C. ALBA-SIMIONESCO
Laboratoire Léon Brillouin, CNRS / CEA, Saclay France
National Neutron Scattering Facility
Outline QuasiElastic Neutron Scattering from an user point of view

Part I: why neutrons?

context and experimental probes

Role of the experimentalist: user, facility scientist

QENS spectrometers

Part II: what are the observables?

constraints on measurements, limitations

Models and theories

Sample environment: next challenges
good reasons to use neutrons

- Cover large scales of time and space simultaneously
- A unique probe for the magnetism
- Complementary to the other techniques; give access directly in observable relevant and defined well (S(Q), S(Q,w), F (Q, t), dispersion curves)
- Neutral, non-destructive and penetrating; precise, sensitive and selective
- Neutron scattering methods are pluridisciplinary
 - it provides final answers to fundamental questions and
 - a solid background to support any other techniques (X rays, NMR, Numerical Simulations..)

thanks to well controlled and well known observables providing absolute quantities.
Comparison with x rays and light

\[Q \equiv k_1 - k_2 \]
\[Q^2 = k_1^2 + k_2^2 - 2|k_1||k_2| \cos \theta \]
\[\hbar \omega = E_1 - E_2 \]
\[Q_{el} = 2|k_1| \sin (\theta/2) \]
\[= (4\pi/\lambda) \sin (\theta/2) \]

Neutrons:
\[E = \frac{\hbar^2}{2m_n} \left(\frac{1}{\lambda} \right)^2 \]
\[E (\text{meV}) = \frac{81.81}{\lambda^2} \]

X Rays and Light scattering:
\[E = \hbar c \left(\frac{1}{\lambda} \right) \]
\[E (\text{keV}) = \frac{12.4}{\lambda} \]

(\(\lambda\) in Å)
\[\vec{Q} = \vec{k}_1 - \vec{k}_0 \]
\[h\omega = E_f - E_i \]

Measured Intensity

\[\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \approx N^* \sigma_{\text{Scat}} * S(\vec{Q}, \omega) \]

Dynamical Structure Factor

Scattering cross-section

van Hove correlation function: \(G(r,t) \) is the probability to find a particle at a distance \(r \), at time \(t \), provided it was at \(r=0 \), at \(t=0 \).

\[S(\vec{Q}, \omega) = \frac{1}{2\pi} \int G(\vec{r},t) e^{i(\vec{Q}\vec{r} - \omega t)} d\vec{r} dt \]
QUASI ELASTIC NEUTRON SCATTERING: QENS

Measure of scattering processes involving small amounts of energy exchange, classical approximation ($|\hbar \omega| << \frac{1}{2} k_B T$)
i.e. in the low energy region of inelastic spectra close to 0

Dynamical phenomena at 10^{-13} to 10^{-7} s
Motions explored in space on length scales comparable with λ of the neutrons

Vibrational displacements, librations, jump distances, diffusion paths, correlation lengths (nano to micro)

Observables: Dynamical structure factor, $S(Q,w)$ or intermediate scattering function, mean square displacements, self diffusion coefficient, relaxation time, Reptation Rouse modes, friction coefficient, Rotation diffusion, EISF, VDOS, C_p
Sample where atoms are moving

Neutron Source
The probe

Neutrons have a spin
Scattering with or without spin flipping
Elastic, quasielastic and inelastic scattering of neutrons

Incoming Neutron

$\lambda : 2 \text{ to } 10 \ \text{Å}$

$E_0 : 1 \text{ to } 10 \ \text{meV}$

$Q_{\text{elastic}} = \frac{4\pi}{\lambda_0} \sin \theta$ and $|\vec{k}| = |\vec{k}_0|$

Technically a TOF spectrum is accumulated at a fixed scattering angle for each detector

$E = E_0 + \hbar \omega$

$|\vec{k}| = \sqrt{\frac{2mE}{\hbar}}$

2θ

Q

Detector

E_0

E_0

Number of neutrons

Energy

$\Delta \omega$

$\Delta \omega$

Energy

E_0

E_0

Energy

Number of neutrons

Elastic scattering

Elastic and inelastic scattering

$\text{diffusif (}10^{-9} - 10^{-12} \text{ s)}$

quasi elastic broadening
scenario of quasielastic scattering as T increases

Molecular liquids and polymers

\[
\ln S_{el}(Q, \Delta \omega, T)/S_{el}(Q, \Delta \omega, T=2K)
\]

harmonic and anharmonic behavior

\(T_{\text{dynamic}} \sim T_{\text{glass}}\)

To cover a wide range requires the combination of several instruments
Speed and wave length of the neutron

<table>
<thead>
<tr>
<th>λ (Å)</th>
<th>v (m/s)</th>
<th>k (Å$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7 912</td>
<td>12.6</td>
</tr>
<tr>
<td>1.0</td>
<td>3 956</td>
<td>6.3</td>
</tr>
<tr>
<td>1.5</td>
<td>2 637</td>
<td>4.2</td>
</tr>
<tr>
<td>2.0</td>
<td>1 978</td>
<td>3.1</td>
</tr>
<tr>
<td>2.5</td>
<td>1 582</td>
<td>2.5</td>
</tr>
<tr>
<td>5.0</td>
<td>791</td>
<td>1.3</td>
</tr>
<tr>
<td>10.0</td>
<td>396</td>
<td>0.6</td>
</tr>
<tr>
<td>20.0</td>
<td>198</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Sequences of steps for an experiment

Before the measurement

- Facility scientists, engineers and technicians
- Thermalisation
- Monochromator
- Collimator
- Polarisation
- Detector efficiency

User interacting at the facility

- Sample holder and position
- Sample environment (T, p, B)
- Choice of the E and Q resolution
- Low background, parasites

Interpretation of the data

Models

Theories

Applications

Questions

After the measurement

- Speed, (particle character)
- Wavelength, (wave character)
- Direction,
- Polarisation

Preparation of the neutrons

Preparation of the sample

Analysis of the data

Production corrections

Analysis of the scattered neutrons

Interpretation of the data

Models

Theories

Applications

Questions
Several instruments

Triple Spectrometer

Time of Flight Spectrometer *(based on energy transfer analysis)*
Backscattering Spectrometer

Neutron spin Echo Spectrometer (NSE and NRSE)
Based on the Fourier time analysis of the scattered intensity
Triple axis and Time of flight approaches

Create high continuous flux of monochromatic neutrons (ki fixed) continuous detection of monochromatic neutrons (kf fixed)

Create a high flux of pulsed monochromatic neutrons (ki fixed) Detection as a function of time (kf variable)

Create high flux white neutron beam (ki variable) Detection of monochromatic neutrons as function of time (kf fixed)

\[
\left(\frac{d^2\sigma}{d\Omega d\omega} \right) = \frac{k_f}{k_i} \frac{\sigma_{sc}}{4\pi} N S(\vec{Q},\omega)
\]
Time focusing
IN6 (ILL) – Focus (PSI)

Select a broad incident energy band

+ The « fastest » neutrons

Get to the detector at the same time that the « slowest » ones.

Large flux but resolution not triangular

NB:
Can focus in the inelastic region

Inverted geometry
QENS (ANL/Intense Pulsed Neutron Source)
IRIS (ISIS)

Use a white beam

+ analyzer in front of detectors.

Concurrent measurement of elastic \((S(Q))\)

AND inelastic \((S(Q,w))\)

On pulsed sources: measure the neutron energy loss side: Bose factor not a limiting factor

Can probe far in the inelastic even at low temperature

Resolution\(\pm\) fixed

High background
Fig. 3. FOCUS spectrometer at Paul-Scherrer Institut (PSI) [29]; FOCUS is a typical XTL-TOF spectrometer, i.e. a time-of-flight instrument with a Bragg monochromator and a time-of-flight analyzer. While the monochromator selects the incident neutron energy E_0, the energy of the scattered neutrons E is determined by measuring the neutron flight time.
The Fa# Project @ LLB

J-M Zanotti, S Rodriguez

« Hybrid » Instrument:

- Time focusing (Soft matter / Biology)
- Energy focusing (Solid state physics)

Scientific fields
- Soft condensed matter
- Materials
- Magnetism
- Soft Matter
- Biology
- Electrolites
- ...
Measure the neutron energy after the sample

\[V = \frac{D_{ED}}{\text{tof}} \quad \text{et} \quad E_f = \frac{1}{2} m V^2 \]
1- Avoid frame overlap
2- Avoid any harmonics
\[2 \frac{D\tau}{\tau} = \frac{DE}{E} \]
Time-of-flight: Theory vs reality

Conversion from \((2\theta, t_{\text{time of flight}})\) to \((Q, \omega)\)

To measure long correlation times:
Increase the chopper speed and/or \(I_0\).
But flux drops!

\[
S^{\text{Mesuré}}(Q, \omega) = S^{\text{Théo}}(Q, \omega) \otimes R(\omega)
\]

\(\text{NB: At } 298 \text{ K, } k_B T = 25 \text{ meV}\)

The maximum energy loss is \(E_0\)...
Find a good compromise between flux, energy resolution and wavelength.
Backscattering Spectrometers

monochromator and analyseur : perfect crystals in backscattering (2q=180°)
Bragg law differentiation

\[
\left(\frac{\Delta \lambda}{\lambda} \right)^2 = \left(\frac{\Delta d}{d} \right)^2 + \left(\frac{\Delta \theta}{\tan \theta} \right)^2
\]

analyseur
Large angles

analyseur
small angles

multi tube detecteur

deflecteur chopper

deflecteur

R=2

H53 cold neutron guid

background choppe
Be-filte

vertically focusin

Focusin guid

Moving spherica monochromato

B. Frick, IN16, ILL
doppler

détecteurs

Q=Qélastique

Résolution <1μeV
Gamme -15 à+15μeV

BASIS @SNS ± 300 μeV
Spin Echo Spectrometers

NSE measures the sample dynamics in the time domain, via the determination of the intermediate scattering functions $F(Q,t)$.

Neutron are polarised, pi/E rotation, then under magnetic field

Mezei 1972 NSE, Gähler 1987 NRSE

ILL, IN11A
The measured quantity: the scattered beam polarisation...

Neutron spin, precession...

\[
B_0 = 0
\]

\[
\frac{d\vec{S}}{dt} = \gamma \vec{S} \wedge \vec{B}_0
\]

\[
\omega = |\gamma_n|B_0
\]

\[
N = \gamma_n B_0 t / 2\pi
\]

\[
\gamma_n = -2913.2\pi (Gs)^{-1}
\]

\[
p_{|+\rangle} = \cos^2(\alpha/2)
\]

\[
p_{|->} = \sin^2(\alpha/2)
\]

\[
\langle P \rangle = \frac{n_+ - n_-}{n_+ + n_-} = \langle p_{|+\rangle} \rangle - \langle p_{|->} \rangle = \langle \cos^2(\alpha/2) \rangle - \langle \sin^2(\alpha/2) \rangle = \langle \cos(\alpha) \rangle
\]
to increase the energy resolution without drastic loss of intensity as in QENS-ToF energy transfer *is causing a phase shift of the neutron spin precession angle* for each scattered neutron.

\[\int_{-\infty}^{+\infty} S(Q, \omega) \cos(\omega \tau_{NSE}) d\omega \]

\[\lambda_2 > \lambda_1 \]

\[\tau_{NSE} = \frac{m^2 \gamma \int Bdz}{2\pi h^2} (\lambda_0')^3 \]

Attention aux systèmes H/D !!!!
<table>
<thead>
<tr>
<th></th>
<th>IN11</th>
<th>IN15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument type</td>
<td>NSE</td>
<td>NSE</td>
</tr>
<tr>
<td>Beam wavel. [Å]</td>
<td>4–12</td>
<td>6–27</td>
</tr>
<tr>
<td>Beam energy [meV]</td>
<td>0.6 –5</td>
<td>0.1 –2.3</td>
</tr>
<tr>
<td>Time range [ns]</td>
<td>0.001 – 50</td>
<td>0.002 – 1000</td>
</tr>
<tr>
<td>Momentum transfer range [Å⁻¹]</td>
<td>0.02–2.7</td>
<td>0.01–1.8</td>
</tr>
<tr>
<td>Max. sample flux [cm⁻²s⁻¹]</td>
<td>2 × 10⁷</td>
<td>2 × 10⁸</td>
</tr>
<tr>
<td>Detector efficiency</td>
<td>~ 1</td>
<td>~ 1</td>
</tr>
<tr>
<td>Det. backgr. [Hz]</td>
<td>~ 1</td>
<td>~ 1</td>
</tr>
<tr>
<td>Det. solid angle [sr]</td>
<td>3 × 10⁻⁴</td>
<td>4 × 10⁻³</td>
</tr>
<tr>
<td></td>
<td>IN11A</td>
<td>IN11C</td>
</tr>
</tbody>
</table>
Comparaison TOF-BS et NSE

• Frequence measurement
• Scan at fixed ω
• $S(Q,\omega)=S(Q,\omega)\otimes R(Q,\omega)$
• Self motions
• Shorter dynamical range
• Good Q resolution
• Excitations, vibrations

• Time measurement
• Scan at fixed t
• $S(Q,t)=S(Q,t).R(Q,t)$
• Collective motions
• Large dynamical range (3 to 4 décades)
• $\Delta\lambda/\lambda \sim 15\% = \Delta Q/Q$
Recent Progress on Polymer Dynamics by Neutron Scattering: From Simple Polymers to Complex Materials

Juan Colmenero,1,2 Arantxa Arbe1

TABLE 2 Currently operating high-level neutron facilities in the world and the available QENS spectrometers on them

<table>
<thead>
<tr>
<th>Facility</th>
<th>Instrument</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute Laue-Langevin (ILL)</td>
<td>IN10</td>
<td>BS</td>
</tr>
<tr>
<td>Grenoble, France</td>
<td>IN16</td>
<td>BS</td>
</tr>
<tr>
<td>www.ill.eu</td>
<td>IN16a</td>
<td>BS</td>
</tr>
<tr>
<td></td>
<td>IN13b</td>
<td>BS</td>
</tr>
<tr>
<td></td>
<td>IN5</td>
<td>ToF</td>
</tr>
<tr>
<td></td>
<td>IN6</td>
<td>ToF</td>
</tr>
<tr>
<td></td>
<td>IN11</td>
<td>NSE</td>
</tr>
<tr>
<td>Helmholtz Zentrum Berlin (HZB)</td>
<td>NEATa</td>
<td>ToF</td>
</tr>
<tr>
<td>Berlin, Germany</td>
<td>www.helmholtz-berlin.de</td>
<td></td>
</tr>
<tr>
<td>Paul Scherrer Institute (PSI)</td>
<td>MARS</td>
<td>BS-ToF</td>
</tr>
<tr>
<td>Villigen, Switzerland</td>
<td>FOCUS</td>
<td>ToF</td>
</tr>
<tr>
<td>sinq.web.psi.ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratoire Léon-Brillouin (LLB)</td>
<td>FA#c</td>
<td>ToF</td>
</tr>
<tr>
<td>Saclay, France</td>
<td>MUSES</td>
<td>NSE</td>
</tr>
<tr>
<td>www-llb.cea.fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spallation Neutron Source (SNS)</td>
<td>BASIS</td>
<td>BS-ToF</td>
</tr>
<tr>
<td>Oak Ridge, USA</td>
<td>CNCS</td>
<td>ToF</td>
</tr>
<tr>
<td>ISIS Facility, Rutherford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appleton Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford, United Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.isis.stfc.ac.uk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quasielastic Neutron Scattering in Biology
Part I: Methods

Ruep E. Lechner1 and Stéphane Longeville2

1Hahn- Mits-Charl-At-Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany, and 2Laboratoire Léon Brillouin, CEA Saclay, F-91191 Gif-sur-Yvette, France

TOF, TOF, TOF

Technology Organisation (ANSTO) PELICAN TOF

Sydney, Australia

www.ansto.gov.au