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Small Angle Neutron Scattering (SANS) Is Used
to Measure Large Objects (~10 nm to ~1 um)

Recall that :
O=k ’-IEO =2kysin@ for elastic scattering
and that
A=2r/k=2r/(Q/2sin@)=4rsin8/Q

so we can rewrite Bragg's law 4 =2d sin 0 as
d =2n/Q orforsmall@ d = 4/26

i.e. small Q => large length scales

Scattering at small angles probes
large length scales

Typical scattering angles for SANS are ~ 0.3° to 5°



Two Views of the Components of a Typical
Reactor-based SANS Diffractometer
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The NIST 30m SANS Instrument Under Construction




Where Does SANS Fit As a Structural Probe?

Crystallography Microstructure Structure

e SANS resolves structures
on length scales of 1 — 1000
Micelles A \ nm
i,
AN « Neutrons can be used with

Atomic Structures

T

Grain Structures

% bulk samples (1-2 mm thick)

Porous Media Precipitates

* SANS 1s sensitive to light
elements such as H, C & N

 SANS is sensitive to
1sotopes such as H and D




Typical SANS Applications

- Biology
— Organization of biomolecular complexes in solution

— Conformation changes affecting function of proteins, enzymes, protein/DNA
complexes, membranes etc

— Mechanisms and pathways for protein folding and DNA supercoiling

* Polymers
— Conformation of polymer molecules in solution and in the bulk
— Structure of microphase separated block copolymers
— Factors affecting miscibility of polymer blends

* Chemistry

— Structure and interactions in colloid suspensions, microemeulsions,
surfactant phases etc

— Mechanisms of molecular self-assembly 1n solutions



Instrumental Resolution for SANS

2 o) 5 5
Q=4—”sin9 — % _ % . [ cos 2.59
A Q A sin” @

) 2
~ 5% and @ 1s small, so <§ > =0.0025+ <—é:2 >

For equal source - sample & sample - detector distances of L and equal

apertures at source and sample of h, 06,, . =~/5/12h/L.
The smallest value of € 1s determined by the direct beam size: 26,,;, ~1.54/L

For SANS, (0A/1)

rms

At this value of 8, angular resolution dominates and

XN, s ~(00.../0.:)Q iy ~ 00, Ar/ A~ 2/ A)h/L

The largest observable object is ~ 27/ ., ~ AL/ h.

This achievesa maximum of about 5 ¢m at the ILL 40 m SANS instrument using
15 A neutrons.

Note that at the largest values of 6, set by the detector size and distance from the

sample, wavelength resolution dominates.



Remember == =52,
dQ

Scattering Length Density

)

do

J-a’? ey (F)

What happens if Q is very small?
— The phase factor will not change significantly between neighboring atoms
— We can average the nuclear scattering potential over length scales ~21/10Q
— This average is called the scattering length density and denoted o()

How do we calculate the SLD?
— Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html

By hand: let us calculate the scattering length density for quartz — S10,

Density is 2.66 gm.cm3; Molecular weight is 60.08 gm. mole!

Number of molecules per A3 = N = 10-24(2.66/60.08)*N,,, 4,4, = 0.0267 molecules per A3
SLD=Sb/volume = N(bg, + 2b,) = 0.0267(4.15 + 11.6) 10° A2 = 4.21 x10-6 A2

A uniform SLD causes scattering only at Q=0; variations in the SLD cause
scattering at finite values of Q



SLD Calculation

- www.ncnr.nist.gov/resources/sldcalc.html
*  Need to know chemical formula

and densit
y — * Compound C6H12
Enter
—* Density (g/cmA3) 0.86
Not relevant for SLD ——— wavelength (A) 6
Neutron SLD -3.07E-7 (AA-2)
— Cu Ka SLD 8.34E-6 +9.36E-9i (AA-,
X-ray values
— » MoKaSLD 8.33E-6 +2.08E-9i (AA-,
Background ————» Neutron Inc. XS 5.93; 33.4 (cmA-1)
Neutron Abs. XS 0.0823 (cmA-1)
Determine best sample thickness —————— Neutron 1/e length 0.166 (cm)

Note units of the cross section — this is cross section per unit volume of sample



SANS Measures Particle Shapes and Inter-particle Correlations

le—g:<b>2 J' d’r jd3r'nN(?)nN(?').eiQ'(F‘F')
space space

2

(p—py) [d’x.e?"

particle

= [ &R [d*R'(n,(R)n,(R"))e> "™

space space

orientation

dO' - |2 = iO.R
—5=(P=PYFQ VN, [d'RG,(R)""

where G, 1s the particle - particle correlation function (the probability that there

isa particle at R if there's one at the origin) and ‘F (Q)‘2 is the particle form factor :

2

F(O 2=L FENGNIE
O =gzl S

orientation

These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering is no longer from point-like particles



Scattering from Independent Particles

Scattered intensity per unit volume of sample = [ (0) = id—o- <U p(r)elQ ’"dr‘ >

Vda Vv
For identical particles

7 Jer

2
V P ¢ Matrix
P scaltering density
p particle

&\ homogeneous particle O
with scattering density, Pp

contrast factor

1(Q) = —(,Op Po)’ ,f<

particle form factor ‘F(Q)‘2

Note that /(0)= %(Pp - Po)szz

Particle concentration ¢ =NV, /V and particle molecular weight M, = pV’ N ,

where p 1s the particle mass density and N ,is Avagadro's number

so 1(0)= M, (o, —p,)° provides a way to find the particle molecular weight
PN ,



Scattering for Spherical Particles

2

The particle form factor ‘F (Q)‘2 = 1s determined by the particle shape.

jd’—/yeié.?
V

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

Ji(OR) =V, atQ=0

. (Q):3V[sinQR—QRcosQR}_3VO

(OR)’ " OR

Thus, as Q — 0, the total scattering from an assembly of uncorrelated spherical
particles[i.e. when G(T) — o(T)]is proportional to the square of the particle volume
times the number of particles.

For elliptical particles
replaceR by :

R — (a* sin’®+b* cos” 9"
where #}1s the angle between

the major axis (a) and Q




Radius of Gyration Is the Particle “Size” Usually
Deduced From SANS Measurements

If we measure 7 from the centroid of the particle and expand the exponential

in the definition of the form factor at small Q :

F(O) = jd?e@-f =V, +W—%j@.?)2d3r+....
V V V

) jcoszé?siné?.dﬁ J‘Vzaﬂi’ 0°r o
7 g
=V,|1- 5 — d — .. =V{1— 6g +..1zVoe 6
[sin6.d0 Vfd '
i 0 ’ |

where 1, is the radius of gyrationis r, = j R*d’ r/Jd ’r. Itis usually obtained from a fit
V vV

to SANS data at low Q (in the so- called Guinier region) or by plotting In(Intensity) v Q.
The slope of the data at the lowest values of Q is rgz/ 3. Itiseasily verified that the

expression for the form factor of a sphere is a special case of this general result.



Radii of Gyration for Various Shapes™®

Sphere (v = 1) Prolate Ellipsoid

(v=10) Oblate Ellipsoid (v = 1/10)
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Scattered Intensity from Ellipsoids of
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Note that Guinier approximation works
only when QR, <1

If particles are not mono-disperse,
Rg is weighted towards larger particles
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*Viewgraph from Charles Glinka




Beyond Guinier: Form Factors for Simple Shapes

1) Spheres 2) Long Rods:

(FQ.RF)= j o gi

. 2
<[F(Q, R)|2 > = 9rsnn(QR) — QR3°°S(QR) 1 (Form Factor)  for Rods of Length, L = 80 nm,
I_ (QR) and diameter, d =4 nm
2 =
(Form Factor) ~ for Monodispersed Spheres : \ I(Q) ~ 1/Q exp(-1/116 (dQ)  ?)
1000 —r—rrr 01 F A '
£ Guinier region slope = -1
— | N; 0.01 -g'
r |

o © -
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c v - I |

L 0.0001 T | |
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*viewgraph from Charles Glinka (NIST)



Form Factors (cont’d)

3) Thin Disks

P—

-

|

(Form Factor)2 for Thin Disks of Diameter, D = 80 nm,

and Thickness,t=4 nm

/

01 Guinier region

0.01

0.001

<|F.Qt,D)*>

0.0001 -
10% ~=r

10° T

107
d

S
\ k/slope=-2
@)~ yexpri2a  th

10 F—miy
0.01 01

Note that the slope of I(Q) v Q that
corresponds to the particle shape occurs
over a region of Q bounded by the largest
and smallest dimensions of the particles

Note also that at large Q the average
slope is -4. This is called the Porod
region. We will discuss it later. The
slope is a manifestation of a smooth
3-dimesnional surface of the particles



Calculating Form Factors

www.ncnr.nist.gov/resources/simulator.html

Note: T(1 mm H,0O) =0.5; T(1 mm D,O) =0.9
ds/dW (H,O) = 1 cm; ds/dW (D,0O) = 0.06 cmT

No background

SANS data simulator

D= -

S a4 | I 1 1D
4 UiA
: i
} |1'*
[1
’l
v + v
oghQ (A" 'y
Sphere - Flat
Scale 1 Vol Fraction (0~ 1)'0,01

Radius GA).(,o,o
Contrast (A-2) 1e-6
Background ((m-li'o

@i/ EOmege (km™ ')

H,O background

SANS data simulator

Log-Log

. Qmin: 0001

Qmax 'o_s

# Points: 128

Smear datwa?



What Happens if Particles are Lined Up?

Scattering probes structure in
the direction of Q

Couette shear cell



Determining Particle Size From Dilute Suspensions

Particle size is usually deduced from dilute suspensions in which inter-particle
correlations are absent

In practice, instrumental resolution (finite beam coherence) will smear out
minima in the form factor

This effect can be accounted for if the spheres are mono-disperse

For poly-disperse particles, maximum entropy techniques have been used
successfully to obtain the distribution of particles sizes

5 I T = , —
o EXPERIMENT SMEARED BY lNSTRUMENTAL‘

RESOLUTION

4 [%%a, e DESMEARED CURVE

In I(Q)

(0] - 0.0t 0.02 0.03

4
Q= —"-sm{) (A1)
A

Fig. 4. Plot of In I(Q) vs Q for 3-98 vol.% monqdisperse PMMA-H
spheres (core C1) in D,O/H,O mixtures.



Correlations Can Be Measured in Concentrated Systems

- A series of experiments in the late 1980’ s by Hayter et al and Chen et al
produced accurate measurements of S(Q) for colloidal and micellar systems

- To alarge extent these data could be fit by S(Q) calculated from the mean

spherical model using a Yukawa potential to yield surface charge and screening
length

1.6 2.0
v
'é 4
& (o)
“
:E: 0.8 1.0
0
(9
=)
~N
o
T E 0.0
0.0 1.0 20
Q/nm1

Fig. 2. Observed (@) and calculated ( ) scattered inten-
sity I1(Q) as a function of momentum transfer Q for a charged
micellar  dispersion: 003 moldm™®  hexadecyltrimethyl-
ammonium chloride in D,O at 313 K. The functions P(Q) and

S(Q) are discussed in the text. (1 barn sterad !'=10"2% M?
sterad ~1).



Polymers Studied with SANS

For a Gaussian chain R 2 = N¢* /6 where / is the segment length

More generally, R, ~ N" where

v =3/5 fora good solvent; v =1/2 fora theta solvent or a melt

Typically Rg is 5 - 50 nm for most polymers — good for SANS

In addition to examining chain conformation, SANS has been used to
probe thermodynamics (e.g. of blends and block copolymers) and to
challenge various theories (e.g. random phase approximation)



Verification of of the Gaussian Coil Model for a Polymer Melt

One of the earliest important 20
results obtained by SANS was I TR bt oot
2o (e a°Rg“ _q 4+ g2)°
the verification of that r,~N-"2 "I (o) q*Rg N
14

for polymer chains in a melt

> 12
§ 10
A better experiment was done 53 .
3 years later using a small 1
amount of H-PMMA in D-PMMA .
(to avoid the large incoherent 2
background) covering a MW O+t
range of 4 decades 10%q2, A-2

Fig. 1. SANS results obtained by Kirste, Kruse & Schelten (1972) for
1-2% deuterated poly(methyl methacrylate) (PMMA) in normal
PMMA (mol. wt of 250000) plotted in Ornstein—Zernike form,
The solid curve represents a Debye function [equation (1)]. This
was one of the first quantitative demonstrations of Gaussian coil
behavior for bulk polymers.



Probing Chain Conformation

in Thin

Films

bulk conformation
le 239 ol
Incident neutron
beam
2 possibllities for effect
constraint of thin film confinement

Constant lateral dimensions

« independence of x,y,2
dimensions (ideal
Gaussian conformation)

- predicted by de Gennes

3

scattered neutron —
beam -

transmitted
neutron beam \

stack of Si wafers with
spin cast polymer thin
films (up to 25 wafers)

detector

e

thickness —

R.L. Jones, S K. Kumar, D.L.. Ho, R M. Briber, T.P. Russell,

Nature, 1999, 400, 146

R, in the plane of the film is
unchanged down to film
thickness of R,/2

l:lG/RG,bulk

Thin films of 25% d-PS & 75% PS spun on to
S1 wafers. 25 wafers => 10 nm total polymer

0.2 mg
2 5 = LI D | et | o
® M =270K :
; ® M _=650K ]
15} " ]
1}

0.5 b i
0.1 1

100
G,bulk



p{10 cm 1}

Contrast & Contrast Matching

RHA

i D&

Water

Frteins

I Sy gar
B File salts

i —
[de-Fhosphatidylcholine

| —
- Phosphatidvicholine

NEUTRONS D&

ADZO X-RAYS

Protein

Water

vH2O Lipid

14

12
11

10

* Chart courtesy of Rex Hjelm

16

15

12

Both tubes contain borosilicate beads +
pyrex fibers + solvent. (A) solvent

refractive index matched to pyrex;. (B)
solvent index different from both beads

and fibers — scattering from fibers
dominates



Contrast Variation

Detﬁerated Lipid Head Group
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Isotopic Contrast for Neutrons

Hydrogen  Scattering Length Nickel Scattering Lengths
[sotope b (fm) Isotope b (fm)
'H -3.7409 (11) BN 15.0 (5)
‘D 6.674 (6) N 2.8 (1)
T 4.792 (27) o
Ni 7.60 (6)
*Ni -8.7 (2)

*Ni -0.38 (7)




Using Contrast Variation to Study Compound Particles

Examples include nucleosomes

L(Q=(p - p2) Fi (protein/DNA) and ribosomes
(poteins/RNA)
2
N =g -
. ](Q) =_[|A zQ.rd—> +A zQ.rd—>
12(Q)=(p2 - p1) F; V< P1f/‘:e 4 szf[e b >
2 2 2 2
10) =892 {([R ) ) + 403 (a0 )+
in(QR,,)
AP AP, |F Q) > (0) 12
ls(Q)—%l—)T (Q)- (A — 1) S ORia

= Z(Pl - Po)(Pz —Po) FiF, Sl_né%&)
~ Iz v

=0 atQ="R,,

Viewgraph from Charles Glinka (NIST)



SANS Has Been Used to Study Bio-machines

Capel and Moore (1988) used the fact that
prokaryotes can grow when H is replaced
by D to produce reconstituted ribosomes
with various pairs of proteins (but not
rRNA) deuterated

They made 105 measurements of inter-
protein distances involving 93 30S protein
pairs over a 12 year period. They also
measured radii of gyration

Measurement of inter-protein distances

is done by Fourier transforming the form
factor to obtain G(R)

They used these data to solve the

Fig. 4. Comparison of neutron map with a mapping of surface-

ribosomal structu re, resolving ambiguities exposed antigenic sites of ribosomal proteins of the 30S subunit

obtained by immune-electron microscopy (Stoeffler & Stoeffler-

by comparison with electron microscopy Meilicke, 1986).



Porod Scattering

Let us examine the behavior of ‘F(Q)‘2 (OR)" at large values of Q for a spherical
particle (1.e.Q >>1/R where R 1s the sphere radius)

2
sin OR — QOR.cosOR sin OR
F(O)f (OR)" = 94 N } (R = 9V{ o _"OSQR}
—9V?*cos” ORas Q — oo
=9V'* /2 on average (the oscillations will be smeared out by resolution)
o 214

Thus ||F ‘ F( Q)‘

where A 1s the area of the sphere's surface.

200" O

This 1s Porod's law and holds as Q — oo for any particle shape provided the particle
surface1s smooth.
Another way to obtain it is to expand G(r) =1-ar + br’ +..[with a = A/(2zV)] at small r

and to evaluate the form factor with this (Debye) form for the correlation function.



Scattering From Fractal Systems

- Fractals are systems that are “self-similar” under a change of scale l.e. R -> CR

« For a mass fractal the number of particles within a sphere of radius R is
proportional to RP where D is the fractal dimension

Thus
47R’*dR.G(R) = number of particles between distance R and R +dR =cR"”"'dR
5. G(R)=(c/4m)R"™

and S(0)= [dR.e**G(R) = %’ [dR-R.sin OR (c/ 47)R”

const
D

= %éjdx.xl)_z.sinx =

const
6-D,

For a surface fractal, one can prove that S(Q) o< which reduces to the Porod

form for smooth surfaces of dimension 2.



Typical Intensity Plot for SANS From Disordered
Systems

Zero Q intercept - gives particle volume 1f
I / concentration i1s known

«~ Quinier region (slope = —rg2/3 gives particle
“size”)
_ Mass fractal dimension (slope =-D)

In(T)

‘\ . .
Porod region - gives surface area and

surface fractal dimension
{slope = -(6-D,)}

»
>

n(Q)



Sedimentary Rocks Are One of the Most

10+

s Skpe=-09

N/L 108 (m-']

10-3

10
Feature size, 10-9 [m)

Variation of the average number of SEM
features per unit length with feature size.
Note the breakdown of fractality (D=2.8
to 2.9) for lengths larger than 4 microns

*A. P. Radlinski (Austr. Geo. Survey)

Extensive Fractal Systems™*

10‘°l- e, Theory: D;=2.82, {=1.2 um i
I o, -
M
108} o —
odé\
B 0 _
°F ORNLUSANS %
3 R ILD11 SANS
'z o - -
£ sl -
3
ORNL 30 m SANS
N i
]0—2 1 1 1 1 \
105 104 03 02 0

Scaftering vecior Q [A-1)

SANS & USANS data from sedimentary rock
showing that the pore-rock interface is a surface

fractal (D=2.82) over 3 orders of magnitude in
length scale



Sample Requirements for SANS

Monodisperse, non-interacting (i.e. dilute)

- Concentration: 1-5 mg/ml
* Volume: 350-700 pul per sample

Data collection time: 0.5-6 hrs per sample

« Typical biology experiment: 2-4 days

Deuterated solvent is highly desirable
Multiple concentrations are usually necessary.

- Specific deuteration may be necessary.

Multiple solvents of different deuteration are
highly desirable -- contrast variation.



References

Viewgraphs describing the NIST 30-m SANS instrument

— www.ncnr.nist.gov/programs/sans/tutorials/30mSANS desc.pdf

SANS data can be simulated for various particle shapes using the
programs available at:

— www.ncnr.nist.gov/resources/simulator.html

To choose instrument parameters for a SANS experiment at NIST go to:

A very good set of notes on SANS (the SANS Toolbox)
— http://www.ncnr.nist.gov/staff/hammouda/the SANS toolbox.pdf



