X-ray Computed Tomography

X-ray Computed Tomography (CT)

- Non-destructive imaging technique providing a 3D image of the internal structure of the scanned object
- CT is based on X-ray attenuation i.e. removal of photons from a beam of x-rays as it passes through matter

Historical background

- 1895 Roentgen discovers Xrays (1901 Nobel prize)
- 1917 Radon develops the mathematical principle behind CT reconstruction

Radon 1887- 1956

Historical Background

- 1972 Hounsfield builds the first X-ray CT scanner
- 1979 Hounsfield and Cormack receive the Nobel Prize for Medicine
- 1980s CT extended and adapted to a wide variety of non-medical tasks

How a CT system works

- Sample irradiated by X-ray beam
- Detector measures X-rays transmitted through the sample at one angle → transmitted intensity is a function of X-ray energy, path length, and sample material
- Many different projections (angles) collected by rotating the sample

How a CT system works

 The data are sent to a computer and reconstructed in a 3D image by using a CT reconstruction algorithm

Projections

3D reconstructed volume

CT RECONSTRUCTION

Principles of X-ray CT

 Attenuation of a monoenergetic beam through a homogeneous material is Beer's Law:

 $I_x = I_0 \exp(-\mu' \rho x)$

 I_0 = incident beam intensity

 I_x = transmitted beam intensity

x = length of the X-ray path through the material

 $\mu^\prime~$ = mass absorption coefficient for the material being scanned

Mass absorption coefficient

- Mass absorption coefficient is a function of:
 - Photon energy
 - Atomic number of the material being irradiated

• Photoelectric absorption the total energy of an incoming X-ray photon is transferred to an inner electron, causing the electron to be ejected

- Photoelectric absorption
- Compton scattering

the incoming photon interacts with an outer electron, ejecting the electron and losing only a part of its own energy, after which it is deflected in a different direction.

- Photoelectric absorption
- Compton scattering
- Pair production

the photon interacts with a nucleus and is transformed into a positronelectron pair

- The photoelectric effect: low energies (up to ~ 50-100 keV)
- Compton scattering: intermediate energies (up to 5-10 MeV)
- Pair production: high energies (above 5-10 MeV)

In X-ray CT only photoelectric absorption and Compton scattering need to be considered

- Photoelectric absorption αZ^4
- Compton scattering α Z
 - Z = material atomic number

Low-energy X-rays are more sensitive to differences in composition than higher-energy X-rays

X-ray CT system components

Main components of a X-ray CT system:

- X-ray source to irradiate the sample
- Rotation stage to rotate the sample
- Detector to measure X-ray intensity attenuation

CT scanner configurations

• Fan beam

Fan beam

X-rays are collimated and measured using a linear detector array

+ Scatter-free images

Only one slice image is acquired → sample translation needed

CT scanner configurations

- Fan beam
- Cone beam

Cone beam

X-ray are measured using an area detector. The beam is no longer collimated

- + Data for an entire object can be acquired in a single rotation: hundreds or thousands of slices at a time
- + More acquisition time can be spent at each angular position \rightarrow low noise images
- Data are subject to blurring and distortion the further one goes from the central plane
- Data suffer from scattering \rightarrow reconstruction artifacts

CT scanner configurations

- Fan beam
- Cone beam
- Parallel beam

Parallel beam

Parallel-beam scanning is done using a synchrotron beam line as the radiation source.

- The object size is limited by the width of the X-ray beam \rightarrow sample translation may be needed

+ Synchrotron radiation has very high intensity \rightarrow fast data acquisition, low noise images

Radiation sources

Radiation sources

• Radioisotopes

Radioisotopes

Isotopes used for X-ray imaging:

- Cesium 137 \rightarrow monochromatic energy of 662 keV
- Americium 241→ monochromatic energy of 60 keV
- Pros: Monochromatic source
- Cons:
 - Transportation (they can not be switched off)
 - Low flux \rightarrow Long exposition time needed

Radiation sources

- Radioisotopes
- X-ray tubes

X-ray tubes

- Most used radiation source in X-ray imaging
- Main components of X-ray tubes:
 - source of electrons
 - high accelerating voltage
 - metal target (tungsten)

Arturas Vailionis, Stanford University

X-ray tubes

- Electrons are emitted from the hot filament surface (thermionic emission)
- Electrons are accelerated towards the positively charged anode by an applied electric field
- X-rays are produced when accelerated electrons collide with the anode

X-ray tube spectrum

Arturas Vailionis, Stanford University A. Miceli University of Rome Tor Vergata

Continuous spectrum

- Continuous spectrum arises due to the deceleration of the electrons hitting the target
- The electron slows down and changes direction as it speeds past the atom emitting a Xray photon
- This type of radiation is know as bremsstrahlung

Stanford lecture -

Characteristic spectrum

- The characteristic peak is created when a hole in the inner shell, created by a collision event, is filled by an electron from higher energy shell
- Characteristic lines are very narrow

Arturas Vailionis, Stanford University

Radiation sources

- Radioisotopes
- X-ray tubes
- Synchrotons

- Synchrotron radiation ~10¹⁰ brighter than Xray tubes
- Broad continuum energy spectrum: infrared X-rays

ELETTRA, Trieste

- Electron gun produces a stream of low energy electrons
- Linear accelerator increases their energy
- Booster synchrotron further accelerates the electrons to their final energy (GeV)
- Storage ring maintains the energy and confines the electron beam

Chung-Li Dong 15 August 2007, SPIE Newsroom

Synchrotron	Ene	rgy	Location
ESRF	6	GeV	France
ALS	1.9	GeV	USA
APS	7	GeV	USA
BESSY II	1.7	GeV	Germany
ELETTRA	2.0	GeV	Italy
SPring-8	8	GeV	Japan
MAX II	1.5	GeV	Sweden
SLS	2.4	GeV	Switzerland
PLS	2	GeV	Korea
SRRC	1.4	GeV	Taiwan
SSRL	3	GeV	USA
CLS	2.9	GeV	Canada
Soleil	2.5	GeV	France
Diamond	3	GeV	UK

• Pros:

- Monochromatic
- High flux
- Coherent
- Parallel beam

- High spatial resolution
- Good signal to noise ratio
- Fast data acquisition
- Image quality superior to X-ray tubes

• Cons:

- Non easily accessible: large scale facilities
- Sample must be transported to the facility

Detection System

Detection System

Most X-ray CT systems use scintillator detectors.

- Scintillator: converts energy deposited by xray photons into visible light
- Light guide/mirror: guides scintillation light to photosensor
- Photosensor: converts light into a detectable electronic signal

Light guide based CT system

Bettuzzi, University of Bologna

Mirror based CT system

- Absorb and re-emit energy as visible light
- Incoming X-rays produce flashes of light

Requirements:

- High density and Z-value \rightarrow High detection efficiency
- High light yield (light output per MeV of deposited energy) → Large, easily detectable signal
- Transparency to its fluorescent radiation to allow transmission of light
- Emission of light in a spectral range detectable for photosensors
- Short scintillation decay time \rightarrow Fast response

Common scintillation materials:

- Thallium doped Cesium Iodine CsI(TI)
- Bismuth Germanate BGO
- Terbium activated Gadolinium Oxysulfide GOS (Gd₂O₂S:Tb)

Scintillator	Density (g/cm ³)	Light Yield (photons/keV)	Scintillation Decay Time (ns)
CsI (TI)	4.5	54	1.0 µs
BGO	7.1	8	0.3 μs
GOS	7.3	30	> 1 ms

Common scintillation materials:

- Thallium doped Cesium Iodide CsI(TI)
- Bismuth Germanate BGO
- Terbium activated Gadolinium Oxysulfide GOS (Gd₂O₂S:Tb)

Low detection efficiency		Bright scintillator	
Scintillator	Density (g/cm³)	Light Yield (photons/keV)	Decay Time (ns)
CsI (TI)	4.5	54	1.0 μs
BGO	7.1	8	0.3 μs
GOS	7.3	30	> 1 ms

Common scintillation materials:

- Thallium doped Cesium Iodide CsI(TI)
- Bismuth Germanate BGO
- Terbium activated Gadolinium Oxysulfide GOS (Gd₂O₂S:Tb)

Common scintillation materials:

- Thallium doped Cesium Iodide CsI(TI)
- Bismuth Germanate BGO
- Terbium activated Gadolinium Oxysulfide GOS (Gd₂O₂S:Tb)

Scintillator	Density (g/cm ³)	Light Yield (photons/keV)	Decay Time (ns)
CsI (TI)	4.5	54	1.0 μs
BGO	7.1	8	0.3 μs
GOS	7.3	30	> 1 ms
High detection efficiency A. Miceli University of Rome Tor Vergata			Slow scintillator

Image Reconstruction

Reconstruction methods

- Reconstruction of a 3D image from measured projection data
- Most used reconstruction method: filtered back projection
- Iterative reconstruction method
 - CT Large dataset \rightarrow Computationally very intense
 - + Works well with truncated or low count data

Back Projection

- An individual sample is back projected by setting all the image pixels along the ray pointing to the sample to the same value
- The final back projected image is the sum of all the back projected views

Taken from Digital Signal Processing, S.W. Smith

Filtered Back Projection

- Each projection is filtered before back projection
- Removes the blurring present in the back projection algorithm

Taken from Digital Signal Processing, S.W. Smith

Iterative method

Iterative method

• After N iterations the image converges to the solution

A. Miceli University of Rome Tor Vergata

Reconstruction Artifacts

Beam Hardening

- Polychromatic beams only
- Cause: the increase in mean energy or "hardening" of the X-ray beam as it passed through the sample
- Cupping artifact: the edges of an object appear brighter than the center

Reconstructed slice: beam hardening artifact Reconstructed slice: monochromatic beam

Scattering radiation

- Cause: X-rays scattered by the sample and detected → wrong counts in the detector → the object appears to be less attenuating than in reality
- Underestimation of attenuation
- Image blurring
- Cupping and streak artifacts

Scatter-free image

A. Miceli University of Rome Tor Vergata

X-ray CT - Pros

- Entirely non-destructive 3D imaging
- No sample preparation required
- Easily accessible (X-ray tubes/radioisotopes)
- Fast acquisition
- High spatial resolution ~ micrometer

X-ray CT - Cons

- Thick dense samples cannot be penetrated by X-rays, reducing resolving capability
- Not all features have sufficiently large attenuation contrasts for useful imaging (i.e. carbonate fossils in carbonate matrix)

Applications

- Cultural Heritage
 - Study internal structure of artifacts
- Bio-medicine
 - characterization of the internal structure of trabecular bone
- Materials science
 - characterization of the internal structure of metal foams
- Engineering
 - determination of size and shape of cracks inside turbine blades
- Environmental science
- Nanotechnology

Applications to CH

Prehistoric tooth

 Site: "Isola Sacra" necropolis

Depart. of Physics, University of Bologna (Prof. Casali) and Paleo-anthropological Museum "Pigorini"- Rome, Italy A. Miceli University of Rome Tor Vergata

Prehistoric tooth – 3D Reconstruction

Depart. of Physics, University of Bologna (Prof. Casali) and Paleo-anthropological Museum "Pigorini"- Rome, Italy

Danti's Globe

- Globe of Ignazio Danti (Uffizi, Florence)
- Goal: find the best conservation and restoration procedures

Danti's globe (1567), Florence

M.P. Morigi, F. Casali, R. Brancaccio, M. Bettuzzi, *Department of Physics – University of Bologna*

Danti's Globe – 3D Reconstruction

 3D reconstruction of the iron inner structure

M.P. Morigi, F. Casali, R. Brancaccio, M. Bettuzzi, *Department of Physics – University of Bologna*

Ancient coins

 Dummy sample: pot with ancient coins

M.P. Morigi, F. Casali, R. Brancaccio, M. Bettuzzi, *Department of Physics – University of Bologna* and *EMPA, Duebendorf (Switzerland)*

Ancient coins – 3 D Reconstruction

M.P. Morigi, F. Casali, R. Brancaccio, M. Bettuzzi, *Department of Physics – University of Bologna* and *EMPA, Duebendorf (Switzerland)*

Thank you