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0) Introduction

@

condensed matter?

Nowadays NS is relevant in physics, material
science, chemistry, geology, biology, engineering
etc., being highly complementary to X-ray
scattering.

B. N. Brockhouse




@ What Is special with NS?

1) Neutrons interact with nuclei and not with
their electrons (neglecting magnetism). ldeal for
light elements, Isotopic studies, similar-Z
elements, and lattice dynamics.

Neutron Cross-sections
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2) Neutrons have simultaneously the right 4 and E,

matching the typical distance and energy scales of
condensed matter.
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3) Weakly interacting with matter due to its
neutrality, then: (a) small disturbance of the sample,
so linear response theory always applies; (b) large
penetration depth for bulky samples; (c) ideal for
extreme condition studies; (d) little radiation
damage.

4) The neutron has a
magnetic _moment, ideal for
studying static and dynamic
magnetic  properties (not
discussed in what follows ).




@ Basic neutron properties

Mass: 1.67492729(28) x 10727 Kg
Mean lifetime: 885.7(8) s (if free)

Electric charge: Oe
Electric dipole moment: <2.9x107%° e-cm

Magnetic moment: —1.9130427(5) y,
Spin: 1/2

neutron




@ Neutron wave-mechanical properties

Interested only in slow neutrons (E<1l KeV),
where:

E=mv2/2 (m=1.675-1027 Kg) and
A=h/(mv)
Using the wave-vector (k=27/A), one has:

E(meV)=81.81 L(A)2=2.072 k(A1)2
=5.227 v(Km/s)?2=0.08617 T(K)




J L) @ The slow neutron “zoology”

(a version of)

Name Energy range (meV)
Very cold / Ultra-cold <0.5

Cold 05-5

Thermal 5-100

Hot 100 - 103

Epithermal / Resonant >103




=a 1) Neutron scattering @

from nuclel

@ The neutron-Nucleus interaction

1) Short ranged (i.e. ~10-1> m).

2) Intense (if compared to e.m.).

3) Spin-dependent.

4) Complicated (even containing non-central terms).

Example: D=p+n, toy model (e.g. rectangular potential well)
width: r;=2-10% m
depth: V,=30 MeV

binding energy: E,=2.23 MeV e
Coulomb equivalent (p+p) energy: E-.=0.7 MeV




@ The slow neutron-Nucleus system

Good news: If A >>r, (always true for slow neutrons)
and d>>r, (d: size of the nuclear delocalization) we do
not need to know the detail of the n-N potential for
describing the n-N system! Two quantities (r, and the
so-called scattering length, a) are enough.

Localized isotropic impact model

{_ RVE V3

2m, - 2my +U(rN)}P(rN’r”):HOT(VN,"n)=E‘P(rN,rn) (for|ry —r,|=r = 0)

LP(rN ) Irn )r—>0 - (1_ %jgp(rN) (S Wave)
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The Schroedinger equation plus the boundary
condition are exactly equivalent to:

HO (1 1,) — E (1) =~V (r, —1) lim S [r¥(r, r,)]

2 2
27T h as(r —r,) = 27 h

H m,
[Fermi pseudo- potential]

where: V(r,—ry) =

b5( _rN)

Tough equation... But it can be expanded
In power series of V: Y=Y +¥ +¥,+... (if S
A,>>aand d>>a), where:

H,W,-EW, =0

H, ¥, —EY¥, =-VIim E[r ¥, ]

r—0 a r The Delta Function
as a Narvon )
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The Fermi approximation is identical to the well-known
first Born approximation:

@

HW,-EY, =~V lim—=— g [r¥,|=-VV¥,|_ =-VY¥,

r—0 or

OM text-book solution:

1 .
Y, = explik-r r unperturbed state
o PG (e
net]?ron
Y, = L xp( K'r ) f(k',F;k,0) ¢o-(ry) (perturbation state)
rn Nucleus
neJ{ron

where a spherical wave, modulated by the inelastic
scattering amplitude f(k’,Fk,0) has been introduced:




_[dr exp[l(k k) I ]¢F(r WV, r e, (ry) =

12m

f(K',F;K,0) =
:_bdeexp[i(k—k)-R]qu(R)%(R)E—b (¢e |0 (Q-R)|¢)

and the following energy conservation balance and
useful definitions apply:

21, 2 21,12 21,2 321,12
nk _|_E0:hk +E :>hk —hk =hw =E_—E, (energy transfer)

2m, 2m,  2m, 2m
analogously one defines :
hQ = nk — k' (momentum transfer)




(k, E)

Recoil

s, 0 / =
&

O

N

K, E) 3.
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Oow neutron scattering from a nucleus

Q=k-k’
ho=E-E’=E_-E,

Measurable quantity: number of scattered neutrons, n
detected in the time interval At, in the solid angle between 6
and 0+A0, and between ¢ and ¢+A¢, having an energy
ranging between E’and E'+ AE”.

n=1(0,4,E')AOAd AE' At
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Scattering problem: how is [(0,¢,E’) related to the intrinsic
target properties [i.e. to ¢;(Ry)]?

The concept of double differential scattering cross-section
(d?c/dQ/dE’) has to be introduced:

dQdE' J. J

In In

( d’c j _1(0.4.E") _r*3,,(6,4.E)

where J;, IS the current density of incoming neutrons (i.e.
neutrons per m? per s), all exhibiting energy E.
Analogously, for the outgoing neutrons, one could write:
Joui(6,0,E°)=r21(0,0,E’) (spectral density current).
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Going back to our QM text book, one finds the
‘recipe” for the neutron density current:

h

J = - Im(l/ﬁ w)

n

which, applied to ¥,and ¥, (box-normalized, L3), gives:

h
J. = K
" Pm,
ok hok | 2
Jou(€2) = L’m, r? (k' Fik0)f = L’m, r? b |(¢e|exp (iQ-R)| @)

‘]out(Q) - ,.-owdg ‘]out(g’Q) — ‘]out(El’Q) — ‘]out(Q)é‘(E o EI_EF + EO)




G

K' : 2 :
D% [ |00 (Q-R) @y )| S(E-E-E; +E,)

for the transition from the nuclear ground state O to the
excited state F, with the constraint: E-E=E.-E,,.

Summing over all the possible nuclear excited states F,
one has to explicitly add the energy conservation:

N

d? % |
(deGE-j =0 ZFchoFIexp(nQ-R)I¢o>\25(ha)_EF +E,

6, ¢,E,E'

Finally, if the target is not at T=0, one should also consider
a statistical average (p,) over the initial nuclear states, |
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0,¢,EE

o Qo

:%bz > 0 [0 |e0(iQ-R)| )| 8(hw—E, +E,)

Target propertyonly

where the Inelastic structure factor or scattering law S(Q, o)
has been defined. Giving up to the neutron final energy (E’)
selection, one writes the single differential s. cross-section:

|

do
dQ

j9,(p,E

(deE j (for E. —E, <E)

0, ¢,E,E'

£ % B jowio mio)f

O‘—.S
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Giving up to the selection of the scattered neutron direction (€2)
too, one writes the s. cross-section:

0,¢,E

—>4rb* forE—0 (boundc.s.)

do
o(E)= de(dQ) —>47zﬂ—2b2 forE > o (free c.s.)

2

m

n

@ Neutron scattering from an extended system

?e(My) = 0:(Ry, Ry

bo(r,—ry) =
m

n n

R,) (many—body states)
27 h° 27 h* O

ij 5(r, —R,) (comb - like potential)

So, Is everything so easy in NS? No, not quite...
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Neutrons and incoherence

nuclel with the same 2)

do
dQdE'

H

do
_|_
dQdE' con

do
dQdE' e

where:

|

do
dQdE

E ocon 71
'jC J; A 5 Q,)

|

d?o

dQdE

GINC h_lsself (Q C())
Ar

@©

Q@ “Real-life” neutron scattering (from a set of



scattering laws defined for a many-body G
system (set of nuclei with the same Z) as:

2
S(hw—E, +E,)

S(Q’a)):%z pIZF:

Seart (Q, @) = %Z D> (2| (iQ-R)) ¢) 6(ho—E, +E,)

=1

<§DF |ZeXp(|Q ' Rj)|(0|>

S(Q,m) Is obvious, but where does S_.{(Q,») come
from? From the spins of neutron (s,,m,) and nucleus
(I,My), so far neglected! b depends on |+s,

- e.g. full quantum state for a N
neutron-nucleus pair: | |
|K’,s..m; F, Iy, M)
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How does it work? Assuming randomly distributed
neutron and nuclear spins, one can have a simple
iIdea of the phenomenon:

<ib,— exp(iQ-R,—)>

2

spin+position

N N
=<ij exp(iQ-R,-)> <Zb,-- exp(—iQ-R',-->>
=1 spin+position spin+position

=1

for j=': {bby)  =(b,b),, =b°
\for J 7 jl : <bJ l:)j'>spin - <bj>spin<bj'>spin - (5)2

=—




@ The incoherence origin (rigorous theory):

Oror = 47z<62>; Ocon = 47z<6>2 =

ove = {5)-)”

since b Is actually not simply a number, but is the
scattering length operator acting on [i,, my) (nucleus)
and on |s,, m.) (neutron) spin states:

62A+§&-?N
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This implies the existence of b* and b (if i,>0) for
any isotope (N, Z), respectively for i +Y%:

1 2 g
A:ZiN+1{(lN+l)b +igh} B—ZiN+1{b b~ |

After some algebra, only for unpolarized neutrons
and nuclei, one can write:

b

1 _ _
2(2iy, +1) 2 (i My, m, pliy, Myis, my) = A;

|\/IN’mn

1 |
I\/l .
2@ 1) 2 (e Muism,

IVIN’mn

B

BZ\iN,MN;sn,mn>=\A\2+BTiN(iN +1)




With various isotopes (c;) one gets: “-I

OroT
- . TOT
Iy Dby +1 b

j

¢
157)-

(
> - Z Cj I . Deuterium
J 20;+1
2.¢
J

G D) i (07 ‘ oger
21 ;+1
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@ High-Q spatial incoherence @

- S _1‘_l

(rearranging...)

d’c _ d’c  Ocon d’c
dQdE' ) . (dQdE') . ope (dQdE')

d’c )\ o[ d’o N d’c
dQdE') o \dQdE') .\ dQdE')_
ncoherent approximation

2 2

d°o ~ Jror d°o for hew # 0
dQdE') o \dQdE")
0
S(Q,Cf)) = Sself (Q,Ct)) - Sdist(Q’ C()) = O




When does it apply in a crystal?

Q|>>27x

)"

d2

Practical example : D,SO, (T=10 K)

d(D0O)=0.091 nm
(u%Y2(D)=0.0158 nm
2m(u2)12/d?=11.9 nm1
|Qinc|~1oo nm-

@©
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!'/E 2) Time-correlation functions

S(Q,w) and S_(Q,w) are probe independent, I.e.
they are intrinsic sample properties. But what do they

mean?

Fourier-transforming the two spectral functions, one

defines [(Q,t) and I_+Q,t), the so-called intermediate
scattering function and self intermediate scattering

function:

1(Q,t) = Tda)exp(ia)t)S(Q,a))

e (Qu1) = Tda) exp(ict)S. (Q, )




/ : | After some algebra (e.g. the Heisenberg C

representation), one writes [(Q,t) and
l.1(Q,t) as time-correlation functions
(with a clearer physical meaning):

1(Q.t)=— <Zexp{ iQ-Rj(O)}em{iQ-Rk(t)}>

Q) == (o0 {-iQ-R,@lew{io-R,®])

J

Idist(Q1t) = | (Q,t) - Iself (Q1t)

So far we have dealt only with a pure monatomic
system (set of nuclei with the same 2).




But what about “real-life” samples (1 |

(e.g. chemical compounds)?

»_N

Sum over “s” distinct species (concentration c[s]):

dc -
(deE'jC on K 27 [Odtexp —lat ZZC[S]C[Z] _167(Q,1)

do > 2
(deE'jl \C K 27 -[Odt exp Ia)t ZC[S](b )Iself Q,1)

where 1©)__(Q,t) is the so-called self intermediate
scattering function for the st species:

NS

15,QD=—2 (@0{-iQ-RiOer{iQ-Ri®))

s J=1




and where SG®__ (Q,») is the so-called self
inelastic_structure factor for the st species.

Properties similar to those of S__(Q,®):

The coherent part is slightly more complex

162)(Q,t) is the so-called total intermediate
scattering function for the s species (if s=z),
or the cross intermediate scattering function for
the s,z™" pair of species (if s=2):




I/

f

o= b (33 00l i RiOfeslio Ri0)]

and S©&2 (Q,m) is the so-called total inelastic
structure factor for the st species (if s=z), or
the cross Inelastic structure factor for the
s,z pair of species (if s=7):

S (Q, w) = 1 ]Odt exp (—iat)1°?(Q,t)
21 7

The total contains a “distinct” plus a “self’
terms, while the cross only a “distinct” term.



from: Tda)a)”S(Q,a)) = (—i)"

@ Coherent sum rules

n

0
atn

1(Q,1)

t=0

0") j dw S(Q, w) = S(Q) = Static structure factor

where:

SQ =X P [ L o0 (IR RISPIQ-R ) )

@©

‘IQf

lst)zda)ha) S(Q,w) = h2|\/|

= E;, = Recoll Energy




@ Incoherent sum rules

n

from: ]?da)a)nsself (Q o) = (_i)n% e (Q,1)

t=0

0™) j dw S, (Q,w) =1= Normalization

‘IQf

1) Ida) hao S (Q, ) = = E; = Recoil Energy

2M
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h4
2M ?

3rd) ]?da) (ha) - Ex )3 Seerr (Q, @) =

— Laplacian of the potentialU

4™) Tda) (ha)— E. )4 Sear (Q, @) = h4<(V.Q)4>

4
+ % <(§U -Q)2> —> Square gradient of the potentialU



@ Detalled balance @

S(-Q-w) =exp|-4)S(Q, @)
self( Q 0)) exp( ) self (Q Q))

from the microscopic reversibility principle:

> P,

; men\exp (-iQ- Rl)‘m>‘25(—ha)— E +E_ )=

<m\exp (-iQ- Rl)\n>\25(—ha)_ E +E )=

2
Db, I;m Km\exp (iQ- Rl)‘n>‘ o(ho-E_+E,) g.ed.



@ The zoo of excitations...

Quasi-clastic

*o— @
o /
./"\ pe I! {optic mode) : -

— G
.] 8- &
phonons
(acoustic mod

vibrational

Energy | | | :
transfer (cm'l) 10° : ] 10* 107

Timescale (s)  107-10™" 10 " 1o 107
Length probed (&) >30 0.001 0.0001 0.00001




1 meV

Diffusional processes

't

| Quantum tunnelting

F Ry et — .

0.1




“={| 3)Inelastic scattering @

from crystals

Scattering law from a many-body system:
analytically solved only in few cases (e.g. ideal
gas, Brownian motion, and reqular crystalline
structures, with a purely harmonic dynamics.

Generalized scattering law (sometimes used for
mixed systems)

2(Q,w) =

Z(B )2 Eem(_ia)t)

x> b,b,(exp{~iQ-R, (0)}exp {iQ-R, ()})

n,n'

1 7t
I




Generalized self scattering law (sometimes
used for mixed systems)

1 ¢ dt
D W) =
self (Q C()) ZGWCm _[0272_

XY Opnea (e {-IQ-R,(0)}exp {iQ-R, (1)})

exp (—imt)

In a harmonic crystal the time correlation functions
are exactly solvable in terms of phonons due to the
Bloch theorem for a 1D harmonic oscillator (X iIs its

adimensional coordinate):

(exp X) =exp (X 7))




Three-dimensional crystalline lattice (N cells and r
atoms Iin the elementary cell: /" and “d” indexes):

R,q(t) = L+,£! +U,4(t)

equilibrium

Harmonicity (expansion of u,4(t) in normal

modes; e.g. phonon “s”; quantized):
3Nr 1/2{
u . (t)= . e explig-l-1mt
a(0) JZNMd ;—1, s.d s (CI )

sd d, exp( |Q|-|—|C()St)}




with e, polarization versor, afg (a;) creation
(annihilation) operator of the s phonon with o,
frequency and 2rx|g|* wavelength.

Collective index “s™ {q,,q9,,0,.); with qelBZ (first
Brillouin _zone: N points). 7 labels the phonon
branches (3 acoustic e 3r-3 optic).

Polarizations: 2 transverse and 1 longitudinal.
Total: 3Nr d.o.f.

Dispersion curves: o.=w,(q)




@ Coherent scattering

Plugging the equations for R, 4(t) and u, 4(t) (i.e.
phonon quantization) into the coherent d. d.
Cross-section, one gets:

(dgzzje-] :%2255 xp[iQ-(d'—d+1")




(exp[-1Q Uy (0) Jexp[iQ-uy o (1] )
=X <_ % {[Q “Uo g (O)]2 T [Q ' uO,d'(t)]2 }>
xexp ([Q- Uy (0)][Q-uy (1))

and then:

Ld‘gg’E,j =%;266 xp[iQ-(d'—d +1')]

o0 - B,(Q0/2 B, (Q0)2][ .- exp(-itot)exp[B,,(Q.0)
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here the static term is the Debye-Waller
factor, whose exponent is:

B,,(Q.0) = Z‘Q 2

N2 o (2n, +1) = 2W,(Q)

with (n,) number of thermally activated phonons;
while the dynamic term contains:

h (Q°ed,s)(Q'e;',s)
2N /M M, Z o, (

expliot—iq, - (d'—d+1")]+ <ns>exp [-lot+1q, - (d'—d + I')]}

By ¢ (Q.1) = N, +1>




@ Coherent elastic scattering

Phonon expansion

Expanding exp[By 4 (Q,t)] In power series,
one gets a sum of terms with n phonons
(created or annihilated):

exp By 4 (Q,1)| =1+ B, 4, (Q, 1) +%[Bd,d.,,.(Q,t)]2 ...

+%[Bd,d.,,.(Q,t)]” +...




|

@

[ &’ ] NS Y BB, exliQ-(dd+ 1]

dQdE’
exp[- B,(Q,0)/2— B,(Q,0)/2]5(ev)

Integrating over E’and making use of the reciprocal
lattice (t) sum rule: 2, exp(iQ-l) = 8x3v 12, 8(Q-1),
one obtains the well-known Bragg law:

do 87> — — ' :
(d_QjCOH, N NV %bdbd' EXp ['Q ' (d _d)]EXp [_Wd Q) _Wd'(Q)]

elast

_/

'

I (Q)|2: nuclear unit-cell structure factor

x> 6(Q—1) (Bragy peaks)
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@ One-phonon coherent @

contribution

If Eg 4(Q)<h/{wg?) [the lightest M] then:

eXp LBd,d',l' (Q, t)J_l = By (Q,1)

and one obtains the single phonon (created or
annihilated) d. d. coherent cross section:

[dS;TE'jCOHH NkZbe expliQ-(d—d+1)]

exp[-W, (Q) -W,(Q)] j Z—Ehexp —i@t)By;(Q,1)




P+ )
=7 Plugging the equation for B, 4 (Q,t) Into

the one-phonon coherent d. d. cross-
section and performing the Fourier
transforms and the reciprocal lattice
sums, one gets:

(deE'
x(n, +D5(w-,)> 5(Q-g,-t) (L—phonon, @, (), creation e > 0)

d’c ] k' 87° 4 ’
= o, exp[iQ-d-W,(Q)]Q e,
ot K 2che,,zsl Z0|:1/I\/Id ( 48/

|

O

d’c k' 871° 3 ; _ \
= .d-W, .
deE'L)H1 k 2Nv,, Z“’ Zd: M, epliQ (QJQ e,

x(n)o(w+@,)>" 5(Q+q,-t) (1- phonon,w;(q), annihilation o < 0)




Dispersion
Curve

practical example:
lithium hydride LiD
(cubic, Fm3m, I.e.
NaCl type) with
=2 = |=1,2,3

Red: Acoustic
Blue: Optic
Full: Transverse

Dash: Longitudinal

Lithium hydride

.

X 'K' ofs '
¢ (reduced units)



First Brillouin zone

In a face-centered cubic lattice G

(f.c.c.)

2 1st Brillouin zone

(9

K




= )/E @ One-phonon incoherent @

contribution

Bloch Zal(g)c<exp{—iQ-R,,d 0)jexp{iQ-R,, (t)}> -

theorem:
=N o ep[-B,(Q.0)]exp[B, (Q.1)]

where the static term i1s the Debye-Waller
factor, whose exponent Is:

B,(Q.0) = Z‘Q o

2n, +1
2NM, £ o, (20, +1)




@

with (n,) number of thermally activated phonons;

while the dynamic term contains:

Bd (Q!t) —

h

2NM,

2

‘Q s

2

Q,

{(nS + 1D exp (i)




@

Single phonon and density of states

Expanding exp[B4(Q.,t)] In power series, one
gets a sum of terms with n phonons (created
or annihilated):

exp By (Q,1)|=1+B,(Q,t) + = [B Q0]+

+%[Bd (Qit)]n +

€XP [Bd (Q’ t)] =1+ Bd (Q! t)



I/

! :

AL (@

and one obtains the single phonon (creation or
annihilation) d. d. incoherent cross section:

d’c Ko \Qem
(deE'jINCﬂ_ Z 4z 2NM, Z

X {<nS +1)8(@— o, 1+ (n, )5 (@ + o, )jexp [— Bd (Q,0)]

Density of (phonon) states: density probability
for a phonon of any kind with frequency between
® and o+dm:

3rN

g(w) = 25(60 @)
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The single-phonon incoherent d. d. cross section

(creation or annihilation) becomes more simply:

d’o K's one Q°
(deE'jINC, 1:_2 4z 2M,
r(lea (e g eh)
ofl—exp[-ha(ksT) "1}

exp |- 2W, (Q)]

where:

—(n(-w))for o < 0(annih.)

{1—9XI0 [_hw(kBT)_l]}_ - <\<n(a))+1> for > 0(creat.)




“y

weak point (“=”), i.e. the meaning of the
averaged eigenvector:

2 1 5
<‘ed () >: 3rNg(w)Aw 2.

W<0; <W+Aw

The separation from Q is rigorous only in cubic
lattices:




@

In addition, using this approximation, one
proves that:

B,(Q.0) = 2W, (Q)%%<U§>

link between the exponent of the Debye-Waller factor
and the mean square displacement of the d species.
It is often used the density of states projected on d:

Gy (o) = r{fe, ()" )9()

<u§>: S de(w)coth LI NP
2M, 7 o 2k T




d’c _Zau(ﬂ)c 2
dQdE"’ NG =1 A 2M,

which: Gy (o)) Q%
ol el hakT) T} [ <”">j

Density of states
— S e Ve projected on H
L, practical example:
- 0.04 - Opt|c b o 5 . .
% 0.03 - L
E
| AR N

80 90 100 110 120 130 140 150
hio (meV)



[ @ Multiphonon incoherent @
contributions

Coherent multiphonon terms are too complex and not
very useful (e.g. for powders: Bredov approximation).
Here only incoherent terms. Definition.

) (50, a0,
dQdE’ INC, Mult dQdE' INC aQaE INC, 11

remembering that:

[ d’c j - k' ]‘3dt oxp(ioot)

dQdE Ak J 27

(d)

XZ e exp[ B, (Q.0)]exp[B, (Q.1)]




’ and that: @

exp B, (Q,1)|=1+B,(Q,t) + = [B Q.OF +

+ % [Bd (Q1t)]n +

one gets for the first term, 1, an elastic contribution:

( d2c ) k' % dt .
. - — | —exp(—iwt)
d dE INC,Elas

(d)

d)
<25 "l ep[-2W,(Q)]= —Z "l exp[- 2, (Q)]5 ()
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not to be confused with the incoherent s. d. cross-

For the second term one gets, B(Q,t), the single

already known:

phonon contribution (+£1, created or
d’c __Z Uﬁﬂ% 2
dQAE’ ) ¢ .. Ar 2M
G, (@)
D epl-2,Q)]

" ofl-ep[-holk T)‘l]}

annihilated)



While for the (n+1)" term, one gets B"(Q,t), a
contribution with n phonons (created and/or
annihilated). Using the convolution theorem:

00

0

¥

dt
—eXP
T

B,(Q,w) =

(-i01)8](Q.1) = By(Q 0) ®8,(Q,) ®..B,(Q )

n times

A _ I’ f
2M, ofl-ep[-hol(k,T)]} 2M, °

(@)



we obtain:
d's | _Kgolk(nQ)
dQdE' ) .~ ik 4 4z | 2M,
f ()|

L] oo w0

Self-convolution shifts and broadens f,(®), but blurs its
details too...

Sjolander approximation: [f,(@)]" I1s replaced by an
appropriate Gaussian (same mean and variance ).
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