Inelastic Scattering II Carla Andreani Universita' degli Studi di Roma Tor Vergata-Dip. Fisica e **Centro NAST**

INDIRECT GEOMETRY SPECTROMETERS

TRAJECTORIES IN (Q, ω) SPACE \rightarrow INDIRECT GEOMETRY

 Similarly for indirect geometry we eliminate E_i.

$$\frac{\hbar^2 \mathbf{Q}^2}{2m} = 2E_f + \hbar\omega - 2\cos\phi \left[E_f \left(E_f + \hbar\omega \right) \right]^{1/2}$$

RESOLUTION OF INDIRECT GEOMETRY SPECTROMETERS

Energy Resolution

Uncertainty in the angular spread at the analyser

Timing errors due to flight path uncertainties

$$\frac{\Delta\hbar\omega}{E_i} = 2\left[\left(\frac{\delta}{L_1}\right)^2 + \left\{\frac{E_f}{E_i}\cot\theta_A\Delta\theta_A\left(1 + \frac{L_2}{L_1}\left(\frac{E_i}{E_f}\right)^{\frac{3}{2}}\right)\right\}^2\right]^{\frac{1}{2}}$$

increasing θ_{A} or L_1 or decreasing L_2 improves resolution

fractional energy resolution becomes worse with energy transfer, the opposite of the case for direct energy instruments.

CRYSTAL ANALYZER SPECTROMETER 1 \rightarrow TOSCA AT ISIS

- For Molecular spectroscopy, energy information if often much more important then Q information
- Graphite analysers, E_f~3 meV
- Be filter removes higher order reflections. Cooled to reduce TDS
- The fact that sample, analyser and detectors are parallel reduces uncertainty in the scattered neutron flight time by time focussing.

ENERGY RESOLUTION FOR TOSCA

TOSCA \rightarrow EXAMPLE OF EXPERIMENT

CRYSTAL ANALYZER SPECTROMETER $2 \rightarrow$ IRIS @ ISIS

- For a crystal analyser spectrometer, the resolution contains a cotθ_A term which can be reduced to almost zero by using a backscattering geometry.
- E_i should be defined to an equal precision, requiring a long flight path.

CRYSTAL ANALYZER SPECTROMETER 2

1)

CRYSTAL ANALYZER SPECTROMETER 3 COHERENT EXCITATIONS - PRISMA

 Chopper spectrometers can be used to study coherent excitations in single crystals, but they are not able to directly perform scans along high symmetry directions.

I)

PRISMA

XII S

e (2014)

INDIRECT GEOMETRY SPECTROMETERS

XII School of Neutron Scattering F. P. Ricc YAP scintillator *Far Fundation and Centre for Scientific Culture (2014)*

VESUVIO (DINS) & e.VERDI (HINS) RFS and RDS spectrometer

VESUVIO: Kinematic conditions

RESOLUTION COMPONENTS Geometrical \mapsto Gaussian Energy \mapsto Gaussian&Lorentzian single difference (SD) • example U foil U resonances: →6.7eV,20.7eV,37eV.. FWHM (at 6.7 eV) \mapsto 0.04 eV Doppler broadning at RT $\mapsto 0.11 \text{ eV}$ at 70 K \mapsto 0.06 eV

Scattering function F(y) for the ³He bcc solid sample. Data (full circles); best fit (purple line); resolution function SD (red line)

From Pb sample: VESUVIO resolution determined by fitting Lorentzian \otimes Gaussian convolution to the data and subtracting the Gaussian component, due to intrinsic width of the Pb sample.

HINS on VLAD Δħω /ħω resolution

Fig. 2. The total resolution (———) and the energy (———), angular (·-·-·) and timing (·····) contributions to the resolution in hydrogen (M = 1 amu) shown as a function of scattering angle and momentum transfer for eVS at (a) $E_1 = 872$ meV and (b) $E_1 = 4280$ meV.

XII C. Andreani *et al* NIM A (1989)

jorana Fundation and Centre for Scientific Culture (2014)

HINS on VLAD $\Delta \hbar \omega / \hbar \omega$ resolution

XII C. Andreani *et al* NIM A (1989)

ijorana Fundation and Centre for Scientific Culture (2014)

eV SPECTROSCOPY

Deep Inelastic Neutron Scattering

1.High *q* **implies**, because of Heisenberg indetermination principle, **scattered neutron explores regions of the sample of small dimension**, thus suited probe to study single particle properties, (no coherent effects from collective dynamics inside the system) (*Incoherent Approximation*); the distance over which the neutron phase change appreciably is much lower than the typical interparticle distance *d*:

$$\frac{2\pi}{q} << \overline{d}$$

2. High ω **implies**, because of the time-energy indetermination principle, that the **scattering process occurs in a very short time** (*Impulse Approximation, IA*).

Deep Inelastic Neutron Scattering, DINS

For a monoatomic system:

$$\frac{d^2\sigma}{d\Omega dE_{\rm f}} = \frac{1}{\hbar} \frac{k_{\rm f}}{k_{\rm i}} \left[\frac{\sigma_{\rm c}}{4\pi} S(\mathbf{q},\omega) + \frac{\sigma_{\rm i}}{4\pi} S_{\rm i}(\mathbf{q},\omega) \right]$$

Impulse Approximation: high q and ω

$$S_{IA}(\mathbf{q},\boldsymbol{\omega}) = \int \underline{n(\mathbf{p})} \delta\left(\hbar\boldsymbol{\omega} - \frac{\hbar^2 q^2}{2M} - \frac{\hbar \mathbf{q} \cdot \mathbf{p}}{M}\right) d\mathbf{p}_{IA}$$

Nuclear quantum effects on proton momentum distribution

Vesuvio Beamline at the ISIS neutron source -UK

Figure 2. Schematic plot illustrating the kinematical $(q, \hbar \omega)$ range accessed by different spectroscopic techniques; on the top right of the figure the t and r ranges for DINS $(10^{-5} \text{ ps} < t < 10^{-3} \text{ ps}, 0.1 \text{ Å} < r < 0.2 \text{ Å})$ and HINS $(10^{-6} \text{ ps} < t < 10^{-2} \text{ ps}, 0.2 \text{ Å} < r < 2 \text{ Å})$ spectroscopy is shown.

The spherically averaged momentum distribution of the protons (shown here for ice at T=296 K) is guite different from the classical Maxwell-Boltzmann distribution at the same temperature. The path integral ab-initio molecular dynamics (PICPMD) result agrees well with two experiments (Reiter and Senesi). The Maxwell-Boltzmann distribution that fits better the PICPMD data has T=859 K. An even better fit is obtained with an anisotropic (multivariate) Gaussian distribution.

hilture (201A)

Courtesy of Roberto Car (Princeton University)

eV SPECTROSCOPY

EXAMPLES

Light and heavy particles quantum dynamics

Nuclear Quantum Effects

$\Delta x \Delta p \ge \hbar / 2$ < E_K > & n(p) → PES

$$n(\vec{p}) = \left| \int \psi(\vec{r}) \exp(i\vec{p}\cdot\vec{r}) d\vec{r} \right|^2 < E_k >= \frac{1}{2M} \int n(p) p^2 dp$$

localization \rightarrow excess of $\langle E_K \rangle$

14)

XI

⁴He at 2.5 K

Figure 3. (a) The response function J(y) for ⁴He at 2.5 K from the cooled U filter: triangles are the experimental data; the solid line is the result of the fit. (b) The solid line is the Gaussian component of the fit; the dashed line is the non-Gaussian component, with both including a resolution contribution.

Liquid ⁴He $\langle E_K \rangle > 3/2$ KT!

DINS in p- H_2

N(p) Gaussiana <E_K>_{TRAS} vs T

 ρ = 22.41 nm⁻³

 ρ = 10.45 nm⁻³

Langel et al.

* PIMC -- classic model harmonic model

Water: Stable an Metastable Phases

Results from H, D and O in D₂₀

Simultaneous INS and DINS measurements possible at SNS- SEQUOIA beamline

Inelastic Neutron scattering: a probe for H vibrations and Zero Point Kinetic Energy components...

 $\langle E_K \rangle$ components and H-bond

$$\langle E_K \rangle_{OH} = \frac{3}{4} \int_{355}^{480} g_{exp}(E)_{OH} E dE$$

 $\frac{\langle E_K \rangle_{OH}}{\langle E_W \rangle} \quad \begin{array}{c} \text{For various phases} \\ \text{and temperatures} \end{array}$

1- Evaluate the stretching kinetic energy from INS data (example from SEQUOIA)

2- Use total kinetic energy at same temperatures from previous DINS data (ISIS-VESUVIO)

3- Ratio of stretching to total kinetic energy is sensitive to intermolecular interactions, including H-bonding?

Mean kinetic energy components and Hbond

 $E_{K}\rangle_{OH} = \frac{3}{4} \int_{355}^{480} g_{exp}(E)_{OH} E dE$ $\left\langle E_{K} \right\rangle = \frac{\left\langle p^{2} \right\rangle}{2M}$

ndation and Centre for Scientific Culture (2014)

Supercooled water*

Hydrogen Water recoil at T = 296 K

Neutron Spectroscopy at ISIS

Low energy (Brillouin, THz)

THANK YOU

QUESTIONS?