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Principle of the conventional tomography 
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Absorption tomography 
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Principle of tomographic reconstruction 

Measurement 
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Principle of tomographic reconstruction 

Back projection 
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Neutron tomography - principle 

Definition: 
Tomography is the process of reconstructing a three dimensional distribution of 
the attenuation coefficients in the volume from many two dimensional 
projections of the sample, taken at different angles. 
Assumptions: 
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2.3 Filtered Back-projection 
 
In reality, the number of rays and the number of projections is limited.  
The function S(u,v) is known only at a few points on radial lines. 

Measured values in frequency domain 
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•These points must be interpolated to a quadratic mesh. 
 
•With increasing radial distance, the density of measured  
values decreases, and interpolation incertainty increases. 
 
•A simple reconstruction can be performed by simply summing up  
the two-dimensional Fourier Transforms of the single lines. 
 
•Because of the linearity of the Fourier Transform, this can be done  
either in spatial or in frequency domain.  
 
•But as the density of measured values decreases towards  
high frequencies, the high frequencies do not get enough weight,  
and the reconstructed image appears smoothed or smeared.  
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Each of k projections over 180° must deliver the information  
for a "cake slice" of width 2π|ω|/k. 
 
But as it delivers only a single line, it is weighted with a ramp filter  
of height 2π|ω|/k, so that the new wedge has the same "mass”  
as the cake slice.  

required, real and filtered representation  
of the data in frequency domain  
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The filter |ω| can be obtained mathematically exact by transformation  
to polar coordinates in frequency space. Then we obtain 

θθθωωθω

θωωθω

ωπ
π

θθωπ
π

sincos||),(

||),(),(

0

2

0

0

)sincos(2

0

yxtwithddS

ddSyx

e

e
ti

yxi

+==

=Σ

∫∫

∫∫
∞+

+∞
+

If we now substitute the one-dimensional Fourier Transform Pθ(ω)  
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This Equation describes a filter operation with the filter |ω|. 
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The simple multiplication of Pθ(ω) by  ω in the frequency domain  
can be replaced by a convolution of pθ(t) with the Fourier Transform  
of |ω| in the spatial domain:  

The ideal filter |ω| in spatial and frequency domain  
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 The value of each raysum is 
shared out equally among all the 
voxels through which the ray 
passed. This is called 
backprojection. 
 

 As such an image is formed, albeit 
a poor one. An unwanted star-
burst pattern is obtained. 
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 The attenuation profile is 
convolved with a filter function 
prior to back-projection. 
 

 The action of the filter is such 
that the starburst pattern 
disappears and an accurate 
representation of the original 
object is obtained. 



X-ray imaging 

SoNS 2014, Erice, Italy 24 

Θ 

Object in polar coordinates: 
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… then we have 
to take into 
account the 
discrete pixels! 
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The filtered back-projection is being "smeared" along the original ray path  
across the reconstruction field.  

Back-projection of filtered data 
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•Difficulties with the ideal filter |ω| occur with noisy data, as noise  
consists mainly of high frequencies, which are much enhanced by this filter.  
•The ideal filter is therefore often replaced by special filter functions that  
decrease again towards high frequencies.  
•For neutrons, the inherent beam unsharpness (see below) often  
attenuates most high frequencies towards the Nyquist limit. 

The ideal filter |ω|  and some alternative functions  
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2.4 Number of projections 
 
The number of projections should be in the same order  
as the number of rays in one projection.  
For M projections with N rays over 180° , the angular increment δ  
between two consecutive projections is given in Fourier space as  

M
πδ =

For distance T between two neighboring rays, the highest measured  
spatial frequency ωmax in the projection is given by Nyquist's Theorem as  

T2
1

max =ω
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This is the radius of a disk in the frequency domain that contains all 
measured values.  
The distance d between two consecutive values on the circle is: 

MT
d πδω 2

1
max =⋅=

Density of measured values in 
frequency domain  
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For N measured values for each projection in spatial domain, there are 
also N measured values for each measured line in the frequency domain, 
so that the distance ε between two consecutive measured values  
on a radial line (or diameter) in frequency domain is given as  

TNN
12 max ==

ωε

For the worst azimuthal resolution in frequency domain to match  
the radial resolution, we must demand: 

TNMT
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2
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π
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For practical neutron radiography, most detector systems cannot  
- at least for sub-millimeter resolution - measure down to the  
nominal Nyquist resolution given by their pixel size.  
 
The greatest limiting factor is almost always the geometry of the  
neutron beam and its deviation from the ideal parallel ray model.  
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Beam optimisation 
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L – Distance Collimator-Object 

l – Distance Object-Detector 

D – Collimator aperture 

Source Collimator Detector Object 

Neutron imaging 
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Beam optimisation 
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Source Collimator Detector Object 

Neutron imaging 

Example: 
l = 10 cm 
L/D = 500 
=> d = 0.02 cm 

N rays 

For sample width of 20 cm 
N = 1000 => M ~ 1500 projections 
 

For sample width of 2 cm 
N = 100 => M ~ 150 projections 

M/N = π/2 
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Neutron tomography - 
principle 

Phantom 

A) 8 views in frequency domain        B) 180 views in frequency domain 

C)  reconstruction from image A       D)  reconstruction from image B 
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Selecting one z0 slice from the tomography volume (t,z,θ) and stacking all 
its projections as a function of the rotating angle theta we will obtain the 
sinogram, which is used later for the tomography reconstruction. 

Neutron tomography – sinogram preparation 
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Sample No. 1 

Volume sample: 3235 mm3 

Volume impregnation: 0 mm3   
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Sample No. 6 

Volume sample: 3596 mm3 

Volume impregnation: 639 mm3   
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Sample No. 10 

Volume sample: 2989 mm3 

Volume impregnation: 283 mm3   
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Particle size distribution in battery, Typ AAA 

Mn-Ring 

Zn-Powder 

Conductor (Zn, Cu) 

Steel case 
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Boolean transformation 

Mn-Ring 
Artifacts: Steel case, Powder 

Zn-Powder and 
Steel case 
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Morphological transformation 

Erosion 

Dilation 

structural element 

Opening := Dilation + Erosion 
Closure := Erosion + Dilation 

Input 
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Noise reduction - Opening process 
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Boolean transformation – intermediate result 

  Mangan-Ring 
 

 Stahlmantel 
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Morphological transformation 

Erosion 

Dilation 

structural element 

Opening := Dilation + Erosion 
Closure := Erosion + Dilation 

EDT: Euclid  
Distance-Transformation 

Input 
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EDT: Euclid Distance Transformation 

WST: Water Shad Transformation 
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Segmentation of powder particles 

Ausgangsbild Distanz-Transformierte 
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Wasserscheiden-Transformation Ausgangsbild 

Segmentation of powder particles 
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Result – chemical components of the battery 

Initial point 
3D-Data set  

Final result 
Multi-component data set 
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Battery – different discharge levels 
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Thank you ! 
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