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QVIeasurements calibrated to absolute units of scattering '

Unlike crystallography, measurements of liquid and amorphous materials—wide
and small angles—must be conducted to yield scattering data in absolute units.

< The macroscopic density of the samples needs to be determined so that its
average scattering cross section can be calculated.

<> The neutron incident spectrum and detector efficiency should be maintained as
stable as possible over a long period, covering data collection of the sample,
background, and calibrations runs.

< Intensities as a function of the neutron wavelength over thousands of detector
pixels must be properly normalized.
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( SANS cross section & the scattering contrast '

We consider materials that contain particles, each of which is made up of hundreds
or more of atoms, such as the macromolecules in a solution, clusters (or pores) in
an alloy, colloids in an emulsion, and magnetic domains in a ferromagnet. Here,
the primary interests are the dimensions and shapes (hence the average molecular
weight) and the surface roughness of the particles and how the particles disperse
or aggregate in the host matrix.

The intensity of SANS from the particles against the background matrix of
scattering-length density Puq for centrosymmetric systems is

1(Q)=®VAp*| P(Q)

Otherwise,

1(0)=ovap L2

& is the neutron flux and Ap is the scatteringe€ontrast factoDcharacterized by
the SLD difference between the particle and the background matrix,

Ap = <p(l’)>— Piga -



( Expected SANS intensity profile j

" Particle. “\

background (matrix)

Guinier

crossover long-range
1/6<Q<1/a atomic/
e Gompositon & . Bragg /molecular
e, iti v '
og-log p|0_t O density *, Porod Q~1/d ordering
SANS profile \Q~1/a
agglomeration of
particles, texture, v - InQ
local densities, ... particle interfaces,
roughness



( Bacterial Chaperonin Mediated Protein Folding: a SANS Study )

Thiyagarajan, Henderson and Joachimiak, Structure (1996) 103

<> What are chaperonins? /
Belong to the family of hsp60s o= T\ GroEL

_ Cochaperonin
Consists of GroEL and GroES

Chaperonin

< How do chaperonins assist protein folding?
Biologically active proteins must adopt specific folded 3-D structures of the native state.
Upon dilution from denaturant proteins in cells may misfold and lead to irreversible
aggregation. Chaperonins assist in the correct folding by preventing aggregation.

< How does ATP come into play?
GroEL is the host facilitator, GroES is a cooperator, ATP is the energy supplier

high-energy bonds

?\?

ATP = Adenosine — -0~ h)— O ~ ﬁ O ~ ﬁ>— o—
O

ATP —> ADP + P; (AG = 30.5 kJ/mol)




( A Model for GroEL/GroES Action ]

< What are known?

GroES binds asymmetrically to the GroEL cylinder, sitting like a cap

on one end-surface

ATP-bound GroEL has low affinity for unfolded substrate (enzyme)
ADP-bound GroES has high affinity for unfolded substrate

Folding protein intermediate
\

! \
ATP ~~ X ADP +P;

or

Folded protein

cavity, apical domains...

hydrolysis?

What is the structure of GroEL/ES in solution?

< How is aggregation prevented in the presence of ATP




( The Role of Small-Angle Neutron Scattering)

< Single-crystal diffraction provides crystal structure
in atomic scale only for proteins under conditions
that crystallization is possible

< Small-angle scattering provides low resolution
structural information, can study assemblies and
their interactions in solution under relevant
physiological conditions



The]rchl;tecture of GroEL in solutions:
The Apical domains and N- & C-Terminal Residues
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A look into the binding of protein intermediate
with GroEL: the GroEL-rhodanese complex

GroEL + rhodanese in D0

£ rhodanese
- molecule
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The SANS data indicate that a rhodanese molecu[e bl[)&; across the
opening to the GroEL cavity, rather than within it. The radius of
gyration of the complex increases only slightly from 63.2 A to 64.3 A.




(Structural Response of GroELs to Heating '

When bacteria are exposed to high temperature, an enhanced synthesis of
heat-shock proteins (HSP) is observed. In the case of hsp60, the response

mechanism is regulated by the interplay of GroEL/GroES with ATP hydrolysis.

What is the structural response to upshift of temperature with only GroEL
in a solution?
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i rsist up to 65°C. A
reakdown of the double-
structure forming an aggregate occur§“\
at higher temperatures.

PR TR T T BN T T T B W LT R R
0 @.0001 0.0002 00003 0.0004
o : Q* (A2

SR

10



(Better automobile emission-control catalysts '
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Precursor ZrOClo

Hydrolysis
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( Scaling behavior of local densities & Fractals )

— symmetry in the local density

Local Dengﬁy

)

Inp(r)
Pa

slope=D-3

Pa ,E\D3
If samples show:  pg = 3) for a given D,

then they are mutually
self-similar.
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(More on SANS profiles)

SANS provides a measure of the local (scattering length) density p(r) as a
function of length scale r (through Fourier-transformed reciprocal space).

InI(Q)
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( Mass-fractal-like aggregate )
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characterization of nanoparticles - shape
& size distribution and inter-particle

interactions - in suspension, aggregate

or composite in absolute scale.
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size distribution: log-normal
distribution function
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( Microstructure influenced by synthesis & rare-earth doping )

The effects of heat Powders heat treated at 600°C
treatments and rare-

earth doping

Rare- earth doped ZrO,:

» Mass- fractal aggregate : o i
of rough particles :
* mesoporous

+ ZTOQ
Pure ZrO,. e /
* Clusters of smooth particles |~ 0,01 o4
* Macroporous Q (A1) Loong et al. (1997)

he solution method enables the synthesis of nano-porous, mass-
fractal-like RE-doped ZrO, powders with higher surface areas than
pure ZrO,

<~ Different RE dopants control the microstructure differently (particle
size, surface smoothness, etc.)
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( Resistance to sintering reinforced by rare-earth doping)

* Narrow particle
size distribution: 3.6
to 11.2 nm,

* Microporous &
mesoporous. (solid
lines: mass- fractal
model)

| (arb. units)

Above ~600°C

* Clusters of smooth
particles,

* Broad size distribution
22.8 to 68.4 nm,

* Macroporous (solid lines:
Ornstein- Zernike
model)
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&ow to decide which neutron experiment is best for a problem f)
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Choose the best techniques to answer the questions concerning

the relationship between structure and function of materials.
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Thank You

&

Questions?
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