

C. ALBA-SIMIONESCO Laboratoire Léon Brillouin , CNRS /CEA, Saclay France National Neutron Scattering Facility

Outline QuasiElastic Neutron Scattering from an user point of view

Part I: why neutrons?

context and experimental probes

Role of the experimentalist :user, facility scientist

QENS spectrometers

Part II : what are the observables? constraints on measurements, limitations

Models and theories

Sample environment : next challenges

good reasons to use neutrons

- Cover large scales of time and space simultaneously
- A unique probe for the magnetism
- Complementary to the other techniques; give access directly in observable relevant and defined well (\$(0) \$(0 m) 5(0 m) 5(
 - Neutr -it provides final answers to fundamental questions and

- a solid background to support any other techniques (X rays, NMR, Numerical Simulations..)

Their wavele The interacti The neutrons The neutrons **The use of va**

thanks to well controlled and well known observables providing absolute quantities.

Comparison with x rays and light

$$\mathbf{Q} = \mathbf{k_1} - \mathbf{k_2} \qquad \mathbf{Q}^2 = {\mathbf{k_1}}^2 + {\mathbf{k_2}}^2 - 2|\mathbf{k_1}||\mathbf{k_2}|\cos \theta$$

$$\not \Delta \mathbf{w} = \mathbf{E_1} - \mathbf{E_2} \qquad \mathbf{Q}_{el} = 2|\mathbf{k_1}|\sin(\theta/2)$$

$$= (4\pi/\lambda)\sin(\theta/2)$$

Neutrons:

$$E = \frac{h^2}{2m_n} \left(\frac{1}{\lambda}\right)^2 \qquad \qquad \text{E (meV)} = 81.81/\lambda^2$$

X Rays and Light scattering:

$$E = hc\left(\frac{1}{\lambda}\right)$$
 E(keV) = 12.4 / λ

 $(\lambda \text{ in } \text{\AA})$

 $S(Q, \omega)$ Is the FT G(r,t) (<u>van Hove correlation function</u>)

t=0, r=0

t, r

$$S(\vec{Q},\omega) = \frac{1}{2\pi} \int G(\vec{r},t) e^{i(\vec{Q}\vec{r}-\omega t)} d\vec{r} dt$$

<u>van Hove correlation function</u>: G(r,t) is the probability to find a particle at a distance *r*, at time t, provided it was at *r*=0, at t=0.

QUASI ELASTIC NEUTRON SCATTERING : QENS

Measure of scattering processes involving small amounts of energy exchange, classical approximation ($|\hbar\omega| << \frac{1}{2}k_BT$) *i.e.* in the low energy region of inelastic spectra close to 0

> Dynamical phenomena at 10^{-13} to 10^{-7} s Motions explored in space on legnthscales comparable with λ of the neutrons

Vibrational displacements, librations, jump distances, diffusion paths, corrlation lengths (nano to micro)

Observables : Dynamical structure factor, S(Q,w) or intermediate scattering function, mean square-displacements, self diffusion coefficient, relaxation time, Reptation Rouse modes, friction corfficient, Rotationl diffusion, EISF, VDOS, Cp

Elastic quasielastic and inelastic scattering of neutrons

 E_0

 $\vec{k}_0 \quad \left| \vec{k}_0 \right| = \sqrt{\frac{2mE_0}{\hbar}}$

Incoming Neutron λ : 2 to 10 Å E_{0} . 1 to 10 meV

scenario of quasielastic scattering as T increases Molecular liquids and polymers

To cover a wide w range requires the combination of several instruments

Speed and wave length of the neutron

λ (Α)	v (m/s)	k (A ⁻¹)
0,5	7 912	12,6
1,0	3 956	6,3
1,5	2 637	4,2
2,0	1 978	3,1
2,5	1 582	2,5
5,0	791	1,3
10,0	396	0,6
20,0	198	0,3

Sequences of steps for an experiment

Triple Spectrometer

Time of Flight Spectrometer (based on energy transfer analysis) **Backscattering Spectrometer**

Neutron spin Echo Spectrometer (NSE and NRSE) Based on the Fourier time analysis of the scattered intensity

Triple axis and Time of flight approaches

Create high continuous flux of monochromatic neutrons (ki fixed) continuous detection of monochromatic neutrons (kf fixed)

Create a high flux of pulsed monochromatic neutrons (ki fixed) Detection as a function of time (kf variable)

Create high flux white neutron beam (ki variable) Detection of monochromatic neutrons as function of time (kf fixed)

 $\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathrm{Od}\omega}\right) = \frac{\mathrm{k_f}}{\mathrm{k_f}} \frac{\sigma_{\mathrm{sc}}}{4\pi} \,\mathrm{N}\,\mathrm{S}(\vec{\mathrm{Q}},\omega)$

Indirect geometry Time of flight

Direct geometry Time of flight

Triple axis spectrometer

<u>Time focusing</u> <u>IN6 (ILL) – Focus (PSI)</u>

Select a broad incident energy band + The « fastest » neutrons

Get to the detector at the same time that the « slowest » ones.

Large flux but resolution not triangular

<u>NB:</u> Can focus in the inelastic region

Inverted geometry QENS (ANL/Intense Pulsed Neutron Source) IRIS (ISIS)

> Use a white beam + analyzer in front of detectors.

<u>Concurent measurement of elastic</u> (S(Q)) <u>AND inelastic</u> (S(Q,w))

On pulsed sources: measure the neutron energy loss side: Bose factor not a limiting factor

Can probe far in the inelastic even at low temperature Resolution± fixed High background

FOCUS @ PSI

Fig. 3. FOCUS spectrometer at Paul-Scherrer Institut (PSI) [29]; FOCUS is a typical XTL-TOF spectrometer, i.e. a time-of-flight instrument with a Bragg monochromator and a time-of-flight analyzer. While the monochromator selects the incident neutron energy E_0 , the energy of the scattered neutrons E is determined by measuring the neutron flight time.

The Fa# Project @ LLB J-M Zanotti, S Rodriguez

« Hybrid » Instrument :

- Time focusing (Soft matter / Biology)
- Energy focusing (Solid state physics)

Disks choppers in cascade

Time-of-flight : Theory vs reality

To measure long correlation times : Increase the chopper speed and/or I_0 . But flux drops ! The maximum energy loss is E_0 ... **NB:** At 298 K, $k_BT= 25$ meV

Find a good compromise between flux,

energy resolution and wavelength

Backscattering Spectrometers

monochromator and analyseur : perfect crystals in backscattering (2q=180°) Bragg law differentiation

NSE measures the sample dynamics in the time domain, via the determination of the intermediate scattering functions F(Q,t)

ILL, IN11A

Neutron are polarised, pi/E rotation, then under magnetic field

The measured quantity : the scattered beam polarisation...

 $\langle P \rangle = \frac{n_+ - n_-}{n_+ + n_-} = \langle p_{|+} \rangle - \langle p_{|-} \rangle = \langle \cos^2(\frac{\alpha}{2}) \rangle - \langle \sin^2(\frac{\alpha}{2}) \rangle = \langle \cos(\alpha) \rangle$

to increase the energy resolution without drastic lost of intensity as in QENS-ToF energy transfer *is causing a phase shift of the neutron spin precession angle for* each scattered neutron.

Spin Echo Spectrometers

	IN11	IN15
Instrument type	NSE	NSE
Beam wavel. [Å]	4–12	6-27
Beam energy $[meV]$	0.6 - 5	0.1 - 2.3
Time range [ns]	0.001 - 50	0.002 - 1000
Momentum transfer	0.02 - 2.7	0.01 - 1.8
range $[Å^{-1}]$		
Max. sample flux	$2 imes 10^7$	2×10^8
$[{\rm cm}^{-2}{\rm s}^{-1}]$		
Detector efficiency	~ 1	~ 1
Det. backgr. [Hz]	~ 1	~ 1
Det. solid angle [sr]	$3 imes 10^{-4}$	4×10^{-3}
	IN11A	
	$2 imes 10^{-2}$	
	IN11C	

Comparaison TOF-BS et NSE

- Frequence measurement
- Scan at fixed ω
- $S(Q,\omega)=S(Q,\omega)\otimes R(Q,\omega)$
- Self motions
- Shorter dynamical range
- Good Q resolution
- Excitations, vibrations

- Time measurement
- Scan at fixed t
- S(Q,t)= S(Q,t).R(Q,t)
- Collective motions
- Large dynamical range (3 to 4 décades)

•
$$\Delta\lambda/\lambda$$
 ~15% = $\Delta Q/Q$

Recent Progress on Polymer Dynamics by Neutron Scattering: From Simple Polymers to Complex Materials

Juan Colmenero,^{1,2} Arantxa Arbe¹

Polymer

TABLE 2 Currently operating high-level neutron facilities in the world and the available QENS spectrometers on them

JOURNAL OF POLYMER SCIENCE Physics

Facility	Instrument	Туре
Institute Laue-Langevin (ILL)	IN10	BS
Grenoble, France	IN16	BS
www.ill.eu	IN16b ^a	BS
	IN13 ^b	BS
	IN5	ToF
	IN6	ToF
	IN11	NSE

Helmholtz Zentrum Berlin (HZB)	NEAT ^a	ToF
Berlin, Germany		
www.helmholtz-berlin.de		
Paul Scherrer Institute (PSI)	MARS	BS-ToF
Villigen, Switzerland	FOCUS	ToF
sinq.web.psi.ch		
Laboratoire Léon-Brillouin (LLB)	FA# ^c	ToF
Saclay, France	MUSES	NSE
www-llb.cea.fr		
Spallation Neutron Source (SNS)	BASIS	BS-ToF
Oak Ridge, USA	CNCS	ToF

Quasielastic Neutron Scattering in Biology Part I: Methods

ISIS Facility, Rutherford Appleton Laboratory Oxford, United Kingdom www.isis.stfc.ac.uk

Maier-Leibnitz Zentrum (MLZ)
Garching, Germany
www.frm2.tum.de
& www.fz-juelich.de/jcns

Ruep E. Lechner¹ and Stéphane Longeville²

¹Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany, and ²Laboratoire Léon Brillouin, CEA Saclay, F-91191 Gif-sur-Yvette, France

	101	recimology organisation (ANSTO)	FELICAN	101
J-NSE	NSE	Sydney, Australia		
RESEDA	NSE	www.ansto.gov.au		