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Overview!

Introduction and theory of neutron scattering !
•  Advantages/disadvantages of neutrons for scattering 

measurements 
•  Neutron properties 
•  Comparison with other structural probes 
•  Definition of scattering cross sections 
•  Fermi pseudopotential 
•  Elastic scattering and definition of the structure factor, S(Q) 
•  Coherent & incoherent scattering 
•  References 

!

!



Why do Neutron Scattering?!

•  To determine the positions and motions of atoms in condensed matter!
–  1994 Nobel Prize to Shull and Brockhouse cited these areas  

  (see http://www.nobel.se/physics/educational/poster/1994/neutrons.html) 

•  Neutron advantages:!
–  Wavelength comparable with interatomic spacings 
–  Kinetic energy comparable with that of atoms in a solid 
–  Penetrating => bulk properties are measured & sample can be contained 
–  Weak interaction with matter aids interpretation of scattering data 
–  Isotopic sensitivity allows contrast variation 
–  Neutron magnetic moment couples to B => neutron “sees” unpaired electron spins 

•  Neutron Disadvantages!
–  Neutron sources are weak => low signals, need for large samples etc 
–  Some elements (e.g. Cd, B, Gd) absorb strongly 
–  Kinematic restrictions (can’t access all energy & momentum transfers) 



The 1994 Nobel Prize in Physics – Shull & Brockhouse!

 !
Neutrons show where the atoms are…. 

…and what the atoms do. 



The Neutron has Both Particle-Like and Wave-Like Properties!

•  Mass: mn = 1.675 x 10-27 kg!
•  Charge = 0; Spin = ½!
•  Magnetic dipole moment: µn = - 1.913 mN!
•  Nuclear magneton: µN = eh/4πmp = 5.051 x 10-27 J T-1!
•  Velocity (v), kinetic energy (E), wavevector (k), wavelength (λ), 

temperature (T).     !
•  E = mnv2/2 = kBT = (hk/2π)2/2mn;  k = 2 π/λ = mnv/(h/2π)!

! ! !Energy (meV) ! !Temp (K) !Wavelength (nm)!
Cold ! !0.1 – 10 ! !1 – 120! !0.4 – 3 !
Thermal !5 – 100! ! !60 – 1000 !0.1 – 0.4!
Hot ! !100 – 500 ! !1000 – 6000 !0.04 – 0.1!
!

	
λ (nm) = 395.6 / v (m/s)!
!E (meV) = 0.02072 k2  (k in nm-1)!



Comparison of Structural Probes!

 !
Note that scattering methods 
provide statistically averaged 
information on structure 
rather than real-space pictures 
of particular instances 

Macromolecules, 34, 4669 (2001) 



Thermal Neutrons, 8 keV X-Rays & Low Energy 
Electrons:- Absorption by Matter!

 !
Note for neutrons: 

•  H/D difference 

•  Cd, B, Sm 

•  no systematic A     

  dependence 

 



Interaction Mechanisms!

 !

•  Neutrons interact with atomic nuclei via very short range (~fm) forces. 
•  Neutrons also interact with unpaired electrons via a magnetic dipole      
interaction. 



Brightness & Fluxes for Neutron &  
X-Ray Sources!

Brightness
(s-1 m-2 ster-1)

dE/E
(%)

Divergence
(mrad2)

Flux
(s-1 m-2)

Neutrons 1015 2 10 x 10 1011

Rotating
Anode

1016 3 0.5 x 10 5 x 1010

Bending
Magnet

1024 0.01 0.1 x 5 5 x 1017

Wiggler 1026 0.01 0.1 x 1 1019

Undulator
(APS)

1033 0.01 0.01 x 0.1 1024



Cross Sections!

 !
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1 barn = 10-24 cm2 

 
Attenuation = exp(-Nσt) 
N = # of atoms/unit volume 
t = thickness 
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Scattering by a Single (fixed) Nucleus!
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•  range of nuclear force (~ 1fm) 
  is << neutron wavelength so 
  scattering is “point-like” 
•  energy of neutron is too small 
  to change energy of nucleus & 
  neutron cannot transfer KE to a  
  fixed nucleus => scattering is  
  elastic 
•  we consider only scattering far 
  from nuclear resonances where 
  neutron absorption is negligible 



Adding up Neutrons Scattered by Many Nuclei!

 !
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Coherent and Incoherent Scattering!

     The scattering length, bi , depends on the nuclear isotope, spin relative to the 
neutron & nuclear eigenstate. For a single nucleus:!
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Coherent Scattering 
(scattering depends on the  
direction & magnitude of Q) 

Incoherent Scattering 
(scattering is uniform in all directions) 

Note: N = number of atoms in scattering system 



Nuclear Spin Incoherent Scattering!
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Values of scoh and sinc!

Nuclide! scoh! sinc! Nuclide! scoh! sinc!
!

1H! 1.8! 80.2! V! 0.02! 5.0!

2H! 5.6! 2.0! Fe! 11.5! 0.4!

C! 5.6! 0.0! Co! 1.0! 5.2!

O! 4.2! 0.0! Cu! 7.5! 0.5!

Al! 1.5! 0.0! 36Ar! 24.9! 0.0!

•  Difference between H and D used in experiments with soft matter (contrast variation) 
•  Al used for windows 
•  V used for sample containers in diffraction experiments and as calibration for energy 
   resolution 
•  Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections 
•  Find scattering cross sections at the NIST web site at:  

 http://webster.ncnr.nist.gov/resources/n-lengths/ 



Coherent Elastic Scattering measures the Structure 
Factor S(Q) I.e. correlations of atomic positions 

! !
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g(R) is known as the static pair correlation function. It gives the probability that there is an 
atom, i, at distance R from the origin of a coordinate system, given that there is also a  
(different) atom at the origin of the coordinate system at the same instant in time. 



S(Q) and g(r) for Simple Liquids!
•  Note that S(Q) and g(r)/r both tend to unity at large values of their arguments!
•  The peaks in g(r) represent atoms in “coordination shells”!
•  g(r) is expected to be zero for r < particle diameter – ripples are truncation 

errors from Fourier transform of S(Q)!



Summarizing:!
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wavevector, k’ 
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For elastic scattering k0=k’=k: 
Q = 2k sin θ	

Q = 4π sin θ/λ	

	




Neutron Diffraction!
•  Neutron diffraction is used to measure the differential cross section, dσ/dω!

–  Crystalline solids  
•  Unit cell size; crystal symmetry; atomic arrangement 

 and thermal motions (ellipsoids) 
–  Liquids and amorphous materials 
–  Large scale structures 

•  Depending on the scattering angle,!
!structure on different length scales, d,!
!is measured:!

!
!
•  For crystalline solids & liquids, use!
!wide angle diffraction. For large structures,!
!e.g. polymers, colloids, micelles, etc.!
!use small-angle neutron scattering!

)sin(2//2 θλπ == dQ



The Kinematical Approximation!

•  Note that the approximation we have just seen ignores!
–  Depletion of the incident beam by scattering or absorption 
–  Multiple scattering 

!i.e. energy is not conserved!
!
•  This so-called “kinematic approximation” is OK for weak 

scattering, very small crystals or “bad” crystals!

•  It is usually used for interpreting diffraction experiments, though 
“extinction corrections” are often needed with single crystals!
–  If it’s not adequate, use dynamical theory 

•  In addition, we have so-far ignored thermal motion of atoms!



Bragg Scattering from Crystals!

•  Using either single crystals or powders, neutron diffraction can be used to 
measure F2 (which is proportional to the intensity of a Bragg peak) for 
various values of (hkl).!

•  Direct Fourier inversion of diffraction data to yield crystal structures is not 
possible because we only measure the magnitude of F, and not its phase => 
models must be fit to the data!

•  Neutron powder diffraction has been particularly successful at determining 
structures of new materials, e.g. high Tc materials!
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Neutrons	  in	  Condensed	  Matter	  Research
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SPSS - Chopper Spectrometer

Neutron scattering experiments measure the number of neutrons scattered at different values of 
the wavevector and energy transfered to the neutron, denoted Q and E. The phenomena probed 
depend on the values of Q and E accessed. 
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