

Roger Pynn

by

Indiana University

Nuclear Scattering of Neutrons

Overview

Introduction and theory of neutron scattering

- Advantages/disadvantages of neutrons for scattering measurements
- Neutron properties
- Comparison with other structural probes
- Definition of scattering cross sections
- Fermi pseudopotential
- Elastic scattering and definition of the structure factor, S(Q)
- Coherent & incoherent scattering
- References

Why do Neutron Scattering?

- To determine the positions and motions of atoms in condensed matter
 - 1994 Nobel Prize to Shull and Brockhouse cited these areas (see http://www.nobel.se/physics/educational/poster/1994/neutrons.html)
- Neutron advantages:
 - Wavelength comparable with interatomic spacings
 - Kinetic energy comparable with that of atoms in a solid
 - Penetrating => bulk properties are measured & sample can be contained
 - Weak interaction with matter aids interpretation of scattering data
 - Isotopic sensitivity allows contrast variation
 - Neutron magnetic moment couples to $B \Rightarrow$ neutron "sees" unpaired electron spins
- Neutron Disadvantages
 - Neutron sources are weak => low signals, need for large samples etc
 - Some elements (e.g. Cd, B, Gd) absorb strongly
 - Kinematic restrictions (can't access all energy & momentum transfers)

The 1994 Nobel Prize in Physics – Shull & Brockhouse

Neutrons show where the atoms are....

(energy) – mono-

chromatized neutrons

themselves lose the

energy these absorb

inelastic scattering

... and the neutrons

then counted in a

detector.

3-axis spectrometer

The Neutron has Both Particle-Like and Wave-Like Properties

- Mass: $m_n = 1.675 \times 10^{-27} \text{ kg}$
- Charge = 0; Spin = $\frac{1}{2}$
- Magnetic dipole moment: μ_n = 1.913 m_N
- Nuclear magneton: $\mu_N = eh/4\pi m_p = 5.051 \times 10^{-27} \text{ J T}^{-1}$
- Velocity (v), kinetic energy (E), wavevector (k), wavelength (λ), temperature (T).
- $E = m_n v^2/2 = k_B T = (hk/2\pi)^2/2m_n$; $k = 2 \pi/\lambda = m_n v/(h/2\pi)$

	<u>Energy (meV)</u>	<u>Temp (K)</u>	<u>Wavelength (nm)</u>
Cold	0.1 – 10	1 – 120	0.4 – 3
Thermal	5 – 100	60 - 1000	0.1 – 0.4
Hot	100 – 500	1000 – 6000	0.04 – 0.1

$$\label{eq:lambda} \begin{split} \lambda \ (nm) &= 395.6 \ / \ v \ (m/s) \\ E \ (meV) &= 0.02072 \ k^2 \ \ (k \ in \ nm^{\text{-1}}) \end{split}$$

Comparison of Structural Probes

Note that scattering methods provide statistically averaged information on structure rather than real-space pictures of particular instances

Macromolecules, 34, 4669 (2001)

Thermal Neutrons, 8 keV X-Rays & Low Energy Electrons:- Absorption by Matter

Note for neutrons:

- H/D difference
- Cd, B, Sm
- no systematic A

dependence

Interaction Mechanisms

- Neutrons interact with atomic nuclei via very short range (~fm) forces.
- Neutrons also interact with unpaired electrons via a magnetic dipole interaction.

Brightness & Fluxes for Neutron & X-Ray Sources

	Brightness (s⁻¹ m⁻² ster⁻¹)	dE/E (%)	Divergence (mrad ²)	Flux (s ⁻¹ m ⁻²)
Neutrons	10 ¹⁵	2	10 x 10	10 ¹¹
Rotating Anode	10 ¹⁶	3	0.5 x 10	5 x 10 ¹⁰
Bending Magnet	10 ²⁴	0.01	0.1 x 5	5 x 10 ¹⁷
Wiggler	10 ²⁶	0.01	0.1 x 1	10 ¹⁹
Undulator (APS)	10 ³³	0.01	0.01 x 0.1	10 ²⁴

Cross Sections

 $\Phi = \text{number of incident neutrons per cm}^2 \text{ per second}$ $\sigma = \text{total number of neutrons scattered per second / } \Phi$ $\frac{d\sigma}{d\Omega} = \frac{\text{number of neutrons scattered per second into } d\Omega}{\Phi \, d\Omega}$ $\frac{d^2\sigma}{d\Omega dE} = \frac{\text{number of neutrons scattered per second into } d\Omega \& dE}{\Phi \, d\Omega \, dE}$

cross section

The effective area presented by a nucleus to an incident neutron. One unit for cross section is the barn, as in "can't hit the side of a barn!"

> σ measured in barns: 1 barn = 10⁻²⁴ cm²

Attenuation = $exp(-N\sigma t)$ N = # of atoms/unit volume t = thickness

Scattering by a Single (fixed) Nucleus

- range of nuclear force (~ 1fm) is << neutron wavelength so scattering is "point-like"
- energy of neutron is too small to change energy of nucleus & neutron cannot transfer KE to a fixed nucleus => scattering is elastic
- we consider only scattering far from nuclear resonances where neutron absorption is negligible

If v is the velocity of the neutron (same before and after scattering), the number of neutrons passing through an area dS per second after scattering is:

$$\mathbf{v} \, \mathrm{dS} \left| \boldsymbol{\psi}_{\mathrm{scat}} \right|^2 = \mathbf{v} \, \mathrm{dS} \, \mathbf{b}^2 / \mathbf{r}^2 = \mathbf{v} \, \mathbf{b}^2 \, \mathrm{d\Omega}$$

Since the number of incident neutrons passing through unit areas is: $\Phi = v |\psi_{incident}|^2 = v$

$$\frac{d\sigma}{d\Omega} = \frac{v b^2 d\Omega}{\Phi d\Omega} = b^2 \qquad \text{so } \sigma_{\text{total}} = 4\pi b^2 \qquad \text{(note units)}$$

Adding up Neutrons Scattered by Many Nuclei

At a nucleus located at \vec{R}_i the incident wave is $e^{i\vec{k}_0.\vec{R}_i}$

so the scattered wave is
$$\psi_{\text{scat}} = \sum e^{i\vec{k}_0 \cdot \vec{R}_i} \left| \frac{-b_i}{\left|\vec{r} - \vec{R}_i\right|} e^{i\vec{k} \cdot (\vec{r} - \vec{R}_i)} \right|^2$$

$$\therefore \frac{d\sigma}{d\Omega} = \frac{v dS |\psi_{scat}|^2}{v d\Omega} = \frac{dS}{d\Omega} \left| b_i e^{i\vec{k} \cdot \cdot \vec{r}} \sum \frac{1}{\left|\vec{r} - \vec{R}_i\right|} e^{i(\vec{k}_0 - \vec{k}') \cdot \vec{R}_i} \right|^2$$

If we measure far enough away so that $r >> R_i$ we can use $d\Omega = dS/r^2$ to get

$$\frac{d\sigma}{d\Omega} = \sum_{i,j} b_i b_j e^{i(\vec{k}_0 - \vec{k}').(\vec{R}_i - \vec{R}_j)} = \sum_{i,j} b_i b_j e^{-i\vec{Q}.(\vec{R}_i - \vec{R}_j)}$$

where the wavevector transfer Q is defined by $\vec{Q} = \vec{k}' - \vec{k}_0$

Coherent and Incoherent Scattering

The scattering length, b_i , depends on the nuclear isotope, spin relative to the neutron & nuclear eigenstate. For a single nucleus:

$$b_{i} = \langle b \rangle + \delta b_{i} \text{ where } \delta b_{i} \text{ averages to zero}$$

$$b_{i}b_{j} = \langle b \rangle^{2} + \langle b \rangle (\delta b_{i} + \delta b_{j}) + \delta b_{i} \delta b_{j}$$
but $\langle \delta b \rangle = 0 \text{ and } \langle \delta b_{i} \delta b_{j} \rangle$ vanishes unless $i = j$
 $\langle \delta b_{i}^{2} \rangle = \langle b_{i} - \langle b \rangle \rangle^{2} = \langle b^{2} \rangle - \langle b \rangle^{2}$

$$\therefore \frac{d\sigma}{d\Omega} = \langle b \rangle^{2} \sum_{i,j} e^{-i\tilde{\mathcal{Q}}.(\vec{R}_{i} - \vec{R}_{j})} + (\langle b^{2} \rangle - \langle b \rangle^{2})N$$
Coherent Scattering Incoherent Scattering

(scattering depends on the direction & magnitude of **Q**)

Incoherent Scattering (scattering is uniform in all directions)

Note: N = number of atoms in scattering system

Nuclear Spin Incoherent Scattering

Consider a single isotope with spin *I*. The spin of the nucleus - neutron system can be (I + 1/2) or (I - 1/2).

The number of states with spin (I + 1/2) is 2(I + 1/2) + 1 = 2I + 2

The number of states with spin (I - 1/2) is 2(I - 1/2) + 1 = 2I

If the neutrons and the nuclear spins are unpolarized, each spin state has the same *a priori* probability.

The frequency of occurence of b^+ state is $f^+ = (2I+2)/(4I+2)$ The frequency of occurence of b^- state is $f^- = (2I)/(4I+2)$ Thus $\langle b \rangle = \frac{1}{2I+1} \left[(I+1)b^+ + Ib^- \right]$ and $\langle b^2 \rangle = \frac{1}{2I+1} \left[(I+1)(b^+)^2 + I(b^-)^2 \right]$

Values of ${\tt s}_{\rm coh}$ and ${\tt s}_{\rm inc}$

Nuclide	s _{coh}	s _{inc}	Nuclide	s _{coh}	s _{inc}
¹ H	1.8	80.2	V	0.02	5.0
² H	5.6	2.0	Fe	11.5	0.4
С	5.6	0.0	Со	1.0	5.2
0	4.2	0.0	Cu	7.5	0.5
AI	1.5	0.0	³⁶ Ar	24.9	0.0

- Difference between H and D used in experiments with soft matter (contrast variation)
- Al used for windows
- V used for sample containers in diffraction experiments and as calibration for energy resolution
- Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections
- Find scattering cross sections at the NIST web site at: http://webster.ncnr.nist.gov/resources/n-lengths/

Coherent Elastic Scattering measures the Structure Factor S(Q) I.e. correlations of atomic positions

 $\frac{d\sigma}{d\Omega} = \langle b \rangle^2 N.S(\vec{Q}) \quad \text{for an assembly of similar atoms where} \quad S(\vec{Q}) = \frac{1}{N} \left\langle \sum_{i,j} e^{-i\vec{Q}.(\vec{R}_i - \vec{R}_j)} \right\rangle_{\text{en}}$

/ ensemble

Now $\sum_{i} e^{-i\vec{Q}.\vec{R}_{i}} = \int d\vec{r}.e^{-i\vec{Q}.\vec{r}} \sum_{i} \delta(\vec{r}-\vec{R}_{i}) = \int d\vec{r}.e^{-i\vec{Q}.\vec{r}} \rho_{N}(\vec{r})$ where ρ_{N} is the nuclear number density so $S(\vec{Q}) = \frac{1}{N} \left\langle \left| \int d\vec{r}.e^{-i\vec{Q}.\vec{r}} \rho_{N}(\vec{r}) \right|^{2} \right\rangle$ or $S(\vec{Q}) = \frac{1}{N} \int d\vec{r}' \int d\vec{r}.e^{-i\vec{Q}.(\vec{r}-\vec{r}')} \left\langle \rho_{N}(\vec{r})\rho_{N}(\vec{r}') \right\rangle = \frac{1}{N} \int d\vec{R} \int d\vec{r} e^{-i\vec{Q}.\vec{R}} \left\langle \rho_{N}(\vec{r})\rho_{N}(\vec{r}-\vec{R}) \right\rangle$ ie $S(\vec{Q}) = 1 + \int d\vec{R}.\{g(\vec{R}) - \vec{\rho}\}.e^{-i\vec{Q}.\vec{R}}$

where $g(\vec{R}) = \sum_{i \neq 0} \left\langle \delta(\vec{R} - \vec{R}_i + \vec{R}_0) \right\rangle$ is a function of \vec{R} only.

g(R) is known as the static pair correlation function. It gives the probability that there is an atom, i, at distance R from the origin of a coordinate system, given that there is also a (different) atom at the origin of the coordinate system at the same instant in time.

S(Q) and g(r) for Simple Liquids

- Note that S(Q) and g(r)/r both tend to unity at large values of their arguments
- The peaks in g(r) represent atoms in "coordination shells"
- g(r) is expected to be zero for r < particle diameter ripples are truncation errors from Fourier transform of S(Q)

Fig. 5.2 The pair-distribution function g(r) obtained from the experimental results in Fig. 5.1. The mean number density is $\rho = 2.13 \times 10^{28}$ atoms m⁻³. (After Yarnell *et al.*, 1973.)

Summarizing:

Neutron Diffraction

- Neutron diffraction is used to measure the differential cross section, $d\sigma/d\omega$
 - Crystalline solids
 - Unit cell size; crystal symmetry; atomic arrangement and thermal motions (ellipsoids)
 - Liquids and amorphous materials
 - Large scale structures
- Depending on the scattering angle, structure on different length scales, d, is measured:

 $2\pi/Q = d = \lambda/2\sin(\theta)$

 For crystalline solids & liquids, use wide angle diffraction. For large structures, e.g. polymers, colloids, micelles, etc. use small-angle neutron scattering

The Kinematical Approximation

- Note that the approximation we have just seen ignores
 - Depletion of the incident beam by scattering or absorption
 - Multiple scattering
 - i.e. energy is not conserved
- This so-called "kinematic approximation" is OK for weak scattering, very small crystals or "bad" crystals
- It is usually used for interpreting diffraction experiments, though "extinction corrections" are often needed with single crystals
 If it's not adequate, use dynamical theory
- In addition, we have so-far ignored thermal motion of atoms

Bragg Scattering from Crystals

Working through the math (see, for example, Squires' book), we find :

$$\left(\frac{d\sigma}{d\Omega}\right)_{Bragg} = N \frac{(2\pi)^3}{V_0} \sum_{hkl} \delta(\vec{Q} - \vec{G}_{hkl}) \left|F_{hkl}(\vec{Q})\right|^2$$

where the unit - cell structure factor is given by

$$F_{hkl}(\vec{Q}) = \sum_{d} \overline{b}_{d} e^{i\vec{Q}\cdot\vec{d}} e^{-W_{d}}$$

and W_d is the Debye - Waller factor that accounts for thermal motions of atoms

- Using either single crystals or powders, neutron diffraction can be used to measure F² (which is proportional to the intensity of a Bragg peak) for various values of (hkl).
- Direct Fourier inversion of diffraction data to yield crystal structures is not
 possible because we only measure the magnitude of F, and not its phase =>
 models must be fit to the data
- Neutron powder diffraction has been particularly successful at determining structures of new materials, e.g. high T_c materials

Neutron scattering experiments measure the number of neutrons scattered at different values of the wavevector and energy transfered to the neutron, denoted Q and E. The phenomena probed depend on the values of Q and E accessed.

References

- Introduction to the Theory of Thermal Neutron Scattering by G. L. Squires Reprint edition (February 1997) Dover Publications ISBN 048669447
- Neutron Scattering: A Primer by Roger Pynn Los Alamos Science (1990) (see http://link.springer.com/book/10.1007%2F978-0-387-09416-8. pages15-36)
- Elements of Modern X-Ray Physics by Jens Als-Nielsen and Des McMorrow John Wiley and Sons ISBN 0471498580