

Detectors for neutron scattering experiments

M. Tardocchi tardocchi@ifp.cnr.it

Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan, Italy

Marco Tardocchi 03.06.2016

Nomenclature

Category	Energy	Temperature	λ
	[meV]	[K]	[Å]
Ultra-cold	< 0.1	< 1	< 30
Cold	0.1 – 10	1 – 120	30 – 3
Thermal	10– <mark>25</mark> -100	120 – 1000	3 – 1
Epithermal	> 500	> 6000	> 0.4
Fast	>~10 ⁵	> 10 ⁶	>0.03

Marco Tardocchi 03.06.2016

Erice, XII School on Neutron Scattering

2

Schematics of nuclear reactions Consi

 $1 - \frac{2}{4}$ Energy conservation $M_1 + M_2 + T_1 = M_3 + M_4 + T_3 + T_4$ (1)

1 Elastic collision (rest) mass and T_{kin} are conserved; $M_1=M_3$; $M_2=M_4$

2 Anelastic collision^{*} mass is conserved, T_{kin} is not conserved

3 Nuclear reactions mass and T_{kin} are not conserved

 $Q = (M_1 + M_2) - (M_3 + M_4)$ (2) Q-value definiton

•Condensed matter scientist use the term **anelastic** to mean reaction of type 1 when E_n initial $\neq E_n$ final (exchange of $E = \hbar \omega$ and $Q = \hbar q$)

Marco Tardocchi 03.06.2016

nergy conservation
$$M_1 + M_2 + T_1 = M_3 + M_4 + T_3 + T_4$$
 (1)

eq.1 + eq.2
$$(T_3 + T_4) - T_1 = Q$$

 $M_1 = M_3$, $M_2 = M_4$ and Q = 0

Elastic reactions

 $M_1 = M_3, M_2 \rightarrow M_4^*$ and $Q \neq 0$ (M_4 is left in an excited state) **Anelastic reactions**

Q<0 Endhotermic</th>Mass is created from kinetic energyQ>0 EsothermicMass is trasnformed in kinetic energy

 $M_1 \neq M_3$ or $M_2 \neq M_4$ and $Q \neq 0$

Used for detection of thermal neutrons

Marco Tardocchi 03.06.2016

Reactions for slow neutron detection Consiglio Nazionale delle Ricerche

 $n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 \text{ MeV}$ (expensive and scarce resource) 5330 barns

 $n + {}^{6}Li (a.i. 7\%) \rightarrow {}^{4}He + {}^{3}H + 4.79 MeV$ (resonance at 100keV) \bullet

940 barns

Istituto

di Fisica del Plasma "Piero Caldirola"

hool on Neutron Scattering

Detectors for slow neutrons

Ideal dector: High detection efficiency (cross section) Large Q values (only Q>0) Stop reaction products Immune to background (often γ rays)

 E_{kinetics} of the products=Q + E_n =Q Products emitted back-to-back ($P_{\text{init}} \sim 0$) in the lab. ref. system

$$\begin{cases} E_3 + E_4 = Q \\ m_3 v_3 + m_4 v_4 = 0 \end{cases} \dots \qquad E_{3,4} = \frac{m_{4,3}}{m_3 + m_4} \cdot Q$$

Erice, XII School on Neutron Scattering

Marco Tardocchi 03.06.2016

Scintillation Detectors

7

1

Some Common Scintillators for Neutron Consiglio Nazionale delle Ricerche

Intrinsic scintillators contain small concentrations of ions ("wave shifters") that shift the wavelength of the originally emitted light to the longer wavelength region easily sensed by photomultipliers.

ZnS(Ag) is the brightest scintillator known, an intrinsic scintillator that is mixed heterogeneously with converter material, usually Li⁶F in the "Stedman" recipe, to form scintillating composites. These are only semitransparent. But it is somewhat slow, decaying with ~ 10 μ sec halftime.

GS-20 (glass,Ce³⁺) is mixed with a high concentration of Li₂O in the melt to form a material transparent to light.

Li₆Gd(BO₃)₃ (Ce³⁺) (including ¹⁵⁸Gd and ¹⁶⁰Gd, ⁶Li ,and ¹¹B), and ⁶LiF(Eu) are intrinsic scintillators that contain high proportions of converter material and are typically transparent.

An efficient <u>gamma ray</u> detector with little sensitivity to neutrons, used in conjunction with neutron capture gamma-ray converters, is YAP (yttrium aluminum perovskite, $YAI_2O_3(Ce^{3+})$).

Marco Tardocchi 03.06.2016

Some Common Scintillators for Neutron Consiglio Nazionale delle Ricerche

Material	Density of ⁶ Li atoms (cm ⁻³⁾	Photon wavelength (nm)	Photons per neutron
Li glass (Ce)	1.75x10 ²²	395 nm	~7,000
Lil (Eu)	1.83x10 ²²	470	~51,000
ZnS (Ag) - LiF	1.18x10 ²²	450	~160,000
Li ₆ Gd(BO ₃) ₃ (C	e), 3.3x10 ²²	~ 400	~40,000
YAP		350	~18,000 per MeV gamma

⁹ Erice, XII School on Neutron Scattering

GEM Detector Module (at ISIS)

Marco Tardocchi 03.06.2016

¹⁰ Erice, XII School on Neutron Scattering

Hamamatsu Multicathode Photomultiplier

Compact photomultipliers are essential components of scintillation area detectors. The figure shows a recently developed multicathode photomultiplier, Hamamatsu model 8500.

256 ch Focusing Type

64 ch Focusing Type

Marco Tardocchi 03.06.2016

¹¹ Erice, XII School on Neutron Scattering

Principle of Crossed-Fiber Consiglio Nazionale delle Ricerche **Position-Sensitive Scintillation Detector**

Marco Tardocchi 03.06.2016

Erice, XII School on Neutron Scattering

Istituto

di Fisica del Plasma

"Piero Caldirola"

16-element WAND Prototype Schematic and Results

Marco Tardocchi 03.06.2016

Erice, XII School on Neutron Scattering

Istituto

Consiglio Nazionale delle Ricerche

di Fisica del Plasma

"Piero Caldirola"

Crossed-Fiber Scintillation

- Size: 25-cm x 25-cm.
- Thickness: 2-mm.
- Number of fibers: 48 for each axis.
- Multi-anode photomultiplier tube: Phillips XP1704.
- Coincidence tube: Hamamastu 1924.
- Resolution: < 5 mm.
- Shaping time: 300 nsec.
- Counting-rate capability: ~ 1 MHz.
- Time-of-flight resolution: 1 μsec.

SNS 2-D Scintillation Detector Module

Shows scintillator plate with all fibers installed and connected to multi-anode photomultiplier mount.

15

Marco Tardocchi 03.06.2016

Erice, XII School on Neutron Scattering

Istituto

Consiglio Nazionale delle Ricerche

di Fisica del Plasma

"Piero Caldirola"

Neutron Scattering from Germanium Crystal Using Consiglio Nazionale delle Ricerche Crossed-Fiber Detector

- Normalized scattering from 1-cm-high germanium crystal.
- E_n ~ 0.056 eV.
- Detector 50 cm from crystal.

Istituto

Neutron Detector Screen Design

The scintillator screen for this 2-D detector consists of a mixtureof ⁶LiF and silver-activated ZnS powder in an optical grade epoxy binder. Neutrons incident on the screen react with the ⁶Li to produce a triton and an alpha particle. These charged particles passing through the ZnS(Ag) cause it to emit light at a wavelength of approximately 450 nm. The 450-nm photons are absorbed in the wavelength-shifting fibers where they convert to 520-nm photons, some of which travel toward the ends of the fibers guided by critical internal reflection. The optimum mass ratio of ⁶LiF:ZnS(Ag) is about 1:3.

The screen is made by mixing the powders with uncured epoxy and pouring the mix into a mold. The powder settles to the bottom of the mold before the binder cures. The clear epoxy above the settled powder mix is machined away. The mixture of 40 mg/cm² of ⁶LiF and 120 mg/cm² of ZnS(Ag) used in this screen provides a measured neutron conversion efficiency of over 90% for 1.8 Å neutrons.

Marco Tardocchi 03.06.2016

The spatial resolution accomplishable in SDs is typically better than in gas detectors. The range of neutrons is less. The range of ionizing particles is less in solid materials than in gases.

However, the localization of the light source (an optical process) imposes the limit on position resolution. This in turn depends statistically on the number of photons produced in the scintillator (more is better, of course).

1-414-4 **Epithermal neutrons from spallation sources** a del Plasma Caldirola" lelle Ricerche 1000 Four moderators at ISIS: 500 •H₂O @ 300 K (two types) •H₂ liquid @ 20 K Hydrogen •CH₄ liquid @ 100 K 100 20 K 50 Intensity Methane 1 100 K 5 Water 300 K 1 0.5

50

500

10000

0.1 0.5 0.1 5 Energy in meV

M

The Time of flight technique

Marco Tardocchi 03.06.2016

Marco Tardocchi 03.06.2016

Tantalum is essentially monoisotopic ¹⁸¹Ta and is used as a neutron converter sensitive to energies near 4.28 eV.

²² Erice, XII School on Neutron Scattering

Neutron detection techniques for epithermal neutrons

TOF spectra for FD (neutron detector) and RD (γ detector) Consiglio Nazionale delle Ricerche

Pb sample U foil

²⁴ Erice, XII School on Neutron Scattering

Resonance Detector principles

Two step process

- i) Neutron absorption and conversion through (n,γ) reaction
- ii) **Detection** of the emitted prompt gammas

RD properties

- -The absorbing resonance fixes the final neutron energy
- -Neutron conversion controls mainly the energy resolution ($\Delta E/E$)
- -Ability to detect gammas controls the signal to background ratio (S/B)

Advantages over Li-glass detectors

- •no principle need for background subtraction
- •no 1/v decrease of the detection efficiency:
 - i) detection efficiency not dependent on the neutron energy
- ii) high efficiency for epithermal neutrons (10-100 eV) Marco Tardocchi 03.06.2016 Erice, XII School on Neutron Scattering

Choice of the resonant element siglio Nazionale delle Ricerche

Neutron absorbing resonance

$$\sigma(E) = \frac{\sigma_0}{1 + 4(E - E_0)^2 / \Gamma^2}$$

(Breit Wigner)

- **E**₀ neutron resonance energy
- σ_0 peak cross section (at E=E₀)

 Γ (FWHM) intrinsic resonance width

Criteria for resonant elements

- Resonance energy: E₀=10-100 eV
- Isolated resonance (to avoid overlapping with other resonances)
- •High cross section (high conversion efficiency) $\Rightarrow \sigma_0 = 10^4 10^5 b$

•Narrow resonance (low $\Delta E/E$)

⇒ Γ~ 100 meV

 $\Rightarrow \Delta \sim 100 \text{ meV}$ (Thermal Doppler broadening)

•Foil thickness

Compromise between neutron absorption probability, $P(E_n)$, and $\Delta E/E$

 $P(E_n) = 1 - exp(-N_d \cdot \sigma) \qquad N_d = \rho \cdot t$

 $\Rightarrow \textbf{N}_{\textbf{d}} \cdot \boldsymbol{\sigma}_{\textbf{0}} \textbf{=} \textbf{1}$

•High yield of low energy gammas (10-300 keV) \Rightarrow choice of suitable detector

<u>Other desiderable features:</u> high isotopic abundance, exist as metallic or oxide, low gamma self-absorption

Marco Tardocchi 03.06.2016

Best Isotopes

	i.a.	density	E ₀	σ_0	Γ	Δ (T=295 K)	Δ(T=75 K)
	(%)	(g/cm^3)	(eV)	(barn)	(meV)	(meV)	(meV)
¹³⁹ La ₅₇	99.9	6.1	72.2	5969	96.0	231	125
¹⁵⁰ Sm ₆₂	7.4	7.4	20.7	56207	109.0	119	66
$^{238}U_{92}$	99.3	18.9	6.7	23564	25.0	54	31
	"	66	20.9	37966	34.0	96	55
	66	"	36.7	42228	57.0	127	73
	"	66	66.0	20134	48.0	170	98

Gamma yield (absolute) exists for thermal neutron capture, but incomplete database for resonant neutron capture

Energy and relative intensities of γ -rays

1

Suitable γ detectors for the RDS

Scintillators

- 1) NaI(Tl): good efficiency and energy resolution for MeV gamam ray. High sensitivity to neutron backgorund (need of shielding).
- 2) YAP: good efficient and moderate energy resolution. Low sensitivity to neutron background

Solid Sate

- 1) HpGe: excellente energy resoltuion, adequate efficienct . Radiation damange. Need to operate at cold temperature (77k)
- Silicum: good for x-ray and low energy γ ray. Requires some cooling. Radiation damage
- 3) CdZnTe (CZT): Good efficiency and high energy resolution. Operate at room temperare. Small areas.

Fast neutron flux of VESUVIO at ISIS 10⁷ TRIUMF 10⁶ Neutron Flux [n/cm²/s/MeV] LANSCE 10⁵ 10⁴ 10³ sea level x 10⁸ 10² sea level x 10⁴ 10¹ ISIŚ 10[°] 10 100 1000 Energy [MeV]

Measured with activation targets

Enormous energy range 1-800 MeV!

Marco Tardocchi 03.06.2016

³² Erice, XII School on Neutron Scattering

CHIPIR beam line at ISIS

Beam line dedicated to samples with dimension from a single chip to an entire electronic system.

 $\Phi \approx 10^{6} \text{ n/cm}^{2}/\text{s}$ above 10 MeV

One hour on CHIPIR will be equivalent to 114 years on a plane

Need for beam monitor of the fast neutrons for the flux measurements

Marco Tardocchi 03.06.2016

³³ Erice, XII School on Neutron Scattering

Fast neutrons detection

·Spherical dosimeters

•Scintillators

- ³He proportional counters
- •Proton Recoil Telescope (spectroscopy)
- •Activation threshold targets
- •TFBC
- •Bonner Sphere
- •Diamond detectors
- •nGEM detector

Marco Tardocchi 03.06.2016

Marco Tardocchi 03.06.2016

1

³⁵ Erice, XII School on Neutron Scattering

From the measured activity on the sensor after a period of irradiation the neutron flux at the selected energy range is found

Response Functions of Bonner Spheres

The very broad response function means that complicated deconvolution codes are needed to infer the incoming neutron spectrum from the mesaurement.

Marco Tardocchi 03.06.2016

³⁷ Erice, XII School on Neutron Scattering

Diamond Detector

- Radiation hardness.
- High mobility of free charges (\rightarrow fast response, comparable to Si, Ge).
- Room temperature operation ($E_g = 5.5 \text{ eV}$) \rightarrow No Cooling.
- •Compact volume solid state detector.

With the CVD technique diamonds can be produced with good energy resolution (<1%) and 100% charge collection efficiency.

A charged particle passes through the diamond and ionizes it, generating electron-hole pairs (E_{e-h} =13 eV)

Diamond Detectors Limited Technology

Erice, XII School on Neutron Scattering

38

Carbon cross section

Single-crystal Diamond Detector

4x4x0.5 mm^3 sCVD Al or Au contacts

	Si	Ge	CVD-Diamond
Atomic Number Z	14	32	6
Density [g/cm ³]	2.33	5.33	5.47
Band Gap [eV]	1.1	0.6	5.5
Electron Mobility $[cm^2/V \cdot s]$	1350	3900	1800
Hole Mobility $[cm^2/V \cdot s]$	480	1900	1200
Breakdown field [MV/cm]	0.3	0.1	10

Marco Tardocchi 03.06.2016

Contour plot

ToF spectra for high E_{dep} events

Again a clear correlation between t_{ToF} and E_d is observed: the maximum t_{ToF} is shorter for the higher energy.

A neutron that deposits 10 MeV in the SDD should have $E_n > 15.7$ MeV; that is $t_{TOF} < 230 \pm 35$ ns. A neutron that deposits 20 MeV should have E_n >25.7 MeV, i.e. t_{TOF} <182±35 ns.

Time of flight spectrum for neutrons which deposit > 10 MeV and >20 MeV

 \rightarrow For a quantitative analysis knowledge of the SDD response to monoenergetic neutrons is needed.

42

Beam profile measurement

Horizontal beam profile obtained by selecting events with:

- (a) $E_d < 5$ MeV and $t_{ToF} < 75$ ns,
- (b) $E_d > 5$ MeV, 200 $< t_{ToF} < 250$ ns (black), and $E_d > 15$ MeV (red).

The differences in profile width are well outside the uncertainties in the measurement.

nGEM Detector

44

MarcocTardenechig203006.2016

nGEM Detector Components

Optimized for 2.5 MeV neutrons detection

60

40

Vesuvio Beam Profile Measurement

Fast Neutron Intensity Map

Opening of Vesuvio shutter

MarcocTardenechig203006.2016

G.Goriffirice, XII School on Neutron Scattering

END

1