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1 Introduction

Molecules and crystals are usually symmetric objects, i.e. the spatial disposition
of atoms are left invariants by a number of symmetry transformations. Their
physical properties, described by tensors, have also a certain degree of symmetry,
govern by the specific transformation of the tensorial quantity under symmetry
operations of the body. The collection of symmetry operations, generated by
symmetry elements of the molecule or crystal, has the structure of a group in
the mathematical sense. One can therefore apply the powerful mathematical
tools developed in group theory, to the study of physical properties of solids.
To be more precise, physics uses part of group theory known as the theory of
representations.

The purpose of representation theory is to study how the symmetry group
of the molecule/crystal act on the vector space formed by the physical quantity
relevant to the problem. Symmetrical elements of the space can be created
and classified according to their symmetry. Representation theory is used for
example by spectroscopists to classify vibration modes of a molecule/crystal
and determine selection rules. It is used to determine crystal field schemes
and to construct molecular orbitals (LCAOQO) in transition metal complexes. Of
course, and this is entirely what this workshop is about, representation theory
is a essential tool to study the arrangement of magnetic moments in an ordered
state. The role of this lecture is to give an introduction to the practical use
of group theory and to familiarize the audience with concepts and notations that
will be used in the rest of the workshop. I have decided to use concrete examples
throughout the lecture to highlight the most important points of the theory.
This lecture is intended for beginners in the field, with the aim to provide enough
background in group theory and crystallography for more specialized lectures.
The discussion will be restricted to finite groups, with mainly applications at a
molecular level where only point group symmetry is considered. The theorems
will be given without proofs, and the reader may want to refer to a number of
textbooks listed in the bibliography section for a more complete treatment.



2 Point group symmetry

2.1 Symmetry operations in molecules

Molecules are finite objects with usually a certain degree of symmetry, i.e. there
are a number of symmetry elements in the body, such as points, lines or planes
from which symmetry operations can be carried out and leave the molecule in-
variant. Let’s take the water molecule for example as shown in figure 1. The
molecule is left invariant by a 180 ° rotation along the z-axis. It is also left
invariant by mirror operations in the xz and yz planes, respectively.
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Figure 1: Symmetry elements of the water molecule.

In molecules, the combination of three type of symmetry elements (point,
lines, planes) give rise to four kinds of symmetry operations, as explained below.
We will note that two notations are used to label the symmetry operations, and,
as we will discuss later, point groups. One, the so-called Schoenflies notation,
is usually preferred by spectroscopists while the other, the Hermann-Mauguin
notation is used in crystallography. I will use systematically both notations
when discussing point group properties.

The four kinds of symmetry operations in molecules:

1) Inversion The symbol for the inversion operation is ¢ in Schoenflies
notation and 1 in Hermann-Mauguin notation. An inversion center changes the
coordinates of each atom (x,y,z) in the molecule to (-x,-y,-z).

2) Reflections The symbol for reflections through planes is o in Schoenflies
notation and m in Hermann-Mauguin notation.

3) Proper rotations The symbol for proper rotation axis of order n is C,,



in Schoenflies notation and n in Hermann-Mauguin notation. A rotation axis
of order n generates rotation operation of 2rk/n with k=1,....n. Each of these
operations is noted C* in Schoenflies notation. The convention for proper and
improper rotations is anti-clockwise.

4) Improper rotations The symbol for improper axis of order n, is S,
in Schoenflies notation and 7 in Hermann-Mauguin notation. An improper
rotation operation of order n corresponds to the successive rotation operation (of
order n) and reflection through a plane perpendicular to the rotation axis. This
operation can exist on its own, i.e. does not require the existence of a proper
rotation axis and a perpendicular mirror plane. For example in tetrahedral
geometry, as seen on figure 2, the S} operation generated from the S, improper
axis, transform point 1 into point 3, or point 2 into point 4. However, neither a
proper 4-fold rotation axis, nor a mirror plane perpendicular to it are symmetry
elements.
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Figure 2: Improper 4-fold axis in a tetrahedron

2.2 Symmetry groups in molecules

By studying the geometry of a given body, here molecules, one can find a col-
lection of symmetry operations that leave the body globally invariant. This
collection of symmetry operations possesses a very basic but essential property,
since it forms a group in the mathematical sense. I would like to note that this
collection of operations can be infinite in some cases, for example for a linear
molecule where rotations of any angle along the axis leaves the body invariant.
However, in the rest of the document, one will encounter only finite groups. Let
recall the generic definition of a group and verify that the symmetry operations
that leave the water molecule invariant, together with the identity operation
(labelled E or 1 in), has the structure of a group:

Definition of a group:

1) Is is a collection of elements for which an associative law of
combination is defined and such that for any pair of elements g and



h, the product gh is also element of the collection
2) It contains a unitary element, E, such that gE=g
3) Every element g has an inverse, noted g~! such that gg~!=E.

We can verify that the symmetry operations of the water molecule has indeed
the structure of a group by constructing what is known as the multiplication ta-
ble of the group, reported in table I. This is a table, where the elements (here the
symmetry operations) displayed horizontally and vertically are combined and
their product reported in the corresponding table entry. The order in which
the symmetry operations are applied is important since the law of combination
is non necessarily commutative. We will note symbolically the combination (or
product) of two operations g and h, gh. In this convention, the operation h
is carried out first and g second. We can verify on the previous example that
the group property is verified, i.e. the product of two symmetry operations is
always element of the group, and that each element possesses an inverse. In this
particular case, one also remark than the group is also commutative, since for
each element g and h, gh=hg. We will see later on that commutative groups,
named Abelian groups, have interesting additional properties.

Order of a group : The order of a group is its cardinality, i.e. its number
of elements.

| E Ca(z) o(xz) o(yz)
E E Ca(z) o(xz) o(yz)
Ca(z) | Ca(z) E o(yz) o(xz)
o(xz) | o(xz) o(yz) E Csy(2)
oly2) | olvs) olxz) Calz) E

Table 1: Multiplication table of the point group C2v

2.3 Classes of symmetry operations

Before we go further, one needs to explain the important concept of classes and
for that, to define the term similarity transformation. If g and = are elements
of a group, then the element h such that

h=ax"tgz (1)

is know as the similarity transform of g by x. We also say that g and h are
conjugate.

In a group structure, a set of elements which are all conjugate to one another
18 called a class.. Basically, a class represents a set of operations that have the
same geometrical properties, and are therefore regrouped. The similarity trans-
formation expresses the fact that a given operation g is equivalent to another
operation h in a different coordinate system, that can be accessed by an opera-
tion of the group.



Let’s try to find similarity transformations in the group of water molecule. By
using the multiplication table, one can easily see that each element of the group
is only conjugate to itself (this property is of course always verified). For exam-
ple, the similarity transformations of the Cy(z) operation gives:

o(x2) tCo(2)o(x2) = 0(22)Ca(2)o(x2) = o(x2)0(yz) = Co(2) (2)
o(yz)"'Ca(2)o(yz) = 0(yz)Ca(2)o(yz) = o(yz)o(xz) = Ca(z)  (3)

Therefore, the group of the water molecule has 4 operations, arranged into
4 classes.

If we take a molecule with a different geometry, say NHj3 represented in figure
3, we can find similarity transformations between elements of the group. Let’s
identify the symmetry elements. One finds a 3-fold axis and 3 vertical mirror
planes, that we will label ov(1) ov(2) and ov(3). The symmetry operations are
E, Ci, C3, ov(1) ov(2) and ov(3). With the help of the multiplication table
(table 2), on can easily find that there re 3 classes of operations in the symmetry
group of the NH3 molecule, E, (C3,C2%) and (0,1, 042, 043). For example:

0;1103%0“ = 0102 = C§ (4)
(Cé)_lo-vlc% = C§Uu3 = Op2 (5)
(Cg)ilo-vlcg = C%O-’U2 = Op3 (6)

Since symmetry operations belonging to the same class are ”equivalents”,
one usually doesn’t list all symmetry elements but rather the different classes,
preceded by the number of operations in the classs. For example, for the group
of the NH3 molecule, we will list E, 2C3, 30,,.
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Figure 3: Symmetry elements in the NH3 molecule



CSU E 031 C§ Ov1 02 Ov3
E E C% Cg Oyl Oy2 O3
C% C% C§ E Ov2 Ov3 Oyl
Cg Cg E 031 O3 Oyl Ty2
Ov1 Ov1 Ov3 02 E C§ C;
Ov2 0y2 Oyl Ov3 C% K 03
Ov3 Ov3 0v2 Ou1 C?? O?} D)

Table 2: Multiplication table of the point group C3v

2.4 Point groups

The collection of symmetry operations possessed by a molecule is named a Point
Group (at least one point is invariant by all symmetry operations). The differ-
ent point groups are obtained by combining a number of symmetry elements
- inversion center, proper and improper rotations-axis, mirror planes-. There
is limited number of such points groups which are labeled using two different
notations. Chemists usually prefer the Schoenflies notation whereas crystallog-
raphers use the Hermann-Mauguin notation. In most cases, it is straightforward
to find the point group of a given molecule by using a systematic procedure as
illustrated in the flow chart of figure 4 (Cotton). It is important to note that
molecules can be invariant by rotation of order 5,7.... For crystals, where trans-
lational periodicity is required, only point groups obtained by combining the
inversion center, mirror planes and (proper and improper) rotation axis of
order 2,3,4,6 are valid. There are 32 crystallographic point groups (listed in
table 3) which, combined with translations, give rise to 230 space groups.

nonaxial C;(1), Cs(m)

cyclic 01(1), 02(2), 03(3), 04(4), 06(6)

cyclic with horizontal planes Can(2/m), C3(3/m), Cyn(4/m), Cen(6/m)

cyclic with vertical planes Cop(mm?2), Cs,(3m), Cyy(4mm), Cgy(6mm)
dihedral D (222), D3(32), Da(422), Do(622)

dihedral with horizontal planes Doy (mmm), D3, (62m),Dap (4/mmm), Den(6/mmm,)
dihedral with planes between axes | Dag(42m), D3q(3m)

improper rotation S4(4), Se(3)

cubic groups T(23), Tr(m3), Tyg(43m), O(432), On(m3m)

Table 3: The 32 crystallographic point groups. Labels are given in Schoenflies
notation and Hermann-Mauguin notation in italic



C, of highest n
nC,0C,?

Figure 4: Flow chart to find the symmetry point group of a molecule

3 Theory of representation

3.1 Representation of a group

So far, we have seen that by studying the geometric properties of a molecule, one
can find a set of symmetry operations that leave the molecule globally invariant.
This set of operations, that can be regrouped in classes, has the structure of a
group, called Point Group. Fine, but it hasn’t help much to reduce a problem
based on symmetry arguments. So, what is representation theory all about?
Representation theory is about reducing group-theory problems to problems in
linear algebra. The symmetry group of the molecule corresponds to what is
known as an abstract group. However, one can construct a representation of
this group in a vector space. We say that a group G is represented in a vector
space E if we form a homomorphism I' of G in a sub group of the group of linear
transformations GL(E):

Vg€ G,g—T(g) € GL(E) (7)
Vg,9' € T(g9g") =T(9)T'(g") (®)

I'(identity) = identity 9)
Yge G,T(g7") = (T(g) " (10)



If one forms a representation of a group in a finite vector space, say of
dimension n, for which a basis has been chosen, then I'(g) V g in G can be
represented by a nxn matrix. The set of matrices form a representation of the
group. The dimension of the representation corresponds to the dimension of the
vector space. Let’s take the previous example, and construct a representation of
the Cy, group: We consider a 3 dimensional space with a cartesian coordinate
system, supported by a basis (7,?,?) We can write down the matrices rep-
resenting the transformation of a point P, of coordinates (x,y,z), by operations
of the Cy, group as follows:

1 00 -1 0 0
E—|010|CkE-=[ 0 -10
0 0 1 0 0 1

1 0 0 -1 00

olzz) - | 0 =1 0 |owz)— 0 1 0
0 0 1 0 0 1

(11)

The set of matrices forms a representation of the group Cs,, of dimension 3.
The law of composition between matrices is the multiplication. So the product
of two operations in the symmetry group is represented by the the product of the
corresponding transformation matrices in vector space. For example, according
to the result of the multiplication table of the Csy, group, Cs(z)o(zz)=0(yz)
which hold with matrix representatives:

-1 0 0 1 0 0 -1.0 0
0 -1 0|-{0o -10}|=|90 10 (12)
0 0 1 0 0 1 0 0 1

Of course this is not the only representation of this group. Let change the
vector space and consider the one formed by unit polar vectors centered on each
atom of the H2O molecule and directed along the 3 cartesian axis, as shown
on figure 5. The vector space is now 9-dimensional. We can write the matrices
representing the linear transformations of vector space, as follow:



z0O
yO
z0
IZ?Hl
yH (13)
ZH1
ZCHQ
yHo
ZHQ

x0
yO
20
IHl
ZH1
{,CHQ
yHo
ZH2

zO
yO
z0
ZCHl
yH,y (15)
ZH1
£L'H2
yHo
ZH2

xO
yO
z0
{I?Hl
yH, (16)
ZHl
IHQ
yHs
ZHQ
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This is another representation of the group, of dimension 9. The two previ-
ous examples are constructed in vector spaces formed by polar vectors. But I
would like to stress that a representation of a group can be constructed in any
vector space, supported by any function. Let’s consider the p atomic orbitals
of the oxygen atom, int the group of the water molecule. The angular part of
the wave functions can be written, in polar coordinates:



Pz =

;\/isinw)cos((ﬁ)
1 /3 . .
Py = 2\/;szn(9)sm(¢)

P, = 1\/3005(0)
2V

It is easy to determine the action of symmetry operators on this set of
orbitals. For example, the two-fold axis leaves p, invariant and transform p, and
py into respectively -p, and -p,,...Once again, we can form a representation of the
group in the vector space supported by p,,p, and p,. More generally, one can
form a representation of a group in a vector space of any set of function {f(r)},
a symmetry operator g acting on a function f(r) as follows: g[f(r)] = flg~'r].
One could take many other examples. At this point, it is important to realize
the generality of representation theory: in a sense it doesn’t matter what is
transformed under application of symmetry operations, as long as we understand
how it is transformed.

3.2 Irreducible representation

For each symmetry group, there are a limited number of representations, called
irreducibles, that are of fundamental significance in representation theory. To
explain the concept of irreducible representation, I will start by reversing the
problem. Let’s suppose that we have formed two representations I'y and I's
of a finite group G, in two vector spaces E; and E; of dimension n; and ns,
respectively. Each of this subspace is, of course, left invariant by G. We can
construct a vector space E, that is the direct sum of the vector space E; and
Es, noted E;@PE;. Any vector of this space can be written as a unique linear
combination of vectors of the two subspaces. We can then construct a repre-
sentation I' of the group G in the vector space E. Of course, because of this
deliberate construction, we know that two subspaces of E are left invariant.
When a representation leaves at least one of the subspace of E is invariant, we
will say that the representation is reducible.

Definition:
A representation I' of a group G in E is said to be reducible, if it leaves at
least a sub-space of E invariant. Otherwise, the representation is irreducible.
The representation is totally reducible if E can be written as direct sums of
subspaces E;, E:Z@Ei.

Given a representation I' of a group G, and a set of associated matrices
{T'(g), V¥ g € G}, the representation is reducible if one can find a similarity
transformation (in other words a change of base) that reduces all the matrices
I'(g) to similar block-diagonal form as seen below. The dimensions of the blocks

10



are the dimensions of the subspaces left invariant. We recall that for block-
diagonal matrices, corresponding blocks of each matrices multiply separately.

0

01

It is important to understand the concept of reducible and irreducible repre-
sentations so I would like to illustrate it with very trivial examples. Once again,
let’s go back to the point group of water molecule, Cs,,, and a representation of
this group in the 3D vector space supported by a cartesian coordinate system.
One can easily see that the components x, y and z are independently either trans-
formed in themselves or their opposite by any ogeration of the group. So the 3

subspaces supported respectively by ¢, 7 and k are invariants. Therefore the
representation of the group Cs, in a 3D vector space, with basis (7,7,?) is
reducible in three 1-dimensional representations. Of course, this case is trivial,
and one can verified that the matrices of the representation, in equation 11, are
indeed block-diagonals each block being of dimension 1.

Now let’s take the same problem again but in a different base. As shown in

figure 6, we rotate the coordinate cvetom he AR ©

olyz)

(e}

Figure 5: Point group Cs, with cartesian coordinate system rotated by 45

Of course in this base, the matrices are not block diagonal with the same
form anymore:

1 0 0 -1 0 0
E-|{o010]Ce—-[ o0 -1 0
0 0 1 0 0 1

0 -1 0 0 1 0

oxzz) - | -1 0 0 |owz)— | 1 0 0O
0 0 1 0 0 1

(17)

However, we can find a similarity transformation (here the transition matrix
T from this base to the previous one, shown below) that will bring all matrices

11



to the block-diagonal form of (11).

V2 V2
2 2

T=| -2 2 9 (18)
0 0 1

The main goal of representation theory is exactly that. Given a representa-
tion of a group in a vector space, is it possible to reduce the representation into
irreducible representations, i.e. decompose the vector space in orthogonal sub-
spaces of smaller dimensions? If yes, then what is the similarity transformation
that allow to do that, i.e. what are the basis vectors that support each subspace.
In the rest of the lecture, we will focuss on these two points:

1) Decomposition of a reducible representation in irreducible representations
2) Construction of the basis functions

3.3 Character of a representation

The character of a representation I' of a group G is a function x that sends g
in G to the trace of the matrix I'(g).

3.4 Character tables

The character table of a group G, is a table formed by the characters of all the
irreducible representations of the group. The table is constructed as follows:

- The ”conjugacy” classes of the group are displayed horizontally.

- The irreducibles representations are listed vertically. The irreducible represen-
tations are sometimes labeled arbitrarily (I';,['e....) or with symbols related to
their symmetry properties (notation proposed by Mulliken).

-V g € G, the character x(g) of the representation is given in the corresponding
table entry.

I have reported below the character tables for the point groups Cs, (symmetry
group of the water molecule) and Cs, (symmetry group of the ammonia).
Here, we won’t described the mathematical procedure to construct the irre-
ducible representations of a group. The irreducible representations for point
groups are tabulated in a number of textbooks. Irreducible representations for
space groups have been tabulated by Kovalev or can be calculated using pro-
gram such as KAREP.

12



3.5 Decomposition in irreducible representations
3.5.1 Orthogonality theorem

There is an essential theorem in group theory, the orthogonality theorem, some-
times referred to as the Great Orthogonality Theorem (GOT) that will be given
here without proofs. The proof can be found in Wagner or [?].

G is a group of order h, and I'; and I'; two irreducible representations of this
group, of dimension l; and 1; respectively. We will note I';(g) the matrix of
representation i for the operation g. The corresponding matrix elements will
be noted I';(g)as. The character of T';(g) (is noted x;(g). The orthogonality
theorem states that:

h

Z Li(9)apl'i(9)ars = N
ibj

geG

: 5ij N 5(1(1’ N 55,@’ (19)

A number of important properties are derived directly form the GOT:

The sum of the squared characters of an irreducible representation equal the
order of the group:

> xilg)?=h (20)

geG

The sum of the product of characters of two inequivalent irreducible represen-
tations is null:

> xil9)x;lg9) =0 (21)

geG

3.5.2 Decomposition

The decomposition of a reducible representation into a sum of irreducible repre-
sentations is a direct consequence of the orthogonality theorem. Let’s suppose
that a reducible representation I' can be decomposed in irreducible representa-
tions :

13



I'= Zakfk
k

Then,

x(9) = arxr(g)Vg € G
K

> xloxile) = an(d> xelg)xilg)
k

geG geG
a; = % > x(9)xil9) (22)

geG

By applying formula 22 for all irreducible representations i of the group,
one can find the coefficients of the decomposition. This step is straightforward,
once we have constructed a representation of a group in a vector space, and
calculate the character of this representation. Once again let’s illustrate that

with a few examples. First, the representation of the group Csg, in the vector
space as described by 11.

C2v | E C2(2) o(xz) o(yz)
Al | +1  +1 +1 +1
A2 | +1 +1 -1 -1
Bl | +1 -1 +1 -1
B2 | +1 -1 -1 +1
r 3 -1 1 1

1
aA1:1(3><1—1><1+1><1+1><1):1

1
aA2:1(3><1—1><1+1><(—1)+1><(—1)):0

1
a3121(3X1_1X(_1)+1X1+1X(_1)>:1

1
aBz:Z(3X1_1X(_1)+1X(_1)+1X1):1
'=A4, 3B, ® B
Now, if we consider the representation in the vector space supported by

polar vectors of the water molecules and calculate the characters accordingly
(matrices 13 to 16), one will find the following decomposition:

14



C2v | E C2(z) o(xz) o(yz)
Al | +1 +1 +1 +1
A2 | +1 +1 -1 -1
Bl | +1 -1 +1 -1
B2 | +1 -1 -1 +1
r 9 -1 3 1

1
aA1=1(9><1—1><1+3><1+1><1):3

1
aA221(9><1—1><1+3><(—1)+1X(_1)):1

1
aBl:Z(Qxl—lx(71)+3><1+1><(*1)):3

1
ap, = 7 (9% 1—=1x (=) +3x (-1 +1x1) =2
I'=34, ® Ay ® 3B; @ 2B,

3.6 Projection operators

Once the representation is decomposed in IRs, the second step consists in find-
ing the basis vectors that support each of the invariant subspaces. In most cases
it is not trivial to find the similarity transformation (or basis change) that send
the matrices of the representation into block diagonal forms. To find these basic
vectors (or symmetry adapted function), we use projection operators also called
projectors:

Py =3 D%,(9)3 (23)
geG

Here P is an operator that projects on the irreducible representation v.
D, (g) represent a matrix element of the IR v and I have noted g the operator
corresponding to the operation g of the group. The idea is to apply this operator
to an initial vector of the space E to find the components this space.
Here I like to treat an example where a representation of dimesion 2 is involved.
For this example, we suppose that we want to construct the Molecular Orbitals
of the ammonia molecule in the LCAO (linear combination of atomic orbitals)
approximation. Molecular orbitals are not directly obtained from atomic or-
bitals but rather from symmetry adapted linear combination of atomic orbitals.
Because the N atom is not exchanged with the H atoms, we construct separately
the symmetry adapted LCAO for the 3 hydrogen atoms.

So we are studying the representation of the point group Cs, in the vector
space formed by three 1s atomic orbitals, noted s1, s2 and s3. The matrices are
easily obtained:

15



1 00 0 1 0 0 0 1
E—-|{010]C;—|(001]|Cs5—[100
0 0 1 1 0 0 01 0

1 00 0 0 1 01 0

op1— [ 0 0 1 |ow2)—| 0 1 0>a(v3)—> 100
1 0 1 0 0 0 0 1

(24)

You can verify that this representation is reducible and decomposed in
A1®E. Now let construct the symmetry adapted LCAO and for that use the
projector operators. First projecting on A; :

PAigl = Bsl + Cisl + C251 + 0,181 + 028l + 7,351
PAs1 =514 s2+ s3+ sl + s34 52 = 2(s1 + 52 + 53)
E is a 2-dimensional representation and therefore the character of the repre-

sentation is no longer sufficient and one needs the matrices themselves. Below
are reported the matrices for the doubly degenerate representation E:

16

V= O

)ows)



\\K\\\

ISIS & ‘,7

Magnetic structures:

Formalism of propagation vector

Laurent C. Chapon

ISIS Facility,
Rutherford Appleton Laboratory
Chilton, Didcot
UK

J. Rodriguez-Carvajal (LLB-France)

2

CENTRE NATIONAL
DELARECHERCEE o
SCIENTIFICUE -1- 1
o



\K\\

Outline

. What's a magnetic structure?

. How to describe magnetic structures with the formalism of
propagation vector(s).

. Plotting complex magnetic structure with FStudio.
. Symmetry, symmetry, symmetry...

. Strategy for solving magnetic structures, indexation,
simulated annealing....
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lons with intrinsic magnetic moments

Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule: maximum S/J
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Nij2* m =g S (transition metals)
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What is a magnetic structure?
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Paramagnetic state:
Snapshot of magnetic moment configuration
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What is a magnetic structure?

Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration
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Quasi-static configuration of magnetic moments
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Very often magnetic structures are complex due to :
- competing exchange interactions (i.e. RKKY)
- geometrical frustration

- competition between exchange and single ion anisotropies

L.C. Chapon, Magnetism tutorial, ACNS 2006 ISIS&’:QE;‘;




% CCLRC Types of magnetic structures

Amplitude-modulated or Spin-Density Waves

—e=

© “+Q— @ 0 ®© +o— @

— €@ — @ & —O¢ © -—— @

“Longitudinal”
—= ® -Hp————————0+ ® -+——@-
O
o= ¢ “0— - © O © wt— ¢
© © I
3 ©
“Transverse” © © ¢
o)
© © ¢

. . L 43s
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@ CCLRC Types of magnetic structures

Cycloid




@ CCLRC Types of magnetic structures

Shubnikov magnetic groups, are limited

7
‘q.\//__‘gﬁ,\ - Commensurate magnetic structure.

: - Real representation of dimension 1.
Conical \T@‘\/

b~

;

)

=
¥
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@C CLRC  Formalism of prop. Vector : Basics

Position of atom j in unit-cell | © ) C o e
IS given by:
R=R+r; where R, is a pure ® ® ¢ © ¢

lattice translation

. . L 43s
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Formalism of prop. Vector : Basics

=» S, exp{-27ikR,}
1K}

R,=R,+r, =la+l,b+l,c+xa+yb+zc

Necessary condition for real m;;

li
Sy =S

4' §$
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@C CLRC Formalism of prop. Vector : Basics

A magnetic structure is fully described by:
- Wave-vector(s) {k}.

- Fourier components S,; for each magnetic atom j and wave-vector k.
Sy; Is @ complex vector (6 components) !!!

- Phase for each magnetic atom j, @,

MO SRV
PR

*
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Single propagation vector
k =(0,0,0)

\K\\

tor ot

byt
I

R I

—=

= qu eXp{_Zﬂ'i KR, } = S<j
K}
e The magnetic structure may be described within the
crystallographic unit cell
 Magnetic symmetry: conventional crystallography plus
time reversal operator: crystallographic magnetic

grOUpS L.C. Chapon, Magnetism tutorial, ACNS 2006 ISIS: ‘;




Single propagation vector
k=1/2 H

\K\\

m, => S, exp{-27ikR } =S, (-)"™
™

REAL Fourier coefficients = magnetic moments
The magnetic symmetry may also be described using
crystallographic magnetic space groups

| _ P 438
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Fourier coef. of sinusoidal structures
l:E——OHb——M

® o 4 L

\K\\

- k interior of the Brillouin zone (pair k, -k)

- Real S,, or imaginary component in the same,dirgctiog .,
as the real one

“O— <0 <O <0

m :S<j e -2 le )+S-kj 9@(%? IEI ¥ Z

1 .
Skazmjujexp(—2m¢kj) Tt

=mu, cos2(kR, +¢,) -
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Fourier coefficients of helical structures

Y ey, - IR
TR .
ll ,L—Jl ét || 7 '| ||| || | lll || || ||| 'll || lll
K interior of the Brillouin zone :* ¢ % 5"%%”*9’%{/* =
| RS
- Real component of S, perpendicular to the imaginary

component

S, =~

ZE[”LJUJ +ima.vj] eXp(—271g; )

=m;U; c0s2( KR, +@; )+m;v, In27(kR, +¢; )

" §$
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CCLRC

Centred cells!
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Examples. Fstudio

\\\\K

St www-lIb.cea.fr/fullweb

Fp-Studio L‘
v1.0- lL

Laurent Chapon
Juan Rodriguez-G

Type of lattice P, C, I, F.....

{ /
LATTICE P Propagation vector(s)

_
K0.50.00.0

SYMM x,y,z } List of symmetry operators with associated magnetic
MSYM u,v,w,0.0 operator

MATOM Cel CE 0.00.00.0
SKP112.00.00.00.00.00.00.0

}

Magnetic atom

Fourier coefficients and phase
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Symmetry analysis

\K\\

e Problem is underdetermined:
-large number of parameters

(6 Fourier coefs.+phase per magnetic atom
and per k)

-usually few observations, especially In
powder patterns.

- Magnetic form factor

4;‘
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Representation theory

\K\\

Method for simplifying analysis of a
problem In systems possessing some

degree of symmetry.

e \What is allowed vs. what Is not allowed

Keyword : Invariance of the physical properties under
application of symmetry operators.

v&
L.C. Chapon, Magnetism tutorial, ACNS 2006 ISIS‘: ,
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@CC LRC Representation theory

Spectroscopy MO-LCAO

N Q?.— _85 3w

-13.5eV

. ' . m 7
’/ ," AN N
4a¥',." e -Sp+S3
," ." \ B
-15.5 eV

_ 0 1 . 0 1 DQ %
T = j¢ l[[¢ T — J.¢ a¢ @ e (2py, 2IC’y) 251-Sp-S3
8 . (zpz) ~~~~~~~~~ S +Sp+S3
° S ., + -+ %j%ev SALCs of
Q- (23)44—" ‘ Q? H atoms
2566V
Free ion

\‘:‘ ',' [
s10ev T 28, @Q

Ground I |;_ J’¢°J.¢1
state |
multiplet AJ=0;+1;-1
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Phase transitions in solids

\K\\

Phase transitions often take place between phases of different symmetry.

High symmetry phase, Group G,

(L.P)

Low symmetry phase, Group G,

* This is a “spontaneous” symmetry-breaking process.
 Transition are classified as either 1st order (latent heat) or 29 order (or continuous)

A simple example: Paramagnetic -> Ferromagnetic transition
/@/v ® /@" /@’ /@/‘ “Time-reversal” is lost
e Symmetry under reversal
@ /@/ /@/ /@”’ /@” of the electric current
E ;* 4' §$
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Landau theory

\&\\

 Ordering is characterized by a function p(x) that changes at the transition.
*Above T, p,(X) is invariant under all operations of G,

*Below T, p,(X) is Invariant under all operations of G,

_ . _ NN _____—— Basis functions of irreducible
P =P~ Po= ZZC‘ O (%) Representation of G,
n" 1

« At T=T, all the coefficients c," vanish

ydas
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Landau theory (2)

\K\\

@ is invariant under operations of G, each order of the expansion can be written
IS given by some polynomal invariants of ¢

D=0, +ZA“(P,T)Z(q”)2 T,

>T . . .
L * Thermodynamic equilibrium requires that all A are >0
ﬁ above T..

* In order to have broken symmetry, one A has to change

sign at the transition.

Ll CIJ:CDO+%a(T)(T—TC)772+C774+ .......

In a second order phase transition,
1 a single symmetry mode is involved.

T T —
-100 -50 0 50 100

. . L3
T] L.C. Chapon, Magnetism tutorial, ACNS 2006 ISISa\Q‘.:.”




Symmetry Analysis

\K\\

Fourier coefficients as linear combinations of
the basis functions of the irreducible
representation of the propagation vector

group G,
Skjs — chzsﬁ; ( JS)
nA

M(h)= pio,- (0T, 30 3 Silis ewfzriny, o

| _ s 435
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Symmetry Analysis

Skjs — ZC:/ISEMV ( JS)
nA

The coefficientsC,, are the free
parameters of the magnetic structure (order
parameters of the phase transition in the

_andau theory)
ndices:

K : reference to the propagation vector
v: referenceto theirreducible representation 1,

n:index running from1upton, =T, => n, T,
A index running from1upto dim(l"))  ©®V

L.C. Chapon, Magnetism tutorial, ACNS 2006 ISIS‘\ ,.,




Symmetry Analysis

\\\\K

Magnetic moment is an axial (pseudo) vector.
Transformation under symmetry operation different to polar vector:

S S

o o

\S\ Inversion

Rotation
axis

»n
d'?‘
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\\\\K

Kovalev’s book:
“Irreducible
representations of space

group”

Software:
-MODY
-SarAh
-Baslreps

Representation analysis

Baslreps Gui Interface

File Rum Results Help Exit

Dl @@ 2@ 2w x|

Code of files:

KTh

——&-+Basireps (May-2004, JRC-LLB)

Irreducible representations of Space Groups
Basis functions of polar & axial vector properties

wharking Directory:

|D ADocs\Conferences2005%0ando_ACANT utorial K. Th3F12

Browse... |

Title: |Magnetic structure of KTh3F12

SpaceGroup [HHall symbals)

|| 4/m
o generators separated by

| Kegtor  [1.00000 000000 [0.00000

" PalarYector * AgialVectar

Mumber of Atoms: |_25

[ E=plicit Sublattices

Brilouin Zone Label: ||

v Atoms in unit cell

Symbal w'a w'a z/a
Atom #1 Thb3+ 0.00000 0.00000 0.50000
Atom # 2 Thd+ 0.00000 0.50000 025000

L.C. Chapon, Magnetism tutorial, ACNS 2006
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The different ways of treating
magnetic structures in FullProf

\K\\

Standard Fourier coefficients refinement:
A magnetic phasehasdbt = +/- 1

n

M(h)=pY 0 f ()T, 3, expl2rl(H+k)Sthr, -, ]}

J=1

The magnetic symmetry isintroduced together with
explicit symmetry operators of the crystal structure.
Therefined variables are directly the components of

the §;¢ vectors

" §‘
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! Data for PHASE number: 2 ==> Current R Bragg for Pattern# 1 4.09
| e e e e e e e e e e fE e E e e Em e e e e e e e e e e e e e e e e e m e m e e m e e e e mmmmmmm e mm e m e m e m————————
LaMnO3
!
INat Dis Mom Prl Pr2 Pr3 rf ftr Furth ATZ Nvk Npr More
1 0 0 0.0 0.0 1.0 0 0 0 0.000 0 7 0
|
Pmmm <--Space group symbol

INsym Cen Laue MagMat
4 1 3 1

!

SYMM X,Y,2

MSYM u,v,w,0.0

SYMM -X,-y,z2+1/2

MSYM -u,-v,w,0.0

SYMM -x+1/2,y+1/2,-2z+1/2

MSYM u,-v,w,0.0

SYMM x+1/2,-y+1/2,-2

MSYM -u, v,w,0.0

1

!Atom Typ Mag Vek X Y Z Biso Occ Rx Ry Rz

! Ix Iy Iz betall beta22 beta33 MagPh

Mnhl MMN3 1 O 0.50000 0.00000 0.00000 0.04338 1.00000 0.000 3.847 0.000

0.00 0.00 0.00 0.00 0.00 0.00 131.00 0.00
0.000 0.000 0.000 0.000 0.000 0.000 0.00000 57’¢
>

0:00  0:00  0-p% Ciffth, metpftism €edfal ACNS 2000 I SIS B,
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The different ways of treating
magnetic structures in FullProf

\K\\

Coefficients of basis functions refinement:
A magneticphasehasdbt = +/- 1 and Isy=-2

=X 0, ()T >G, Y Silisexplorin, o

Thebasisfunctions of thelrreps (in ‘ V
numerical form) areintroduced S ZC S (1S)
together with explicit symmetry

operatorsof the crystal structure.

Therefined variablesaredirectly the 1%

coefficients Cl, Cgtgﬁéﬁdh: Magnetism tutorial, ACNQ/%OOG ISIS g “




=

= Basis functions coefficients refinement

LaMnO3
!
INat Dis Mom Prl Pr2 Pr3 rf Str Furth ATZ Nvk Npr More
1 0 0 0.0 0.0 1.0 0 0 0 0.000 0 7 0
1
Pmmm <--Space group symbol
! Nsym Cen Laue Ireps N Bas
4 1 1 -1 3

! Real (0) -Imaginary(l) indicator for Ci

0 0 O
!
SYMM X,Y,2

BASR 1 0 O 0O 1 0 0O 0 1
BASI 0 0 O 0O 0 O 0O 0 O
SYMM -x+1,-y,z+1/2

BASR -1 0 O 0 -1 0 0O 0 1
BASI 0 0 O 0O 0 O 0O 0 O
SYMM -x+1/2,y+1/2,-z+1/2

BASR 1 0 O 0 -1 O 0O 0 1
BASI 0O 0 O 0O 0 O 0O 0 O
SYMM x-1/2,-y+1/2,-z

BASR -1 0 O 0O 1 0 0O 0 1
BASI 0 0 O 0O 0 O 0O 0 O

!Atom Typ Mag Vek X Y Z Biso Occ C1 Cc2 C3

! Cc4 C5 ceé c7 C8 (63°) MagPh

Mnl MMN3 1 0 0.50000 0.00000 0.00000 0.04338 1.00000 0.000 3.847 0.000
0.00 0.00 0.00 0.00 0.00 0.00 131.00 0.00

0.000 0.000 0.000 0.000 0.000 0.000 0.00000

0.00 0.00 0.00 0 3;5‘,
L.C. th&pon? Magnefish tutohd) ACNS 2006 O,
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Steps for magnetic structure

\K\\

Step

determination using powder diffraction

| nput

Propagation vector(s) SuperCell

Peak positions of
& magnetic reflections
Cell parameters

Symmetry Analysis Baslreps

Propagation vector
& Space Group
Atom positions

Magnetic structure solution (Sim.
Ann.)
FullProf

| ntegrated intensities
& Atomic components
of basis functions

| . L £3s
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The Program SuperCell

\&\\

Program: SuperCell (J.Rodriguez-Carvaal, LLB-December-1998)

 This program can be used to index superstructure reflections from
a powder diffraction pattern.

» Thefirst approach consist in searching the best "magnetic unit cell”
compatible with a set of observed SUPERSTRUCTURE linesin the
powder diffraction pattern.

o If the first approach fails to give a suitable solution, the superstructure
may be incommensurate and a direct search for the propagation

vector and one of its harmonics have to be used.

L.C. Chapon, Magnetism tutorial, ACNS 2006 ISIS 3 “
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Simulated Annealing (SA):

The SA method Is a general purpose optimisation
technique
for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, Science 220, 671-680
(1983).

The function, E(w) to be optimised with respect to the
configuration described by the vector state o is called
the “cost” function.

. . ) 4.5
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Simulated Annealing (SA):

The SA method applied to structural problems:

 J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal
and V. Caignaert, Nature 346, 343-345 (1990)

e J.M. Newsam, M.W. Deem and C.M. Freeman,
Accuracy in Powder Diffraction II.
NIST Special Publ. No. 846, 80-91 (1992)

 J. Rodriguez-Carvajal, Physica B 192, 55-69 (1993)
(program MAGSAN)

_ _ 3,
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Simulated Annealing (SA):

Minimize a cost function, energy E(w), with respect
to the configuration vector .

Origin: Monte Carlo methods for simulating
properties of liquids (Metropolis algorithm)

Algorithm trying to mimic the process of annealing a
sample to obtain a good crystalline state (ground state):
A temperature schedule (starting high temperature +
cooling rate) is needed.

Procedure to generate new configurations (Markov
chain) and a Boltzmann probability to explore the
phase space (importance sampling)

}" ;‘
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The Simulated Annealing Algorithm

\K\\

begin
Initialise (set to zero useful quantities, do preliminary calculations )
t=1
do
do
Perturb the system:
Wg1g = Wnews A =E(0)new)'E(0)old)
If A<0then accept, else
If exp(- A/T,) >random[0,1] then accept
if accept then Update (replace o, 4 by o)
until equilibrium is approached closely enough (Ncyc)
T, = f(T,) (decrease temperature, usually T,,, =q T,, g=0.9)

t=t+1
until stop criterion is true (maximum t, convergence, low %
accepted...)

end
4' §$
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Simulated Annealing
for magnetic structures:

\K\\

Look directly for the components of S, and phases,
explaining the experimental data

*Minimize a reliability factor with respect to the
“configuration vector”

0©=/G,C,C,C,G.-C)

h,)-G2 (h,. m)\

" §‘
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Simulated Annealing run of FullProf

i FullProf.2k_Multi_Pattern - 0] x|

|
e

R T T

I nwnnuw nn
R G P VP

N

€36 36 36 3336 336 36336 36 3 I I 36 I3 I I I I IIE I3 I3 IE I 36 I I I3 I I 636 I3 336NN e |

#% PROGEAM FullProf . 2k (Version 2.40 — Mav2003-LLE JRC) ==
36 3636 36 3636 3 36 336 36 3636 3636 36 3636 I 36 36 36 I I 36 36 3636 36 33 3 36 3 36 3636 I 36 36 3636 363 36 I
MTLTI —-FATTERH
Fietveld., Profile Matching & Integrated Inten=sity
Fefinement of E—-ray and<or Heutron Data

(Multi_Pattern: Windows—version)

START Date: 10072003 Time =: 07:24:51. 793
Feading control file = PCE
End of preliminary calculations |

*xx% SIMOLATED ANNEALING SEARCH FOR STARTING CONFIGURATION %

Initial configuration co=st: 40 .49
Initial configuration =state wvector:
Emom_Mnl EFhi_Mnl EPhi_Mnl EPhi_HMn? EFhi_Mn?
1 2 3 4 5
2.3146 156 3578 152 2612 319.1841 73,4829
HT: 1 Temp: 10.00 {(%Acc): 51.40 <Stepr:288.8000 «<R-factor:x: G53.6836
HT: 2 Temp: 9.00 (¥Acc): 47 .00 <Step::288.6956 <HE-factor:>: G0.6513
HT: 3 Temp: 8.10 (¥Acc): 45 . 60 <Stepr:288.3760 <H-factor:»: 45 8823
HT: 4 Temp: 7.29 (ZAcc): 39.20 <Stepr:288.3134 «R-factor:: 43 . 06610 'I
k

5
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Simulated Annealing run of FullProf
[=IE3

=» NT: 69 Temp: 0.01 (¥Acc): 42.40 <Stepr: 0.2036 <BE-factor:: 13.3120 _J
= HT: 70 Temp: 0.01 (¥Acc): 40.60 <Step:: 0.1972 <E-factor:: 13.3079

= HT: 71 Temp: 0.01 (¥Acc): 41.60 «<Step:: 0.1710 <E-factor:: 13.3025

= NT: 72 Temp: 0.01 (¥Acc): 46.60 <Step:: 0.1551 <BE-factor:: 13.2982

= HT: 73 Temp: 0.01 (¥Acc): 35.80 «<Step:: 0.1404 <E-factor:: 13.2960
=:BEST COHNFIGUEATIONS FOUHD BY Simulated Annealing FOR PHASE: 1

=r —» Configuration paramseters | 150 reflections):

=» Sol#: 1 RF2= 13.282 ..
=7 Emom_Mnl RPFhi_Mnl RPhi_Mnl RFhi_MnZ RFhi_Mn?

=3 1 2 3 4 g

=3 2.9250 G53.2323 324 . 9417 217 1961 144 8587

=3 CPU Time: 483 . 610 =econd=

=3 0.8310 minutes

=» EHD Date:10-07-2003 Time => 07:25:40.413 -J
=» Data Files=s

=3 — =imann

= PCR File : =imann—t

L.C. Chapon, Magnetism tutorial, ACNS 2006
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Phases (mod 2r)

Behavior of parameters in
Simulated Annealing runs

1_00 1 1 1 1 ! T T T T ! T T T T l 1 1 1 1 ! 1 1 1 1
0.80

0.60

—o— Ph_Mn2al
—H—Ph_Mn2a2 |
—<— Ph_Mn2a3

—— Ph_Mn2a4

0.40

0.20

0.00
0 5 10 15 20 25

uT ;:o
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120 ——

1.00

0.20

0.00 —/———

Average step
Corana algorithm

t
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