Time of flight neutron scattering and the path to NIMROD

Daniel Bowron

ISIS Facility Science and Technology Facilities Council Rutherford Appleton Laboratory Chilton, Didcot Oxfordshire OX11 0QX

The neutron diffraction experiment

Total Structure Factor Atomic concentrations and scattering lengths $F(Q) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} (S_{\alpha\beta}(Q))$ **Partial Structure Factors** $S_{\alpha\beta}(Q) - 1 = 4\pi\rho \int_0^\infty r^2 (g_{\alpha\beta}(r) - 1) \frac{\sin(Qr)}{Qr} dr$

Atomic density

Partial Pair Distribution Functions

Schematic of a neutron scattering experiment

Schematic of the D4C neutron diffractometer at the ILL

Schematic of the SANDALS diffractometer at ISIS

Time of flight neutron scattering

The time of flight (TOF) is the time in μ s taken for a neutron to travel 1m (μ s m⁻¹)

The time of arrival at the detector, t_0^{-1} , is the TOF (µs m⁻¹) multiplied by the total flight path (m)

Time of flight neutron scattering: Some useful relationships

Time of arrival	Neutron wavelength
$t_0 = \mathrm{TOF} \ . \ L$	$\lambda = 0.0039562.$ TOF $= 0.0039562.\frac{t_0}{L}$
$t_0 = 252.77 \lambda L$	Neutron velocity $v = rac{10^6}{\mathrm{TOF}}$
Neutron wave vector	Neutron energy
$k = \frac{2\pi}{\lambda} = \frac{1588.2}{\text{TOF}}$	$E = \frac{81.807}{\lambda^2}$

$$\begin{aligned} v \begin{bmatrix} m \ s^{-1} \end{bmatrix}, \ t_0 \begin{bmatrix} \mu s \end{bmatrix}, \text{TOF} \begin{bmatrix} \mu s \ m^{-1} \end{bmatrix}, \ L \begin{bmatrix} m \end{bmatrix}, \ \lambda \begin{bmatrix} \text{\AA} \end{bmatrix}, \\ k \begin{bmatrix} \text{\AA}^{-1} \end{bmatrix}, \ E \begin{bmatrix} \text{meV} \end{bmatrix} \end{aligned}$$

Time of flight neutron scattering: Typical values

Wavelength	Energy	Time of arrival (L=10m)	Speed		
20Å	0.205 meV	50554 µs	197.8 ms⁻¹		
10Å	0.818 meV	25277 µs	395.6 ms⁻¹		
5Å	3.273 meV	12638.5 µs	791.2 ms ⁻¹		
4Å	5.113 meV	10110.8 µs	989.0 ms⁻¹		
3Å	9.090 meV	7583.1 µs	1319 ms⁻¹		
2Å	20.452 meV	5055.4 µs	1978 ms ⁻¹		
1Å	81.807 meV	2527.7 µs	3956 ms⁻¹		
0.5Å	327.228 meV	1263.9 µs	7912 ms⁻¹		
0.25Å	1.309 eV	631.9 µs	15825 ms ⁻¹		
0.1Å	8.181 eV	252.8 µs	39557 ms ⁻¹		
0.05Å	32.723 eV	126.4 µs	79114 ms⁻¹		

Time of flight neutron scattering: Spectral profile

Time of flight neutron scattering: Spectrum parametrization

$$\Phi_{\text{Epithermal}}(E) = \frac{\Phi_0}{E^A} \qquad \Phi_{\text{Maxwellian}}(E) = J \frac{E}{T^2} \exp\left\{\frac{-E}{T}\right\}$$

$$\Phi_{\text{Total}}(E) = \Phi_{\text{Maxwellian}} + \Delta(E) \Phi_{\text{Epithermal}}$$

$$\Delta(E) = \frac{1}{\left[1 + \exp\left\{\frac{W_1}{\sqrt{E}} - W_2\right\}\right]}$$

$$\Phi(\lambda) = \Phi(E) \left(\frac{\delta E}{\delta \lambda}\right) = 2\Phi(E) \left(\frac{E}{\lambda}\right)$$

Time of flight neutron scattering: Spectrum parametrization Methane moderator

$$\begin{split} \Phi_0 \left(\text{at 750 MeV} \right) &\rightarrow 2.7 \left[10^{10} n (\text{eVsr100 cm}^2 \mu \text{As})^{-1} \right] \\ A &\rightarrow 0.92 \\ J &\rightarrow 5.7 \left[10^{10} n (\text{sr100 cm}^2 \mu \text{As})^{-1} \right] \\ T (\text{eV}) &\rightarrow 0.011 \\ \end{split}$$
Proton beam energy
$$\begin{split} W_1 (\text{eV})^{\frac{1}{2}} &\rightarrow 1.7 \\ W_2 &\rightarrow 7.0 \end{split}$$
Typical moderator view

Time of flight neutron scattering: Spectrum parametrization

Light element optimized diffractometers SANDALS type

Utilise:

(1) relatively small forward scattering angles: 1° to 40°

- (2) high energy neutrons $0.05\text{\AA} \leq \lambda \leq 5.0\text{\AA}$
- (3) wide accessible Q-range $0.1^{\text{A}-1} \leq Q \leq 50^{\text{A}-1}$
- (4) flat plate sample geometry

(5) moderate resolution $\Delta Q/Q \approx 2\%$

$$2\theta = 130^{\circ} \lambda = 0.5A \rightarrow Q_{\max} = 22.8A^{-1}$$

Pulsed Source Experiment

Reactor Experiment

$$2\theta = 40^{\circ} \lambda = 0.05A \rightarrow Q_{\text{max}} = 86A^{-1}$$

Reactor $\theta_{max} = 140^{\circ} \lambda = 0.5 \text{\AA}$

Q-resolution of a neutron scattering instrument

$$Q = \frac{4\pi}{\lambda} \sin\theta$$

$$\Delta Q = \left(\frac{\delta Q}{\delta \theta}\right) \Delta \theta + \left(\frac{\delta Q}{\delta \lambda}\right) \Delta \lambda$$

$$\Delta Q = Q[\cot\theta \Delta\theta + \Delta\lambda/\lambda]$$

Under the conditions that the wavelengths of the scattered neutrons are measured by time of flight with detectors at fixed scattering angle 2 θ , it can be shown that the resolution $\Delta Q/Q$ of the TOF neutron diffractometer is roughly constant as a function of TOF.

Q-resolution of a neutron scattering instrument

Q-resolution of a neutron scattering instrument

Q-resolution is particularly important for total scattering studies

In total scattering studies it is important to accurate measure both the sharp Bragg and the diffuse scattering components.

Th. Proffen, S. J. L. Billinge, T. Egami and D. Louca, Z. Kristallogr. 218 (2003) 132–143

Light element optimized diffractometers SANDALS type

Н																	Не
	Ве											В	С	N	0	F	Ne
Na	Mg				_							AI	Si	Ρ	S	CI	Ar
κ	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Elements with isotopes that potentially can be used for NDIS ion solvation studies ($\Delta b_c \ge 1$ fm) J.E.Enderby, *Chem. Soc. Revs.* 159 (1995)

Inelasticity ! The challenge for light element neutron diffraction

The advantage of a pulsed source diffractometer

And it gets even better !

$$F_{H_{2}O}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{H}[S_{OH}(Q) - 1] + c_{H}^{2}b_{H}^{2}[S_{HH}(Q) - 1]$$

$$F_{HDO}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{HD}[S_{OH}(Q) - 1] + c_{H}^{2}b_{HD}^{2}[S_{HH}(Q) - 1]$$

$$F_{D_{2}O}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{D}[S_{OH}(Q) - 1] + c_{H}^{2}b_{D}^{2}[S_{HH}(Q) - 1]$$

$$F_{H_{2}O}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{H}[S_{OH}(Q) - 1] + c_{H}^{2}b_{H}^{2}[S_{HH}(Q) - 1]$$

$$F_{HDO}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{HD}[S_{OH}(Q) - 1] + c_{H}^{2}b_{HD}^{2}[S_{HH}(Q) - 1]$$

$$F_{D_{2}O}(Q) = c_{O}^{2}b_{O}^{2}[S_{OO}(Q) - 1] + 2c_{O}c_{H}b_{O}b_{D}[S_{OH}(Q) - 1] + c_{H}^{2}b_{D}^{2}[S_{HH}(Q) - 1]$$

Access to intra and inter molecular distances

Access to angular information

Benefits of a flat plate sample geometry: efficient use of beam

Light element diffractometers make use of the forward scattering geometry, the absence of detectors at high scattering angles allows the use of flat plate sample cells

Benefits of a flat plate sample geometry: sample diagnostics

In the flat plate sample geometry after nomalization to vanadium and correction for background, multiple scattering and attenuation, but before correction for self scattering, the measured total differential scattering intensity oscillates about the high Q limit.

$$\lim_{Q\to\infty} I(Q) = \frac{\rho t f \sum_{i} c_i \sigma_i}{4\pi}$$

- ρ Atomic density of sample
- t Sample thickness
- f Packing fraction
- c_i Fraction of atoms of type i
- σ_i Total scattering cross section of atoms of type *i*

Benefits of a flat plate sample geometry: sample diagnostics

The scattering cross sections are well known and tabulated so:

Liquid samples:

As liquids by definition fill their containers, if one knows the density and thickness of the sample container \rightarrow sample composition

Powder samples:

If one knows the sample composition and density and size of sample container \rightarrow packing fraction

Benefits of a flat plate sample geometry: H/D sample composition

*Lanthanide se	eries
----------------	-------

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbiun 70
5	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobeliun 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Challenging neutron resonances for light element diffractometers

Challenging neutron resonances for light element diffractometers

Neutron Resonance in a sample Resonance at 4.9eV (0.13Å)

Tracking the neutron resonance across the detector array

Effect of the neutron resonance on the merged DCS

Imperfect correction of the resonance using a reduced wavelength range

Elements suitable for isotopic substitution on a light element diffractometer

Н																	He
Li	Ве							В	С	Ν	0	F	Ne				
Na	Mg							AI	Si	Р	S	CI	Ar				
κ	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Elements with isotopes that potentially can be used for NDIS ion solvation studies (Δ b_c ≥ 1fm)
J.E.Enderby, *Chem. Soc. Revs.* 159 (1995)
Suitable for study on a pulsed neutron source

New directions for neutron instrumentation NIMROD: Near and Intermediate Range Order Diffractometer

From SANDALS to NIMROD: from 40Å to 400Å (with atomic resolution)

Key Characteristics NIMROD: Near and Intermediate Range Order Diffractometer

(1) Simultaneous access to a wide Q-range 0.01Å-1 to 50Å-1

 \rightarrow access to structural correlations up to 400Å with atomic resolution

(2) Highly efficient and stable detectors (~0.1%) to allow isotopic substitution techniques on more dilute systems

(3) Forward scattering geometry using high energy neutrons to minimise undesirable inelastic scattering effects - Placzek corrections

(4) Efficient use of short and long wavelength neutrons produced by the moderators and pre-moderators of the ISIS second target station

ISIS Target Station 2

Target station monolith

•12m diameter •7m high •18 beam ports •3m deep steel foundations Steel and concrete construction

ISIS Target Station 2: The Target Monolith

ISIS Target Station 2: Target and Moderators

ISIS Target Station 2 Moderators: Simulated Performance

ISIS Target Station 2: Target and Moderators

Combined view of moderator and pre-moderator High flux across a broad wavelength range

Target Insert Collimation

Collimated view of moderator and premoderator approximately 20cm wide x 12cm high

Combined view of moderator and pre-moderator High flux across a broad wavelength range

Combined view of moderator and pre-moderator High flux across a broad wavelength range

NIMROD

Neutrons and gravity

Neutrons have mass (1.67 x 10⁻²⁷ kg) and therefore are subject to gravity

ISIS TS1

If a neutron takes 20ms to travel from the moderator to the detector, it will fall by:

ISIS TS2

1.96mm

If a neutron takes 100ms to travel from the moderator to the detector, it will fall by:

4.9cm

Primary beam collimation

Made in Spain

NIMROD incident flight line

NIMROD sample and detector vacuum tank

NIMROD Detector Tank

NIMROD Detector Tank

NIMROD Detector Modules and Mounting Frames

NIMROD Detector Modules and Mounting Frames

Positioning the NIMROD Detector Modules

SANDALS type detector technology

Array of high efficiency ZnS scintillators viewed by photomultiplier tubes

Science & Technology Facilities Council

SANDALS type detector technology

Figure 1 – NIMROD detector exploded assembly consisting of: (1) electronics assemblies; (2) PMTs; (3) mu-metal assemblies; (4) upper moulding; (5) mounting pins; (6) lower moulding; (7) upper reflective layer; (8) reflector backing plates; (9) dividing plates; (10) scintillator assemblies; (11) foil lining; (12) detector cover.

NIMROD detector modules: efficiency test

Test element approximately 30% more efficient than a SANDALS element

NIMROD detector modules: stability test

NIMROD stability

NIMROD blockhouse: environment control

To ensure the stability of the detectors it is necessary to control the temperature and humidity of the blockhouse

 $\Delta T \pm 1^{\circ}C$ $\Delta humidity \pm 5\%$ (at 20°C)

NIMROD air conditioning system

Pixellated small angle detector bank

NIMROD sample point

Overview of NIMROD

Counting House for DAE and detector electronics

Diverse areas of application

(1)Atomic and molecular liquids and liquid mixtures
(2)Glasses – atomic and molecular
(3)Structured fluids
(4)Polymers and polymer blends
(5)Mesoscale confined fluids
(6)Disordered crystals
(7)....

Both under ambient conditions and at high and low temperatures and pressures

TS-2 Phase One Instruments

Structures

NIMROD Intermediate range order in liquids WISH High-resolution magnetic structure SANS2D Large molecule structure in multicomponent systems

Reflectometry

INTER Air/ liquid/ solid interface interactions **OFFSPEC** Structures of membrane, protein and liquid interfaces **POLREF** Interface measurements in magnetic sensor devices

Science & Technology Facilities Council

TS-2 Proposed Phase Two Instruments

- **Chipir** Atmospheric neutron research and testing
- **Exeed** Extreme sample environments diffractometer
- **Exess** Extreme sample environments spectrometer
- **Imat** Neutron imaging, materials science and engineering
- Larmor Multi-purpose instrument for small-angle scattering, diffraction and spectroscopy
- **Lmx** Large molecule crystallography
- **Nessie** Time-of-flight spin echo spectrometer
- **Zoom** High count-rate, focussing small angle scattering

