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This Lecture!

•  Why use neutron reflectivity?!
•  Refractive index for neutrons!
•  Neutron reflection by a smooth surface!
•  Neutron penetration depth!
•  Effect of surface roughness on specular reflection!
•  Reflection from a surface covered by a thin film!
•  Diffuse scattering due to surface roughness!
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Surface Reflection Is Very Different From 
Most Neutron Scattering!

•  We worked out the neutron cross section by adding scattering 
from different nuclei!
–  We ignored double scattering processes because these are usually very weak 

•  This approximation is called the Born Approximation!

•  Below an angle of incidence called the critical angle, neutrons 
are perfectly reflected from a smooth surface!
–  This is NOT weak scattering and the Born Approximation is not applicable to 

this case  

•  Specular reflection is used:!
–  In neutron guides 
–  In multilayer monochromators and polarizers 
–  To probe surface and interface structure in layered systems 



Why Use Neutron Reflectivity?!
•  Neutrons are reflected from most materials at grazing angles!
•  If the surface is flat and smooth the reflection is specular!

–  Perfect reflection below a critical angle 
–  Above the critical angle reflectivity is determined by the variation of scattering length 

density perpendicular to the surface  
–  i.e. we can determine the “average” density profile normal to the surface of a film on 

the surface 

Images courtesy of M. Tolan & T. Salditt 



Various forms of small (glancing) angle neutron reflection 

Viewgraph from M. R. Fitzsimmons 



The Fermi Pseudo-Potential!
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Refractive Index for Neutrons!
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Why do we Care about the Refractive Index?!

•  When the wavevector transfer Q is small, the phase factors 
in the cross section do not vary much from nucleus to 
nucleus & we can use a continuum approximation!

•  We can use all of the apparatus of optics to calculate 
effects such as:!
–  External reflection from single surfaces (for example from guide surfaces) 
–  External reflection from multilayer stacks (including supermirrors) 
–  Focusing by (normally) concave lenses or Fresnel lenses 
–  The phase change of the neutron wave through a material for applications 

such as interferometry or phase radiography 
–  Fresnel edge enhancement in radiography 



Only Neutrons With Very Low Velocities 
Perpendicular to a Surface Are Reflected!
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How do we make a neutron bottle? 



Reflection of Neutrons by a Smooth Surface: Fresnel’s Law!

 !
n = 1-l2r/2p	
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What do the Amplitudes aR and aT Look Like?!

•  For reflection from a flat substrate, both aR and aT are complex when k0 < 4πρ 
I.e. below the critical edge. For aI = 1, we find:!
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Real (red) & imaginary (green) parts of aR 
plotted against k0. The modulus of aR is  
plotted in blue. The critical edge is at  
k0 ~ 0.009 A-1 . Note that the reflected wave is  
completely out of phase with the incident wave  
at k0 = 0 

Real (red) and imaginary (green) parts 
of aT. The modulus of aT is plotted in 
blue.  Note that aT tends to unity at  
large values of k0 as one would expect 
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One can also think about Neutron Reflection from a Surface as a  

1-d Problem 

V(z)= 2 π ρ(z)  2/mn 

k2=k0
2 - 4π ρ(z)	



Where V(z) is the potential seen by 
the neutron & ρ(z) is the scattering 
length density 
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Penetration Depth!

•  In the absence of absorption, the penetration depth becomes infinite at large 
enough angles!

•  Because kz is imaginary below the critical edge (recall that                         ), 
the transmitted wave is evanescent!

•  The penetration depth!

•  Around the critical edge, one may!
!tune the penetration depth to probe!
!different depths in the sample !
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Measured Reflectivity!

•  We do not measure the 
reflectance, r, but the reflected 
intensity, r.r*  i.e., just as in 
diffraction, we lose phase 
information!

•  Compare measured and Fresnel 
x-ray reflectivities for a water 
surface!
–  Difference is due to surface 

roughness 



Fresnel’s Law for a Thin Film!
•  r=(k0z-k1z)/(k1z+k0z) is Fresnel’s  law!

•  Evaluate with ρ=4.10-6 A-2 gives the!
!red curve with critical wavevector!
!given by k0z = (4πρ)1/2!

!

•  If we add a thin layer on top of the!
!substrate we get interference fringes &!
!the reflectance is given by:!

!
!
!
!

!and we measure the reflectivity R = r.r*!
!
•  If the film has a higher scattering length density than the substrate we get the green 

curve (if the film scattering is weaker than the substance, the green curve is below 
the red one)!

•  The fringe spacing at large k0z is ~ pt (a 250 A film was used for the figure)!
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Reflectivity of Layered Structures 

0.00 0.04 0.08 0.12 0.16 0.20
10-6

1x10-5
1x10-4

10-3
10-2
10-1
100

res: 2 x 10-3 Å-1

[30 Å Nb / 50 Å Fe]*12
     on Si substrate

q [Å-1]

10-6
1x10-5
1x10-4

10-3
10-2
10-1
100

500 Å Nb on 
Si substrate

N
eu

tro
n 

R
ef

le
ct

iv
ity

10-6
1x10-5
1x10-4

10-3
10-2
10-1
100

unpolarized

Si substrate



When Does a “Rough” Surface Scatter Diffusely?!

•  Rayleigh criterion!

path difference:      Δr = 2 h sinθ	



phase difference:    ΔΦ   = (4πh/λ) sinθ	



boundary between rough and smooth:  ΔΦ = π/2 

that is           h < λ/(8sinθ)      for a smooth surface 

θ	
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 θ	
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h 

where g = 4 π h sin θ / λ  =  Qz h!



Surface Roughness!

•  Surface roughness causes diffuse 
(non-specular) scattering and so 
reduces the magnitude of the 
specular reflectivity!

!

k 1 
k 2 

k t 1 

z 
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θ 1 θ 2 z   =   0 

•  The way in which the specular reflection is damped depends on the length 
scale of the roughness in the surface as well as on the magnitude and 
distribution of roughness!

“sparkling sea”model  
-- specular from many  
facets 

each piece of surface 
scatters indepedently 
-- Nevot Croce model 

Note that roughness 
introduces a SLD 
profile averaged over 
the sample surface 
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