized intensity
o
o
w
1

0.01

— Sucrose 3.8g 4min
—— Sucrose 10mg 2hr
- Sucrose 5mg 2hr

— Sucrose 2.5mg 12hr
- Sucrose 1.25mg 16hr

1 I
35 40
Energy transfer (meV)

Extraordinary sensitivity, this is the smallest amount of sample ever
measured using INS. Diamond anvil cells will be used in VISION

%()AK RIDGE

National Laboratory



A successful proof-of-principle test at VISION: using
diamond anvil cell (DAC) for high pressure INS
experiments

— 1.6 mm? (1.5mg, 9umol) of hexamethylbenzene in DAC (background subtracted)
— Hexamethylbenzene in DAC under approx 4GPa (background subtracted)
— Reference; Hexamethylbenzene 0.44¢g

» Largest single crystal diamond for DAC

>

-'E * One of the smallest samples for INS
c « Challenges in sample/beam alignment and
..g background subtraction

Ee

@

N

©

Eo-

0

=

10 0 3 40 50 60
Energy transfer (meV)

* INS spectrum from 1.6mm?3 (1.5mg, 9umol) sample loaded in the DAC was successfully
extracted, with significant details retained.
* Approx. 4GPa pressure was applied, leading to major changes in the spectrum.
» The unprecedented capability will open the door to many new areas using INS to study sE
smez01  materials dynamical behavior under high pressure. R



NOTT-V MOF and CO2 adsorption
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JemeRabbration with Sihai Yang and Martin Schroder at University of Manchester.
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Hydrogen in a “simple” molecular solid: Beyond DFT and

harmonic approximation
Libration/rotation of NH3 group Pipan

b=5.131A
/ Calculated INS using 0.000°
larger amplitude o oo~

NH, solid displacements

T 1
0 50 100

Energy transfer (meV)

ST — * DFT calculated energy barrier for

e _ rigid rotation of NH3: 180 meV
S — : « Energy barrier solved from the rotor
5.33661222-007 mOdEI : 170 mev

1.4176996=-006

29.951203 E
25 951203 Bose factor corrected INS
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Solid NH3 vs NH3 in MOF

Libration in solid NH3

g — Bulk Ammonia_NH3 at 5K

= NBG_Ammonia_l.4mmol_in_NOTT-300-Al_at_10K
NBG _Ammonia_0.7mmol_in_NOTT-300-Al_at 10K

= Simulated NH3 in NOTT-300-Al (difference spectrum)

Libration in

o ‘ ‘7adsorbed NH3

From anharmonic to harmonic

Normalized intensity
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Gate-opening in a metal-organic framework

Instrument Webinar
June 2018

Structure of blank ZIF-8
and ZIF-8 loaded with N.,.
The rotation of the methyl
groups and the swinging
of the imidazolate rings
associated with the gate
opening can be seen by
comparing the marked
areas

For clarity the N,
molecules are not shown.

%OAK RIDGE

National Laboratory



Gate-opening in a metal-organic framework

Measured (upper panel) and

80

60} — ZIF-8 blank (VISION) simulated (lower panel) INS
5 ] ——2IF-8 + N2 (VISION) spectra of blank ZIF-8 and
S - ZIF-8+N.,.
% 20 -
= O The strong peaks are mainly

400 2o 4 e s 10 120 10  due to vibrational modes
_ iInvolving large displacement
i e viammey)  Of ydrogen (in the methy
2 201 groups and the imidazolate
g 4] rings)
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Energy transfer (meV)

Casco, M. E. et al. Gate-opening effect in ZIF-8: the first
experimental proof using inelastic neutron scattering. Chemical
Communications, v. 52, n. 18, p. 3639-3642, 2016 #‘,OAKRIDGE

Instrument Webinar
June 2018
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S(Q,m)/Arb. Units

INS signature of CO, capture
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Z. Lu et al. "Modulating Supramolecular Binding of Carbon Dioxide in a Redox- %OAK RIDGE

Instrumeni Wehinar « . . . National Laboratory
Jun ’sveblgorous Host“ under review at Nature Communications



Catalytic hydrodeoxygenation of phenol
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Catalytic hydrodeoxygenation of phenol
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Nb,O, Zr0, AL, Tio, Shao, Y. et al. Selective production of arenes via direct lignin
upgrading over a niobium-based catalyst. Nat. Commun. 8,
16104 (2017).

OH removal: strength of phenol chemisorption on the surface
Selectivity between the competitive processes of C_,,...i.—O bond cleavage and
C6-ring hydrogenation: reduction in C-O bond cleavage energy OAK RIDGE

Instrument Webin National Laboratory
June 2018
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CO, in the solid phase
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Examples from VISION

--- Fundamental
(0-1)
Overtone (0-
2)
1200 1300 1400 1500 1600
Energy Transfer (1/cm)
: T " T =i - «  Overlap of the an overtone (of
0 1000 2000 3000 the translational modes) with a
Energy Transfer (1/cm) fundamental (the C-O
symmetric stretching): the Fermi
resonance

First observation of CO, Fermi
resonance using INS

#OAK RIDGE

Instrument Webinar National Laboratory

June 2018



Small amount of non-hydrogenous samples

— C-AO + 5.3mmol CO ) (unreacted)
— C-AO + 2.5mmol CO2 (reacted)

— Solid CO2 3g (scaled for reference)

o
(@)
P

e HZO/Ice 1.8g (scaled for reference)

o
(&)
T [T B
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»
l o

Normalized intensity
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N w

o
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T T T T T T T T T T T T T

0" o 20 40 60 80 - '160' ' '120
Energy transfer (meV)
The difference INS spectra before and after CO, dosing in C-AO (a nanoporous

carbon sample), in comparison with the reference spectra for bulk solid CO, and H,0.
Signal from the background and the blank C-AO has been subtracted.

Very small amount of non-hydrogenous gas. In situ observation of surface reactions. Surface
science, catalysis, gas capture and storage.

T. J. Bandosz, M. Seredych, E. Rodriguez-Castellén, Y. Q. Cheng, L. L. Daemen, and A. J. %OAK RIDGE
RANREC1@sta. Carbon. 96 (2016): 856—863. Nl biberany



Hydrogen in metal alanates
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High temperature measurement up to 700K

— HPFS 5K
— HPFS 10K
— HPFS 15K
— HPFS 20K

HPFS 100K
— HPFS 200K
— HPFS 300K
— HPFS 400K
— HPFS 500K
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— HPFS 700K

25+

Normalized intensity

M
o
1 | 1 1 1

(=]
(8]
1 | 1 1 1

Energy transfer (meV)

=
o
1 | 1

Normalized intensity

T T T T T T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60

Energy transfer (meV)
June 2018

T T T T T T T T T T
20 30 40

50

60

&OAK RIDGE

National Laboratory



In situ observation of metal hydride formation

Normalized intensity
S

Temperature up to 575K
Hydrogen pressure up to 20 bar

Instrument Webinar

Energy transfer {(meV)

%

JemeRabbration with Jacques Huot at UQTR Canada.

200

OAK RIDGE

National Laboratory



Diffraction at VISION

Simultaneous diffraction and inelastic neutron scattering

3D printed collimators have
been tested for VISION to be
used in the backscattering
diffraction bank.

The reduction of the spurious
peaks from the sample is very
much noticeable.

Data collected in histogram or

event mode
Before
(422) 1Y) (220
(331) (220) After
(400)
Diamond powder (111)
MJ\N

&0AK RIDGE

Instrument Webinar National Laboratory
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Bank 24, Tube 1 (NOT covered by collimator)
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Bank 24, Tube 8 (covered by collimator)
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VISION pioneered the use of 3D printed collimators

s,
;\.’(-.. u{?gm.:'a?.’-_’,’“/,

Instrument Webinar . National Laboratory

June 2018
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Structure and dynamics of liquids and solutions
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- CD;CN-CCl, (deep) eutectic system

- T = 210 K; x(CD,CN) at eutectic
composition is 0.75

- no hydrogen bonding, but highly
non-ideal system with AH
- 800 J/mol)

eXCess

- eutectic structure differs when liquid
Is cooled quickly or slowly from room
temperature

- simultaneous diffraction/spectroscopy
IS invaluable
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Water (ice) in VISION
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Normalized intensity

Water (ice) in VISION

| — H20 5K-sp |
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Water (ice) in VISION Zoomed In

— Rebinning is 5 times finer than TOSCA
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Water (|ce) |n VISION Zoomed |n
Reblnnlng is 5 tlmes flner than TOSCA
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Water in VISION
(as function of temperature)
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Normalized intensity

Water (ice) in VISION converted in To

— H20 ToF VISION

Frame overlap at SNS

0 5,000 10,000 15,000 . . 20,000
Time-of-flight (us)

L

25,000 30,000 35,000

The T, and frame overlap chopper are setup to run the instrument at 30Hz.
This decision means that the intensity of the spectrum above 3.5 meV is

reduced by 50%. But the benefits completely outweigh the reduction in flux.
#OAK RIDGE

Instrument Webinar National Laboratory

June 2018



TOF method

distance * Use distance to separate wavelengths

t * Need choppers to prevent frame overlap
* Moderator pulse-width and distance determine resolution
* Source repetition rate determines available time-window
* Beam transport crucial

& Science & Technology Facilities Council




What do | get around the elastic line?
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What do | get around the elastic line?
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What do | get around the elastic line?
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What do | get around the elastic line?
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Molecular hydrogen in porous carbon
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Molecular hydrogen in porous carbon

X axis

Presence of the rotor line at 77K is indication
of completely immobile molecular hydrogen in
the pores. In the case of pure para-hydrogen
(previous figure) the line disappears when the
hydrogen melts.

There is very little broadening of the rotor line,
since the momentum transfer is larger that the
corresponding one at the elastic line
(dynamical trajectory of indirect geometry).
The load keeps increasing even at 40 bar.

Instrument Webinar
June 2018

12

10

Presence of elastic line at 77K is
indication of highly dense molecular
hydrogen in the pores.

The broadening of the elastic line is
a consequence of the enhanced
mobility of the molecules as the
amount of hydrogen increases in
the system. Larger pores, where
hydrogen is less constrained have
more mobility. In the gas the signal
Is extremely broad.




Molecular hydrogen in porous carbon

1. The total integral of the spectral intensity is proportional to the amount of hydrogen in the system (left plot)

2. The integrated area under the elastic peak is proportional to the amount of hydrogen that is in a liquid like and solid like
phase (right panel)

3. The integrated area under the rotor line is proportional to the amount of hydrogen in solid like phase (right panel)
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TOSCA Elastic line
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SPHIINXS

SPHerical IndirectNelastic Xtal
Spectrometer{SPHIINXS)E

Expanding@he®/ISIONRoncept

* Graphitenalysers on[
parametricBurface

* Rangel@3@meV to1000EmeV

e LargeBolidEngleoveragel10&r

* Focussing neutron@uided1&@m?)

* PowdersEndBingleXrystall
samples

* Energy@esolution@ %A w/w andX
~703ueV atheR®lasticiine

* PositionedEtB5-40@nErome
moderator

Instrument Webinar
June 2018

e
% \GE

X National Laboratory



Normalized intensity

Water (ice) in VISION converted in ToF

Very simple “back of an envelope” calculation

— H20 ToF VISION
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25,000 30,000 35,000
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Time-of-flight (us)
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Normalized intensity

Water (ice) in VESPA converted in ToF

Very simple “back of an envelope” calculation

__ lvEspa
ToFygspa = 1~ ToFysion
lyISION

— H20 ToF VISION

L 1

5,009 AK RIDGE

nal Laboratory
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Water (ice) in VESPA converted in ToF

Very simple “back of an envelope” calculation

__ lvEspa
ToFygspa = 1~ ToFysion
lyISION
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40
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The energy spectra (according to VESPA)
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VESPA vs VISION




Secondary analyzer
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Be Filter
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REPEATING MISTAKES! TOSCA & VISION

« We have an non existing feature at low energies and a
big increase of the signal at high energy transfers.

* The effect is most noticeable in forward scattering
20 T T T T T T T T T 6
18 —— Backscattering «a

16 —— Forward Scattering o “g
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High priority instruments at the SNS First Target Station
will leverage its high wavelength resolution strength

Five empty beam lines
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dc-p: decoupled, poisoned
c: coupled

H,O: thermal neutrons
para-H,: cold neutrons

Yy

HIGGS

Inverse geometry

spectrometer BL-8A
' dc-p H,O
MICRON Compact, _texture, special P A
purpose diffractometer
Medium resolution/flux BL-8B
DISCOVER diffractometer dc-p H,0O
VENUS _Tlme_-of-fllgh_t neutron BL-10
imaging station dc-p para-H,
INVENT Con_cept development
station BL-14A
SANS/GI- C para-H,
SANS SANS and/or GI-SANS
: . BL-16A
BeFAST Beryllium filter spectrometer dc-p H,0
HiResPD High Resolution Powder Needs dc-p para-H,

Diffractometer
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VISION: Inelastic, Diffraction and QENS

« Chemistry Oriented INS spectrometer |

« White incident beam, fixed final energy S15a0% o
(indirect geometry)

« High flux (~5x107 neutrons/cm?/s) and
double-focusing

« Broadband (-2 to 1000 meV at 30Hz, 5
to 500 meV at 60 Hz)

« Constant AE/E throughout the spectrum
(~1.5%)

 Elastic line HMFW ~120 peV

« Backward and 90° diffraction banks

« 4000 x its predecessor

z
oooooo

200
DC\ .
1
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Normalized intensity
~ ”

a) b)
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Instruments

Spectrometer configurations

moderator

Direct geometry

Inverted geometry

monochromatic beam:;

white beam . energy = E; Q

monochromator
(e.g., chopper,
crystal, filter,...) ho = E; - E;

sample

o / \ detector

(by monochromator) measured
white beam O

moderator

{‘E/v
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measured fixed
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Be filter

Cross section/barn

Instrument Webinar
June 2018

10.0

—
o

=

=k

=
|

0.01

Be (296 K)
C (296 K)
: !
C (100 K), H |
-l - '
., . ]
‘e i
]
Be (100 K) |
.. .'
- i
|

I IIIIIII1E I Fr

Energy/ cm™?

T
100

Pl
100

%

0

OAK RIDGE

National Laboratory



BeFAST — Beryllium Eilter Analyzer Spectrometer

NScD Point-of-Contact: Timmy Ramirez-Cuesta

Community Point-of-Contact: TBD

Science Themes: catalysis, “real-world” systems

Day 1 capabilities: BeFAST will measure in situ
reactions by tracking CH or OH stretching and bond
breaking (data collection

as fast as 10 min)

Measure inelastic neutron scattering to 8000
cm,
overlapping Raman and IR spectroscopy

Complements the VISION spectrometer with
over 3-order of magnitude signal gain in the
range 3000 to 8000 cm-! with slightly lower
resolution

Will have a 90° diffraction bank
Large solid angle coverage

Very compact, probably only instrument that
will fit in BL-16A

Inexpensive and simple, can be built in a short
time

Low m value guide (for half of the length), and
needs one frame-overlap chopper

S(Q. w)

Diffraction bank 90°

d-Spacing (A)

BeFAST

10

2000 3000 4000 5000 6000 7000

8000

0 10‘00 20b0 30‘00 40‘00 50‘00 60'00 70b0
Energy transfer cm

Neutron inelastic spectra from triphenylmethane.
Red is calculated for VISION, black for BeFAST
BeFAST increased flux above 1800cm-!

8000




Thank you!
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