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1 Introduction

Molecules and crystals are usually symmetric objects, i.e. the spatial disposition
of atoms are left invariants by a number of symmetry transformations. Their
physical properties, described by tensors, have also a certain degree of symmetry,
govern by the specific transformation of the tensorial quantity under symmetry
operations of the body. The collection of symmetry operations, generated by
symmetry elements of the molecule or crystal, has the structure of a group in
the mathematical sense. One can therefore apply the powerful mathematical
tools developed in group theory, to the study of physical properties of solids.
To be more precise, physics uses part of group theory known as the theory of
representations.

The purpose of representation theory is to study how the symmetry group
of the molecule/crystal act on the vector space formed by the physical quantity
relevant to the problem. Symmetrical elements of the space can be created
and classified according to their symmetry. Representation theory is used for
example by spectroscopists to classify vibration modes of a molecule/crystal
and determine selection rules. It is used to determine crystal field schemes
and to construct molecular orbitals (LCAO) in transition metal complexes. Of
course, and this is entirely what this workshop is about, representation theory
is a essential tool to study the arrangement of magnetic moments in an ordered
state. The role of this lecture is to give an introduction to the practical use
of group theory and to familiarize the audience with concepts and notations that
will be used in the rest of the workshop. I have decided to use concrete examples
throughout the lecture to highlight the most important points of the theory.
This lecture is intended for beginners in the field, with the aim to provide enough
background in group theory and crystallography for more specialized lectures.
The discussion will be restricted to finite groups, with mainly applications at a
molecular level where only point group symmetry is considered. The theorems
will be given without proofs, and the reader may want to refer to a number of
textbooks listed in the bibliography section for a more complete treatment.
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2 Point group symmetry

2.1 Symmetry operations in molecules

Molecules are finite objects with usually a certain degree of symmetry, i.e. there
are a number of symmetry elements in the body, such as points, lines or planes
from which symmetry operations can be carried out and leave the molecule in-
variant. Let’s take the water molecule for example as shown in figure 1. The
molecule is left invariant by a 180 ◦ rotation along the z-axis. It is also left
invariant by mirror operations in the xz and yz planes, respectively.

Figure 1: Symmetry elements of the water molecule.

In molecules, the combination of three type of symmetry elements (point,
lines, planes) give rise to four kinds of symmetry operations, as explained below.
We will note that two notations are used to label the symmetry operations, and,
as we will discuss later, point groups. One, the so-called Schoenflies notation,
is usually preferred by spectroscopists while the other, the Hermann-Mauguin
notation is used in crystallography. I will use systematically both notations
when discussing point group properties.

The four kinds of symmetry operations in molecules:

1) Inversion The symbol for the inversion operation is i in Schoenflies
notation and 1 in Hermann-Mauguin notation. An inversion center changes the
coordinates of each atom (x,y,z) in the molecule to (-x,-y,-z).

2) Reflections The symbol for reflections through planes is σ in Schoenflies
notation and m in Hermann-Mauguin notation.

3) Proper rotations The symbol for proper rotation axis of order n is Cn
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in Schoenflies notation and n in Hermann-Mauguin notation. A rotation axis
of order n generates rotation operation of 2πk/n with k=1,...,n. Each of these
operations is noted Ck

n in Schoenflies notation. The convention for proper and
improper rotations is anti-clockwise.

4) Improper rotations The symbol for improper axis of order n, is Sn

in Schoenflies notation and n in Hermann-Mauguin notation. An improper
rotation operation of order n corresponds to the successive rotation operation (of
order n) and reflection through a plane perpendicular to the rotation axis. This
operation can exist on its own, i.e. does not require the existence of a proper
rotation axis and a perpendicular mirror plane. For example in tetrahedral
geometry, as seen on figure 2, the S1

4 operation generated from the S4 improper
axis, transform point 1 into point 3, or point 2 into point 4. However, neither a
proper 4-fold rotation axis, nor a mirror plane perpendicular to it are symmetry
elements.

Figure 2: Improper 4-fold axis in a tetrahedron

2.2 Symmetry groups in molecules

By studying the geometry of a given body, here molecules, one can find a col-
lection of symmetry operations that leave the body globally invariant. This
collection of symmetry operations possesses a very basic but essential property,
since it forms a group in the mathematical sense. I would like to note that this
collection of operations can be infinite in some cases, for example for a linear
molecule where rotations of any angle along the axis leaves the body invariant.
However, in the rest of the document, one will encounter only finite groups. Let
recall the generic definition of a group and verify that the symmetry operations
that leave the water molecule invariant, together with the identity operation
(labelled E or 1 in), has the structure of a group:

Definition of a group:

1) Is is a collection of elements for which an associative law of
combination is defined and such that for any pair of elements g and
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h, the product gh is also element of the collection
2) It contains a unitary element, E, such that gE=g
3) Every element g has an inverse, noted g−1 such that gg−1=E.

We can verify that the symmetry operations of the water molecule has indeed
the structure of a group by constructing what is known as the multiplication ta-
ble of the group, reported in table I. This is a table, where the elements (here the
symmetry operations) displayed horizontally and vertically are combined and
their product reported in the corresponding table entry. The order in which
the symmetry operations are applied is important since the law of combination
is non necessarily commutative. We will note symbolically the combination (or
product) of two operations g and h, gh. In this convention, the operation h
is carried out first and g second. We can verify on the previous example that
the group property is verified, i.e. the product of two symmetry operations is
always element of the group, and that each element possesses an inverse. In this
particular case, one also remark than the group is also commutative, since for
each element g and h, gh=hg. We will see later on that commutative groups,
named Abelian groups, have interesting additional properties.

Order of a group : The order of a group is its cardinality, i.e. its number
of elements.

E C2(z) σ(xz) σ(yz)
E E C2(z) σ(xz) σ(yz)

C2(z) C2(z) E σ(yz) σ(xz)
σ(xz) σ(xz) σ(yz) E C2(z)
σ(yz) σ(yz) σ(xz) C2(z) E

Table 1: Multiplication table of the point group C2v

2.3 Classes of symmetry operations

Before we go further, one needs to explain the important concept of classes and
for that, to define the term similarity transformation. If g and x are elements
of a group, then the element h such that

h = x−1gx (1)

is know as the similarity transform of g by x. We also say that g and h are
conjugate.
In a group structure, a set of elements which are all conjugate to one another
is called a class.. Basically, a class represents a set of operations that have the
same geometrical properties, and are therefore regrouped. The similarity trans-
formation expresses the fact that a given operation g is equivalent to another
operation h in a different coordinate system, that can be accessed by an opera-
tion of the group.
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Let’s try to find similarity transformations in the group of water molecule. By
using the multiplication table, one can easily see that each element of the group
is only conjugate to itself (this property is of course always verified). For exam-
ple, the similarity transformations of the C2(z) operation gives:

σ(xz)−1C2(z)σ(xz) = σ(xz)C2(z)σ(xz) = σ(xz)σ(yz) = C2(z) (2)

σ(yz)−1C2(z)σ(yz) = σ(yz)C2(z)σ(yz) = σ(yz)σ(xz) = C2(z) (3)

Therefore, the group of the water molecule has 4 operations, arranged into
4 classes.

If we take a molecule with a different geometry, say NH3 represented in figure
3, we can find similarity transformations between elements of the group. Let’s
identify the symmetry elements. One finds a 3-fold axis and 3 vertical mirror
planes, that we will label σv(1) σv(2) and σv(3). The symmetry operations are
E, C1

3, C2
3, σv(1) σv(2) and σv(3). With the help of the multiplication table

(table 2), on can easily find that there re 3 classes of operations in the symmetry
group of the NH3 molecule, E, (C1

3,C
2
3) and (σv1, σv2, σv3). For example:

σ−1
v1 C1

3σv1 = σv1σv2 = C2
3 (4)

(C1
3 )−1σv1C

1
3 = C2

3σv3 = σv2 (5)

(C2
3 )−1σv1C

2
3 = C1

3σv2 = σv3 (6)

Since symmetry operations belonging to the same class are ”equivalents”,
one usually doesn’t list all symmetry elements but rather the different classes,
preceded by the number of operations in the classs. For example, for the group
of the NH3 molecule, we will list E, 2C3, 3σv.

Figure 3: Symmetry elements in the NH3 molecule
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C3v E C1
3 C2

3 σv1 σv2 σv3

E E C1
3 C2

3 σv1 σv2 σv3

C1
3 C1

3 C2
3 E σv2 σv3 σv1

C2
3 C2

3 E C1
3 σv3 σv1 σv2

σv1 σv1 σv3 σv2 E C2
3 C1

3

σv2 σv2 σv1 σv3 C1
3 E C2

3

σv3 σv3 σv2 σv1 C2
3 C1

3 E

Table 2: Multiplication table of the point group C3v

2.4 Point groups

The collection of symmetry operations possessed by a molecule is named a Point
Group (at least one point is invariant by all symmetry operations). The differ-
ent point groups are obtained by combining a number of symmetry elements
- inversion center, proper and improper rotations-axis, mirror planes-. There
is limited number of such points groups which are labeled using two different
notations. Chemists usually prefer the Schoenflies notation whereas crystallog-
raphers use the Hermann-Mauguin notation. In most cases, it is straightforward
to find the point group of a given molecule by using a systematic procedure as
illustrated in the flow chart of figure 4 (Cotton). It is important to note that
molecules can be invariant by rotation of order 5,7.... For crystals, where trans-
lational periodicity is required, only point groups obtained by combining the
inversion center, mirror planes and (proper and improper) rotation axis of
order 2,3,4,6 are valid. There are 32 crystallographic point groups (listed in
table 3) which, combined with translations, give rise to 230 space groups.

nonaxial Ci(1), Cs(m)
cyclic C1(1 ), C2(2 ), C3(3 ), C4(4 ), C6(6 )
cyclic with horizontal planes C2h(2/m), C3h(3/m), C4h(4/m), C6h(6/m)
cyclic with vertical planes C2v(mm2 ), C3v(3m), C4v(4mm), C6v(6mm)
dihedral D2(222 ), D3(32 ), D4(422 ), D6(622 )
dihedral with horizontal planes D2h(mmm),D3h(62m),D4h(4/mmm), D6h(6/mmm)
dihedral with planes between axes D2d(42m), D3d(3m)
improper rotation S4(4), S6(3)
cubic groups T(23 ), Th(m3), Td(43m), O(432 ), Oh(m3m)

Table 3: The 32 crystallographic point groups. Labels are given in Schoenflies
notation and Hermann-Mauguin notation in italic
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Figure 4: Flow chart to find the symmetry point group of a molecule

3 Theory of representation

3.1 Representation of a group

So far, we have seen that by studying the geometric properties of a molecule, one
can find a set of symmetry operations that leave the molecule globally invariant.
This set of operations, that can be regrouped in classes, has the structure of a
group, called Point Group. Fine, but it hasn’t help much to reduce a problem
based on symmetry arguments. So, what is representation theory all about?
Representation theory is about reducing group-theory problems to problems in
linear algebra. The symmetry group of the molecule corresponds to what is
known as an abstract group. However, one can construct a representation of
this group in a vector space. We say that a group G is represented in a vector
space E if we form a homomorphism Γ of G in a sub group of the group of linear
transformations GL(E):

∀g ∈ G, g 7→ Γ(g) ∈ GL(E) (7)

∀g, g′ ∈ Γ(gg′) = Γ(g)Γ(g′) (8)

Γ(identity) = identity (9)

∀g ∈ G, Γ(g−1) = (Γ(g))−1 (10)
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If one forms a representation of a group in a finite vector space, say of
dimension n, for which a basis has been chosen, then Γ(g) ∀ g in G can be
represented by a nxn matrix. The set of matrices form a representation of the
group. The dimension of the representation corresponds to the dimension of the
vector space. Let’s take the previous example, and construct a representation of
the C2v group: We consider a 3 dimensional space with a cartesian coordinate
system, supported by a basis (

−→
i ,
−→
j ,
−→
k ). We can write down the matrices rep-

resenting the transformation of a point P, of coordinates (x,y,z), by operations
of the C2v group as follows:

E →



1 0 0
0 1 0
0 0 1


C2(z) →



−1 0 0
0 −1 0
0 0 1




σ(xz) →



1 0 0
0 −1 0
0 0 1


 σ(yz) →



−1 0 0
0 1 0
0 0 1




(11)

The set of matrices forms a representation of the group C2v, of dimension 3.
The law of composition between matrices is the multiplication. So the product
of two operations in the symmetry group is represented by the the product of the
corresponding transformation matrices in vector space. For example, according
to the result of the multiplication table of the C2v group, C2(z)σ(xz)=σ(yz)
which hold with matrix representatives:



−1 0 0
0 −1 0
0 0 1


 ·




1 0 0
0 −1 0
0 0 1


 =



−1 0 0
0 1 0
0 0 1


 (12)

Of course this is not the only representation of this group. Let change the
vector space and consider the one formed by unit polar vectors centered on each
atom of the H2O molecule and directed along the 3 cartesian axis, as shown
on figure 5. The vector space is now 9-dimensional. We can write the matrices
representing the linear transformations of vector space, as follow:
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E →




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




·




xO
yO
zO
xH1

yH1

zH1

xH2

yH2

zH2




(13)

C2(z) →




−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0




·




xO
yO
zO
xH1

yH1

zH1

xH2

yH2

zH2




(14)

σ(xz) →




1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1




·




xO
yO
zO
xH1

yH1

zH1

xH2

yH2

zH2




(15)

σ(yz) →




−1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0




·




xO
yO
zO
xH1

yH1

zH1

xH2

yH2

zH2




(16)

This is another representation of the group, of dimension 9. The two previ-
ous examples are constructed in vector spaces formed by polar vectors. But I
would like to stress that a representation of a group can be constructed in any
vector space, supported by any function. Let’s consider the p atomic orbitals
of the oxygen atom, int the group of the water molecule. The angular part of
the wave functions can be written, in polar coordinates:
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px =
1
2

√
3
π

sin(θ)cos(φ)

py =
1
2

√
3
π

sin(θ)sin(φ)

pz =
1
2

√
3
π

cos(θ)

It is easy to determine the action of symmetry operators on this set of
orbitals. For example, the two-fold axis leaves pz invariant and transform px and
py into respectively -px and -py...Once again, we can form a representation of the
group in the vector space supported by px,py and pz. More generally, one can
form a representation of a group in a vector space of any set of function {f(r)},
a symmetry operator g acting on a function f(r) as follows: g[f(r)] = f [g−1r].
One could take many other examples. At this point, it is important to realize
the generality of representation theory: in a sense it doesn’t matter what is
transformed under application of symmetry operations, as long as we understand
how it is transformed.

3.2 Irreducible representation

For each symmetry group, there are a limited number of representations, called
irreducibles, that are of fundamental significance in representation theory. To
explain the concept of irreducible representation, I will start by reversing the
problem. Let’s suppose that we have formed two representations Γ1 and Γ2

of a finite group G, in two vector spaces E1 and E2 of dimension n1 and n2,
respectively. Each of this subspace is, of course, left invariant by G. We can
construct a vector space E, that is the direct sum of the vector space E1 and
E2, noted E1

⊕
E2. Any vector of this space can be written as a unique linear

combination of vectors of the two subspaces. We can then construct a repre-
sentation Γ of the group G in the vector space E. Of course, because of this
deliberate construction, we know that two subspaces of E are left invariant.
When a representation leaves at least one of the subspace of E is invariant, we
will say that the representation is reducible.

Definition:
A representation Γ of a group G in E is said to be reducible, if it leaves at
least a sub-space of E invariant. Otherwise, the representation is irreducible.
The representation is totally reducible if E can be written as direct sums of
subspaces Ei, E=

∑
⊕Ei.

Given a representation Γ of a group G, and a set of associated matrices
{Γ(g), ∀ g ∈ G}, the representation is reducible if one can find a similarity
transformation (in other words a change of base) that reduces all the matrices
Γ(g) to similar block-diagonal form as seen below. The dimensions of the blocks
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are the dimensions of the subspaces left invariant. We recall that for block-
diagonal matrices, corresponding blocks of each matrices multiply separately.

It is important to understand the concept of reducible and irreducible repre-
sentations so I would like to illustrate it with very trivial examples. Once again,
let’s go back to the point group of water molecule, C2v, and a representation of
this group in the 3D vector space supported by a cartesian coordinate system.
One can easily see that the components x, y and z are independently either trans-
formed in themselves or their opposite by any operation of the group. So the 3
subspaces supported respectively by

−→
i ,
−→
j and

−→
k are invariants. Therefore the

representation of the group C2v in a 3D vector space, with basis (
−→
i ,
−→
j ,
−→
k ) is

reducible in three 1-dimensional representations. Of course, this case is trivial,
and one can verified that the matrices of the representation, in equation 11, are
indeed block-diagonals each block being of dimension 1.
Now let’s take the same problem again but in a different base. As shown in
figure 6, we rotate the coordinate system by 45 ◦.

Figure 5: Point group C2v with cartesian coordinate system rotated by 45 ◦.

Of course in this base, the matrices are not block diagonal with the same
form anymore:

E →



1 0 0
0 1 0
0 0 1


C2(z) →



−1 0 0
0 −1 0
0 0 1




σ(xz) →



0 −1 0
−1 0 0
0 0 1


σ(yz) →




0 1 0
1 0 0
0 0 1




(17)

However, we can find a similarity transformation (here the transition matrix
T from this base to the previous one, shown below) that will bring all matrices
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to the block-diagonal form of (11).

T =




√
2

2

√
2

2 0
−
√

2
2

√
2

2 0
0 0 1


 (18)

The main goal of representation theory is exactly that. Given a representa-
tion of a group in a vector space, is it possible to reduce the representation into
irreducible representations, i.e. decompose the vector space in orthogonal sub-
spaces of smaller dimensions? If yes, then what is the similarity transformation
that allow to do that, i.e. what are the basis vectors that support each subspace.
In the rest of the lecture, we will focuss on these two points:
1) Decomposition of a reducible representation in irreducible representations
2) Construction of the basis functions

3.3 Character of a representation

The character of a representation Γ of a group G is a function χ that sends g
in G to the trace of the matrix Γ(g).

3.4 Character tables

The character table of a group G, is a table formed by the characters of all the
irreducible representations of the group. The table is constructed as follows:
- The ”conjugacy” classes of the group are displayed horizontally.
- The irreducibles representations are listed vertically. The irreducible represen-
tations are sometimes labeled arbitrarily (Γ1,Γ2....) or with symbols related to
their symmetry properties (notation proposed by Mulliken).
- ∀ g ∈ G, the character χ(g) of the representation is given in the corresponding
table entry.
I have reported below the character tables for the point groups C2v (symmetry
group of the water molecule) and C3v (symmetry group of the ammonia).
Here, we won’t described the mathematical procedure to construct the irre-
ducible representations of a group. The irreducible representations for point
groups are tabulated in a number of textbooks. Irreducible representations for
space groups have been tabulated by Kovalev or can be calculated using pro-
gram such as KAREP.
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3.5 Decomposition in irreducible representations

3.5.1 Orthogonality theorem

There is an essential theorem in group theory, the orthogonality theorem, some-
times referred to as the Great Orthogonality Theorem (GOT) that will be given
here without proofs. The proof can be found in Wagner or [?].
G is a group of order h, and Γi and Γj two irreducible representations of this
group, of dimension li and lj respectively. We will note Γi(g) the matrix of
representation i for the operation g. The corresponding matrix elements will
be noted Γi(g)αβ . The character of Γi(g) (is noted χi(g). The orthogonality
theorem states that:

∑

g∈G

Γi(g)αβΓj(g)∗α′β′ =
h√
lilj

· δij · δαα′ · δββ′ (19)

A number of important properties are derived directly form the GOT:

The sum of the squared characters of an irreducible representation equal the
order of the group:

∑

g∈G

χi(g)2 = h (20)

The sum of the product of characters of two inequivalent irreducible represen-
tations is null:

∑

g∈G

χi(g)χj(g) = 0 (21)

3.5.2 Decomposition

The decomposition of a reducible representation into a sum of irreducible repre-
sentations is a direct consequence of the orthogonality theorem. Let’s suppose
that a reducible representation Γ can be decomposed in irreducible representa-
tions :
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Γ =
∑

k

akΓk

Then,

χ(g) =
∑

k

akχk(g)∀g ∈ G

∑

g∈G

χ(g)χi(g) =
∑

k

ak(
∑

g∈G

χk(g)χi(g))

ai =
1
h

∑

g∈G

χ(g)χi(g) (22)

By applying formula 22 for all irreducible representations i of the group,
one can find the coefficients of the decomposition. This step is straightforward,
once we have constructed a representation of a group in a vector space, and
calculate the character of this representation. Once again let’s illustrate that
with a few examples. First, the representation of the group C2v in the vector
space as described by 11.

C2v E C2(z) σ(xz) σ(yz)
A1 +1 +1 +1 +1
A2 +1 +1 -1 -1
B1 +1 -1 +1 -1
B2 +1 -1 -1 +1
Γ 3 -1 1 1

aA1 =
1
4
(3× 1− 1× 1 + 1× 1 + 1× 1) = 1

aA2 =
1
4
(3× 1− 1× 1 + 1× (−1) + 1× (−1)) = 0

aB1 =
1
4
(3× 1− 1× (−1) + 1× 1 + 1× (−1)) = 1

aB2 =
1
4
(3× 1− 1× (−1) + 1× (−1) + 1× 1) = 1

Γ = A1 ⊕B1 ⊕B2

Now, if we consider the representation in the vector space supported by
polar vectors of the water molecules and calculate the characters accordingly
(matrices 13 to 16), one will find the following decomposition:

14



C2v E C2(z) σ(xz) σ(yz)
A1 +1 +1 +1 +1
A2 +1 +1 -1 -1
B1 +1 -1 +1 -1
B2 +1 -1 -1 +1
Γ 9 -1 3 1

aA1 =
1
4
(9× 1− 1× 1 + 3× 1 + 1× 1) = 3

aA2 =
1
4
(9× 1− 1× 1 + 3× (−1) + 1× (−1)) = 1

aB1 =
1
4
(9× 1− 1× (−1) + 3× 1 + 1× (−1)) = 3

aB2 =
1
4
(9× 1− 1× (−1) + 3× (−1) + 1× 1) = 2

Γ = 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2

3.6 Projection operators

Once the representation is decomposed in IRs, the second step consists in find-
ing the basis vectors that support each of the invariant subspaces. In most cases
it is not trivial to find the similarity transformation (or basis change) that send
the matrices of the representation into block diagonal forms. To find these basic
vectors (or symmetry adapted function), we use projection operators also called
projectors:

P̂ ν
λ =

∑

g∈G

Dν
λµ(g)ĝ (23)

Here P is an operator that projects on the irreducible representation ν.
Dν

λµ(g) represent a matrix element of the IR ν and I have noted ĝ the operator
corresponding to the operation g of the group. The idea is to apply this operator
to an initial vector of the space E to find the components this space.
Here I like to treat an example where a representation of dimesion 2 is involved.
For this example, we suppose that we want to construct the Molecular Orbitals
of the ammonia molecule in the LCAO (linear combination of atomic orbitals)
approximation. Molecular orbitals are not directly obtained from atomic or-
bitals but rather from symmetry adapted linear combination of atomic orbitals.
Because the N atom is not exchanged with the H atoms, we construct separately
the symmetry adapted LCAO for the 3 hydrogen atoms.

So we are studying the representation of the point group C3v in the vector
space formed by three 1s atomic orbitals, noted s1, s2 and s3. The matrices are
easily obtained:

15



E →



1 0 0
0 1 0
0 0 1


 C1

3 →



0 1 0
0 0 1
1 0 0


 C2

3 →



0 0 1
1 0 0
0 1 0




σv1 →



1 0 0
0 0 1
0 1 0


σ(v2) →




0 0 1
0 1 0
1 0 0


 σ(v3) →




0 1 0
1 0 0
0 0 1




(24)

You can verify that this representation is reducible and decomposed in
A1⊕E. Now let construct the symmetry adapted LCAO and for that use the
projector operators. First projecting on A1 :

P̂A1s1 = Ês1 + Ĉ1
3s1 + Ĉ2

3s1 + σ̂v1s1 + σ̂v2s1 + σ̂v3s1

P̂A1s1 = s1 + s2 + s3 + s1 + s3 + s2 = 2(s1 + s2 + s3)

E is a 2-dimensional representation and therefore the character of the repre-
sentation is no longer sufficient and one needs the matrices themselves. Below
are reported the matrices for the doubly degenerate representation E:

E →
(

1 0
0 1

)
C1

3 →
( − 1

2 0
0 − 1

2

)
C2

3 →
( − 1

2 0
0 − 1

2

)
σv1 →

(
1 0
0 −1

)
σ(v2) →

( − 1
2 0

0 1
2

)
σ(v3) →

( − 1
2 0

0 1
2

)

(25)

16
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1. What’s a magnetic structure?

2. How to describe magnetic structures with the formalism of 
propagation vector(s).  

3. Plotting complex magnetic structure with FStudio.

4. Symmetry, symmetry, symmetry…

5. Strategy for solving magnetic structures, indexation, 
simulated annealing…. 

Outline
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Ions with intrinsic magnetic moments 

core

Ni2+

Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule: maximum S/J 

m = gJ J  (rare earths)

m = gS S  (transition metals)



L.C. Chapon, Magnetism tutorial, ACNS 2006

What is a magnetic structure?

Paramagnetic state: 
Snapshot of magnetic moment configuration

Jij

 S Sij ij i jE J=− ⋅

0Si =
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What is a magnetic structure?

Ordered state: Anti-ferromagnetic 
Small fluctuations (spin waves) of the static configuration

 S Sij ij i jE J=− ⋅

Jij0Si ≠

Magnetic structure:
Quasi-static configuration of magnetic moments
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Types of magnetic structures
Ferro Antiferro

Very often magnetic structures are complex due to : 
- competing exchange interactions (i.e. RKKY)
- geometrical frustration
- competition between exchange and single ion anisotropies
-……………………..
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Types of magnetic structures

“Transverse”

“Longitudinal”

Amplitude-modulated or Spin-Density Waves
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Types of magnetic structures

Spiral

Cycloid
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Types of magnetic structures

Conical

Shubnikov magnetic groups, are limited 
to:

- Commensurate magnetic structure.

- Real representation of dimension 1.
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Position of atom j in unit-cell l 
is given by:

Rlj=Rl+rj where Rl is a pure 
lattice translation

Formalism of prop. Vector : Basics

Rl

rj

mlj
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{ }
{ }
∑ −=

k
k kRSm ljlj iexp π2

∗= jj kk- SS

Necessary condition for real mlj

cb acb arRR jjjjllj zyxlll +++++=+= 321

Formalism of prop. Vector : Basics

Rl

rj
mlj
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Formalism of prop. Vector : Basics

A magnetic structure is fully described by:

- Wave-vector(s) {k}.

- Fourier components Skj for each magnetic atom j and wave-vector k. 
Skj is a complex vector (6 components) !!!

- Phase for each magnetic atom j, Φkj
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{ }
{ }

2k k
k

m S kR Slj j l jexp iπ= − =∑
• The magnetic structure may be described within the 

crystallographic unit cell
• Magnetic symmetry: conventional crystallography plus

time reversal operator: crystallographic magnetic 
groups 

Single propagation vector
k = (0,0,0)
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{ }
{ }

( ) )(2 ln
jljlj -1iexp k

k
k SkRSm =−=∑ π

REAL Fourier coefficients ≡ magnetic moments
The magnetic symmetry may also be described using
crystallographic magnetic space groups  

Single propagation vector
k=1/2 H
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1
2

2k kS uj j j jm exp( i )π φ= −

- k interior of the Brillouin zone (pair k, -k)

- Real Sk, or imaginary component in the same direction 
as the real one

2 2k -km S kR S kRlj j l j lexp( i ) exp( i )π π= − +

km u kRlj j j l jm cos2 ( )π φ= +

Fourier coef. of sinusoidal structures
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1
2

2k kS u vj uj j vj j jm im exp( i )π φ⎡ ⎤= + −⎣ ⎦

- k interior of the Brillouin zone
- Real component of  Sk perpendicular to the imaginary 
component

k km u kR v kRlj uj j l j vj j l jm cos2 ( ) m sin2 ( )π φ π φ= + + +

Fourier coefficients of helical structures
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Centred cells!

k=(1,0,0) or (0,1,0) !!!!!
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Examples. Fstudio

{
LATTICE P
K 0.5 0.0 0.0
SYMM x,y,z
MSYM u,v,w,0.0
MATOM Ce1 CE 0.0 0.0 0.0
SKP 1 1 2.0 0.0 0.0 0.0 0.0 0.0 0.0
}

Type of lattice P, C, I, F…..

Propagation vector(s)

List of symmetry operators with associated magnetic 
operator

Magnetic atom

Fourier coefficients and phase

www-llb.cea.fr/fullweb
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Symmetry analysis

• Problem is underdetermined: 
-large number of parameters 
(6 Fourier coefs.+phase per magnetic atom 

and per k)
-usually few observations, especially in 

powder patterns.
- Magnetic form factor 
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Representation theory

• Method for simplifying analysis of a 
problem in systems possessing some 
degree of symmetry. 

• What is allowed vs. what is not allowed

Keyword : Invariance of the physical properties under
application of symmetry operators.
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Representation theory

MO-LCAO

∫= 10µφφT ∫= 10αφφT

Spectroscopy
3 HN

a1 (2pz)

a1 (2s)

e (2px, 2py)

e

a1 2s1 - s2 - s3

- s2 + s3

-25.6 eV

-15.5 eV

-13.5 eV

s1 + s2 + s3
3a1

1e

2e

-17.0 eV

2a1
-31.0 eV

4a1

SALCs of 
H atoms

Free ion
Ground 
state
multiplet

∫= 10 φφ iJT

∆J=0;+1;-1
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Phase  transitions in solids

Phase transitions often take place between phases of different symmetry.

High symmetry phase, Group G0

Low symmetry phase, Group G1

• This is a “spontaneous” symmetry-breaking process. 
• Transition are classified as either 1st order (latent heat) or 2d order (or continuous)

(T,P)

A simple example: Paramagnetic -> Ferromagnetic transition

“Time-reversal” is lost
• Symmetry under reversal
of the electric current



L.C. Chapon, Magnetism tutorial, ACNS 2006

Landau theory

• Ordering is characterized by a function ρ(x) that changes at the transition.

•Above Tc, ρ0(x) is invariant under all operations of G0

•Below Tc, ρ1(x) is invariant under all operations of G1

• At T=Tc, all the coefficients ci
n vanish

)(
'

01 xc
n i

n
i

n
i∑∑ Φ=−= ρρδρ Basis functions of irreducible 

Representation of G0.
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Landau theory (2)

-100 -50 0 50 100

 

 

E

η

.......))((
2

1 42
0 ++−+Φ=Φ ηη CTTTa c

T>Tc

In a second order phase transition, 
a single symmetry mode is involved.

...........)(),(
2

'
0 ++Φ=Φ ∑ ∑

n i

n
i

n cTPA

Φ is invariant under operations of G, each order of the expansion can be written
is given by some polynomal invariants of ci

n.

• Thermodynamic equilibrium requires that all A are >0
above Tc.

• In order to have broken symmetry, one A has to change
sign at the transition. 
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( )k
kS Sjs n n

n

C jsν ν
λ λ

λ
=∑

Fourier coefficients as linear combinations of 
the basis functions of the irreducible 
representation of the propagation vector 
group Gk

( ) ( ) ( ) [ ]{ }∑ ∑∑ Φ−=
= λ

ν
λ

ν
λ π

n
jjsn

s
n

n

j
jjj iexpjsCTfOp k

k rhShhM 2
1

Symmetry Analysis
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( )k
kS Sjs n n

n

C jsν ν
λ λ

λ
=∑

The coefficients         are the free 
parameters of the magnetic structure (order 
parameters of the phase transition in the 
Landau theory)

nCν
λ

Indices:
k : reference to the propagation vector
ν : reference to the irreducible representation
n : index running from 1 up to nν⇒
λ : index running from 1 up to

Mag nν ν
ν⊕

Γ = Γ∑
νΓ

dim ( )νΓ

Symmetry Analysis
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Symmetry Analysis

Magnetic moment is an axial (pseudo) vector.
Transformation under symmetry operation different to polar vector:

Rotation
axis

Inversion
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Representation analysis

Software:
-MODY
-SarAh
-BasIreps

Kovalev’s book:
“Irreducible 
representations of space 
group”
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( ) ( ) ( ){ }[ ]{ }∑∑ Φ−+=
= s

jjsjs

n

j
jjj SiexpTfOp kk rtkHShhM π2

1

Standard Fourier coefficients refinement:
A magnetic phase has Jbt = +/- 1

The magnetic symmetry is introduced together with 
explicit symmetry operators of the crystal structure.
The refined variables are directly the components of 
the Skjs vectors

The different ways of treating 
magnetic structures in FullProf
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!-------------------------------------------------------------------------------
!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 1:     4.09
!-------------------------------------------------------------------------------
LaMnO3
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

1   0   0 0.0 0.0 1.0   1   0  -1   0   0          0.000   0   7   0
!
P m m m                  <--Space group symbol
!Nsym Cen Laue MagMat

4   1   3   1
!
SYMM   x,y,z
MSYM   u,v,w,0.0
SYMM   -x,-y,z+1/2
MSYM   -u,-v,w,0.0
SYMM   -x+1/2,y+1/2,-z+1/2
MSYM    u,-v,w,0.0
SYMM   x+1/2,-y+1/2,-z
MSYM   -u, v,w,0.0
!
!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rx  Ry      Rz
!     Ix     Iy     Iz    beta11  beta22  beta33   MagPh
Mn1  MMN3  1  0  0.50000 0.00000 0.00000 0.04338 1.00000   0.000 3.847   0.000

0.00    0.00    0.00    0.00    0.00    0.00 131.00    0.00
0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

Standard Fourier components refinement
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Coefficients of basis functions refinement:
A magnetic phase has Jbt = +/- 1 and Isy=-2

The basis functions of the Irreps (in 
numerical form) are introduced 
together with explicit symmetry 
operators of the crystal structure.
The refined variables are directly the 
coefficients  C1, C2, C3, ….

( ) ( ) ( ) [ ]{ }∑ ∑∑ Φ−=
= λ

ν
λ

ν
λ π

n
jjsn

s
n

n

j
jjj iexpjsCTfOp k

k rhShhM 2
1

( )k
kS Sjs n n

n

C jsν ν
λ λ

λ
=∑

nCν
λ

The different ways of treating 
magnetic structures in FullProf
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Basis functions coefficients refinement
LaMnO3
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

1   0   0 0.0 0.0 1.0   1   0  -2   0   0          0.000   0   7   0
!
P m m m                  <--Space group symbol
! Nsym   Cen  Laue Ireps N_Bas

4     1     1    -1     3
! Real(0)-Imaginary(1) indicator for Ci

0  0  0
!
SYMM x,y,z
BASR   1  0  0   0  1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM -x+1,-y,z+1/2
BASR  -1  0  0   0 -1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM -x+1/2,y+1/2,-z+1/2
BASR   1  0  0   0 -1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM x-1/2,-y+1/2,-z
BASR  -1  0  0   0  1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
!
!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      C1  C2      C3
!     C4     C5     C6      C7      C8      C9     MagPh
Mn1  MMN3  1  0  0.50000 0.00000 0.00000 0.04338 1.00000   0.000 3.847   0.000

0.00    0.00    0.00    0.00    0.00    0.00 131.00    0.00
0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00
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Symmetry Analysis BasIreps

Propagation vector
⇐ Space Group

Atom positions

Magnetic structure solution (Sim. 
Ann.) 

FullProf

Integrated intensities
⇐ Atomic components

of basis functions

Propagation vector(s) SuperCell

Step
Peak positions of 

⇐ magnetic reflections
Cell parameters

Input

Steps for magnetic structure 
determination using powder diffraction



L.C. Chapon, Magnetism tutorial, ACNS 2006

Program: SuperCell (J.Rodríguez-Carvajal, LLB-December-1998)

• This program can be used to index superstructure reflections from
a powder diffraction pattern. 

• The first approach consist in searching the best "magnetic unit cell"
compatible with a set of observed SUPERSTRUCTURE lines in the
powder diffraction pattern.

• If the first approach fails to give a suitable solution, the superstructure 
may be incommensurate and a direct search for the propagation
vector and one of its harmonics have to be used.  

The Program SuperCell
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The SA method is a general purpose optimisation 
technique
for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 
(1983). 

The function, E(ω) to be optimised with respect to the 
configuration described by the vector state ω is called 
the “cost” function.  

Simulated Annealing (SA):
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The SA method applied to structural problems:

• J. Pannetier, J. Bassas-Alsina, J. Rodríguez-Carvajal
and V. Caignaert, Nature 346, 343-345 (1990)

• J.M. Newsam, M.W. Deem and C.M. Freeman, 
Accuracy in Powder Diffraction II. 
NIST Special Publ. No. 846, 80-91 (1992)

• J. Rodríguez-Carvajal, Physica B 192, 55-69 (1993)
(program MAGSAN)

Simulated Annealing (SA):
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Algorithm trying to mimic the process of annealing a 
sample to obtain a good crystalline state (ground state):
A temperature schedule (starting high temperature + 
cooling rate) is needed.
Procedure to generate new configurations (Markov 
chain) and a Boltzmann probability to explore the 
phase space (importance sampling)

Simulated Annealing (SA):

Minimize a cost function, energy E(ω), with respect 
to the configuration vector ω.
Origin: Monte Carlo methods for simulating 
properties of liquids (Metropolis algorithm)
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begin
Initialise (set to zero useful quantities, do preliminary calculations )
t = 1
do

do
Perturb the system:

ωold → ωnew, ∆ =E(ωnew)-E(ωold)
if ∆ ≤ 0 then accept, else

if exp(- ∆/Tt) > random[0,1] then accept
if accept then Update (replace ωold by ωnew)

until equilibrium is approached closely enough (Ncyc)
Tt+1 = f(Tt) (decrease temperature, usually Tt+1 = q Tt, q≈0.9)
t = t + 1

until stop criterion is true (maximum t, convergence, low % 
accepted...)
end

The Simulated Annealing Algorithm
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•Look directly for the components of Sk and phases, 
explaining the experimental data

•Minimize a reliability factor with respect to the     
“configuration vector”

1 2 3 4 5, , , , ,...ω mC C C C C C=

( ) ( ) ( )2 2

1

,ω h h ω
N

m r robs calc
r

R c G G
=

= −∑

Simulated Annealing 
for magnetic structures:
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Simulated Annealing run of FullProf 
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Simulated Annealing run of FullProf



L.C. Chapon, Magnetism tutorial, ACNS 2006
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Behavior of parameters in 
Simulated Annealing runs
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Average step …
Corana algorithm


