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Magnetic excitations

- measured by
Triple-Axis Spectroscopy

Part 1:  Classical Magnetic Excitations
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Localized magnetic moments

Mechthild Enderle
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Magnetic moment: not completely filled electronic shell

3d-shell:

Cu2+ :

ℓz -2    -1     0     1     2             L S

2           1/2

Ni2+ : 3             1

Hund’s Rules

Mn2+ : 0           5/2
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Magnetic moment: not completely filled electronic shell

4f-shell:

Gd3+/Eu2+:

ℓz -3   -2    -1     0     1     2    3           L S      

0    7/2    

Hund’s Rules

Dy3+ : 5    5/2   
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Crystal field and LS-coupling

3d-shell

+

LS-coupling small

- +

-+

L-multiplet splits into (mostly) singlets
often ground state <L>=0, “pure” S 
LS-coupling -> small anisotropies

filled shells

LS-coupling strong
CF influence small

CF influence strong

4f-shell

+

- +

-+

L+S couple to J
CF splits J-multiplet
large anisotropies
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Magnetic moment: not completely filled electronic shell

3d-shell:

Cu2+ :

ℓz -2    -1     0     1     2             L S

Ni2+ :

2           1/2

3             1

Localised 3d moments

Mn2+ : 0           5/2
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Magnetic moment: not completely filled electronic shell

4f-shell:

Gd3+/Eu2+:

ℓz -3   -2    -1     0     1     2    3           L S      J

Dy3+ :

0   7/2    7/2

5   5/2   15/2

Hund’s Rules
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Further Interactions

3d-shell

+

- +

-+
3d-orbitals overlap with neighbours

S ≤ 5/2 : dipolar interactions small

4f-shell

+

- +

-+
4f-orbitals well localized

J=L+S large -> dipolar interactions

Hybridisation with conduction e-

(RKKY-interaction)
Direct exchange, Superexchange
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-
Mechthild Enderle

Superexchange

Pauli principle
Coulomb interaction

effectively antiferromagnetic
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Interactions responsible for correlated dynamics

3d-shell

+

- +

-+
3d-orbitals overlap with neighbours

S ≤ 5/2 : dipolar interactions small

4f-shell

+

- +

-+
4f-orbitals well localized

J=L+S large -> dipolar interactions

Direct exchange, Superexchange Hybridisation with conduction e-

(RKKY-interaction)

CF-split J-levels at low energies(CF-split L-levels at very high energies)
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KCuF3:
Cu2+ 3d9 localised

S, L

Stark effect >> spin-orbit
<Lx>
<Ly> 0
<Lz>

1D spin arrays

S=1/2

~5Å
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Ferro- and Antiferromagnets
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Heisenberg - FM: 

i-1 i i+1

-JS -JS Exchange field

Magnetic moment

Classical Ferromagnet – Collective excitations

gμBHex(i) = - J (Si-1 + Si+1)

mi = - gμB/ћ Si

-

Mechthild Enderle
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Classical Ferromagnet – Spin waves

Mechthild Enderle

Classical:     S → ∞
spin = vector

QM:     small S
spin = operator

d
dt Si =      mi x Hex(i) 

=       Si x (Si-1 + Si+1)
J
ћ

iћ Si
+ =      [Si

+ , H ]

= ∑j J (Si
zSj

+ - Sj
+ Si

z)

∑
∑t

non-linear

Linearization          Si
x,y « S       Si

z ≈ S

Ћω(q) = 4JS ( 1-cos(qa) )
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Classical spin waves - FM

k = π/d

k = π/2d

k = 0
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Classical spin waves – a little bit more general

where

• 1 magnetic atom per unit cell,  1 ordering vector Q

Ground state :

Linearized Excitations (classical spin waves) :
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Classical Magnet – Spin waves

Mechthild Enderle

d
dt Si =      mi x Hex(i)   =          Si x (Si-1 + Si+1)J

ћ

Linearization          Si
x,y « S       Si

z ≈ S

• x,y,z local coordinate system with z || mi

• Si-1 , Si+1 need to be rotated into the local coordinate system of Si

• Rotation angle given by QR

Linearized Excitations (classical spin waves) :
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Classical spin waves – Ferromagnetic chain

Ground state :  maximize J(q)  ->   Q=0,     J(Q)=2J

Excitations (classical spin waves) :

a

J
J(q) = J exp(-iqa) + J exp(iqa)

= 2 J cos(qa)
J > 0   (FM)

Ћω(q) = 2S{ [2J-½2Jcos(qa)-½2Jcos(-qa)] [2J-2Jcos(qa)] }½

= 2S 2J [ 1-cos(qa) ] 
= 4SJ [1-cos(qa)]
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Classical spin waves – Antiferromag. chain

Ground state :  maximize J(q)  ->   Q = π/a,     J(Q) = -2J > 0

Excitations (classical spin waves) :

a

J
J(q) = J exp(-iqa) + J exp(iqa)

= 2 J cos(qa)
J < 0   (AF)

Ћω(q) = 2S { [-2J-Jcos(π+qa) -Jcos(π-qa)] [-2J-2Jcos(qa)] }½

= 2S { -2J [-2J +Jcos(qa) +Jcos(qa)] [1+cos(qa)] }½

= 4S|J| [1-cos2(qa)]½

= 4S|J||sin(qa)|
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Classical spin waves - AF

k = π/2d

k = 3π/4d

k = π/d

Mechthild Enderle
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Examples
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LiCuVO4

~90mm3 single crystal:   A.V. Prokofiev, W. Assmus, Frankfurt

Mechthild Enderle
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1D nn/nnn Heisenberg AF

J1

J2

H = J1Σ SnSn+1 + J2 Σ SnSn+2 

J(q) =  2J1cos(qa) + 2J2cos(2qa) 
=  2J1cos(qa) + 2J2[2cos2(qa)-1]

J2>0 (AF)
Maximize J(q)   ->    cos(Qa) = -J1/4J2      - helical structure !

(Classical)
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Dispersion – LiCuVO4

M. E. et al., EPL 2005

J1

b

a
J

J

J

J

4

5

2 J3

6
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Magnetic excitations

- measured by
Triple-Axis Spectroscopy

Part 2: Triple-Axis Spectrometer
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Triple-Axis -Spectrometer

Filter
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Thermal white incoming beam (IN20)
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nλ = 2d sin(θ)

Monochromator/Analyser

λ,2λ,3λ …
θθ

d

• Mosaicity
• Reflectivity
• Focusing Arrays

Mechthild Enderle
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Monochromator/Analyser
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Monochromator/Analyser

•Focusing Arrays

• increase beam divergence
• keep monochromaticity

Mechthild Enderle

• reduce background

sample



INSTITUT MAX VON LAUE - PAUL LANGEVIN Mechthild Enderle

Sample and sample table



INSTITUT MAX VON LAUE - PAUL LANGEVIN Mechthild Enderle

Filters

• Pyrolytic Graphite Filter (high transmission for k = 2.662 Å-1

10-3 – 10-4                   for 2k, 3k 

k = 4.1 Å-1

10-2 2k                )

• 77K Be-filter ( cuts above 1.55 Å-1 )

• Velocity Selector ( works up to approximately 5 Å-1 )
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Puma/FRMII

G. Eckold, P.Link, C. Hradil
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Detector

3He +n   -> 4He (metastable)  -> T+ + p+ + kin.E

3He gas discharge
(avalanche)

Proportional counter

3He
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Filter

Mechthild Enderle

Triple-Axis -Spectrometer

A1

A2
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Filter

Mechthild Enderle

Triple-Axis -Spectrometer

ki

kf

Q
A3

A4

A1

A2
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Filter

Mechthild Enderle

Triple-Axis -Spectrometer

ki

kf

A3

A4

A1

A2A6 A5
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Dispersion – LiCuVO4

M. E. et al., EPL 2005

J1

b

a
J

J

J

J

4

5

2 J3

6
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Filter

Mechthild Enderle

Triple-Axis -Spectrometer

ki

kf

Q
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[hhℓ]

Energy

Triple-axis spectrometer (single detector)

kf

ki

Q
[110]

[001] Turn crystal between 
each point

Constant kf mode
Scan E at constant Q

Scan E at constant Q involves rotation of crystal wrt. ki

Bjorn Fak
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Inelastic neutron scattering – LiCuVO4

IN20 IN12
Mechthild Enderle
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Dispersion – LiCuVO4

M. E. et al., EPL 2005

J1

b

a
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Dispersion, low-E, off-symmetry direction

M. E. et al., EPL 2005

path i
RiJi (nsc)

Ji (χ(T))
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Q//ki
[110]

Energy

Different Q⊥

kf

Many detectors
kf constant

Q⊥ := Q ⊥ ki

Crystal analyzer spectrometer

Bjorn Fak
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• angular coverage 75 deg
• pixel width 1.3 deg
• no. of pixels 31
• SA distance 765 & 1000 mm
• analyzer crystals Si 111
• cold neutrons kf = 1.5 Å-1

ΔE = 0 - 10 meV
• thermal neutrons kf = 3 Å-1

ΔE = 0 - 40 meV

Flat Cone multianalyzer
(IN20 / IN14)

R. Currat, B. Detlefs, M. Kempa, J. Kulda
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Flatcone

Top view

sample

31 channels
75º angular range

kf = 3 Å-1 kf = 1.5 Å-1

Side view
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FC on IN20  III

IN20, July 2005
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Multi-Analyser-Detector Box

F. Demmel

Data taken on IN8
H.M. Ronnow, F. Demmel

0.7cm3 single crystal
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Ba2Cu(BO3)2 1.5cm3 single crystal,  S = ½

dispersionless 8meV band

Intensity (color) at 8meV in (0kl) plane
shows dimer structure factor

MAD-box on IN8

LiNiPO4 0.2 cm3 single crystal, S=1

4 h = 20 energy scans with 42 Q 
1000 pts on dispersion surface

E(0kl) –surface with
spin wave intensity (color)

H.M. Ronnow, F. Demmel



Q//ki
[110]

Energy
Same Q⊥

Constant-Q⊥ spectrometer

ki

kf
j = Q⊥/sinφj

Q⊥kf

Rebinning gives constant Q

Crystal analyser spectrometer with variable kf
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Universal Focusing Option on IN12

Other variants:
IMPS/IN8
RITAII/PSI
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Magnetic excitations

- measured by
Triple-Axis Spectroscopy

Part 3: Ground state without long-range order
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Macroscopic quantum phenomena

Bose-Einstein condensateSuperfluidity (4He)
Superconductivity (BCS)

Ground state of 
High-Tc-Superconductors ?
Ground state of the  FQHE quantum string liquids 

with “hidden” orderRSOS-models/
Surface physics

Ground states
of antiferromagnets
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Superconductivity 

 
QHE / FQHE 

 
One wave function  

of all  
conduction electrons 

 
 

AF spin chains 

 
One wave function  

of all  
localized spins 

 

Macroscopic quantum ground states
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S=1/2  Ferro- and Antiferromagnet
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S=1/2 Antiferromagnet

Pairs of two domain walls

Continuum:
k = k1 + k2

E(k) = E1(k1) + E2(k2)



INSTITUT MAX VON LAUE - PAUL LANGEVIN

Magnetization

Mechthild Enderle
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B

Magnetization

Mechthild Enderle
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B

Magnetization

Mechthild Enderle
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B

Magnetization

Mechthild Enderle
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B

Magnetization

Mechthild Enderle
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B

Magnetization

Mechthild Enderle
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Magnetic Excitations

Mechthild Enderle

Classical S = 1/2
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1D S=1/2 Heisenberg AF
Ground state:

Excitations: spin-1/2 pair continuum

Mechthild Enderle
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1D S=1/2 HAF Ground state (snapshots) 

1D S=1/2 Dimer Ground state

J J J …

J1 J2 J1 … J2< J1

Spin-Peierls material: 
1D S=½ HAF coupled to 3D phonons (acoustic or optic)

Macroscopic Singlet Ground States

TSP

Mechthild Enderle
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1D S=1/2 HAF: continuum, no energy gap

1D S=1/2 Dimer: discrete mode, energy gap(s)

J1 J2 J1 …

Break an AF bond: Excitations

J J …
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CuGeO3 - Spin-Peierls System

H
eg

m
an

n 
et

 a
l. 

19
98
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1D S=1/2 HAF: continuum, no energy gap

1D S=1/2 Dimer: discrete mode, energy gap(s)

J1 J2 J1 …

Break an AF bond: Excitations

J J …

Spin-Peierls: discrete mode, energy gap, continuum

J1 J2 J1 …
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Spin-Peierls: Excitations

binding energy by 3D elastic coupling
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Spin-Peierls System

Continuum:
two domain
wall pairs

Pair of bound
domain walls
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S=1/2   Spin-Peierls CuGeO3

Triplet

Continuum
M. Aïn et al. 1997

M. Arai et al. 1996

MARI TAS



INSTITUT MAX VON LAUE - PAUL LANGEVIN Mechthild Enderle

CuGeO3 - Triplet Excitation

FLEX (HMI)

H<Hc

H>Hc
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Bc=12.3T

CuGeO3 - Quantum IC Phase

IC Magnetic Soliton Structure

Dimer (lattice) peak
No ordered moment
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Quantum IC Phase

B=14.5T nsc NMR theory
ms 0.097(3) 0.026 0.11 - 0.14
mu 0.019(3) 0.023 0.023
ms/mu 5.1(8) 1.1 5.4

Ronnow,Enderle Horvatic et al.    Uhrig et al. 
et al. 
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Quantum IC Phase: Excitations
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Magnetic excitations, IC-phase

Δ+,Δ– : creation / removal
of an additional 
domain wall pair

U
hr

ig
et

 a
l.
 1

99
8

Sc
hö

nf
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 a

l.
 1

99
8

Yu
et

 a
l.
 1

99
9
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3 magnetic excitations

- and one soft “phason”.

Gaps ?

incommensurate 
or 

commensurate 
excitations ? 

CuGeO3 Dimerized-Quantum IC Phase

HMI (FLEX with VM-1)
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1D quantum phenomena vs. 3D lattice
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14.5 T
1.5 K

CuGeO3 Quantum IC Phase

HMI 
(V2, VM-1)

3. magn. mode ?

phason ?

?



J(h) = 2 J1 cos(2 π h) + 2 J2 cos(4 π h)

dJ(h)/dh = -4 π J1 sin(2 π h) – 8 π J2 sin(4 π h) = 0
use sin(4 π h) =2 sin(2 π h)cos(2 π h)

-4 π J1 sin(2 π h) – 16 π J2 sin(2 π h) cos(2 π h) = 0
sin(2 π h) (J1 +4 J2 cos(2 π h) ) = 0

Hence either sin(2 π h) =0          ( h=0 or h=1/2)
or J1 = - 4 J2 cos(2 π h)

cos(2 π h) = -J1 / 4J2    (varying h)

Case 1: h=0:
J(0)=2J1+2J2 =2 cos (phi) + 2 sin(phi) = 2cos(phi) (1+tan(phi))

Case 2: h=1/2:
J(1/2)= -2J1+2J2 = -2 cos (phi) + 2 sin(phi) = = 2cos(phi) (-1 + tan(phi))



Case 3: h varying, ordering vector cos(2 π H) = -J1 / 4J2
J(H) = 2J1 cos(2 π H) +2J2 (cos(4 π H) ) 

= 2J1 cos(2 π H) +2J2 (cos(2 π H)2 - sin(2 π H)2 )
= 2J1 cos(2 π H) +2J2 (2 cos(2 π H)2 - 1 )
= 2J1 (-J1 / 4J2 ) + 2J2 (2 (-J1 / 4J2 )2 - 1 )
= -J12/4J2 -2 J2

Now put in J1=cos(phi), J2=sin(phi)
= -cos2(phi)/4sin(phi) +2 sin(phi)
=  -cos(phi) (1/(4 tan(phi)) +2 tan(phi))
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J(0) (means ferromagnet,
angle zero between neighbouring spins)

J(1/2) (means antiferromagnet,
angle pi between neighbour spins)

J(H) (intermediate H means helical order 
with angle 2pi H between 
neighbouring spins)

Boundaries:
Given by 
J(0)=J(1/2)      Solution: phi=pi/2
J(0)=J(H)        Solution: tan(phi)=-1/4
J(1/2)=J(H)     Solution: tan(phi)=1/4



J1

J2

h=0
Ferromagnetic phase

h=1/2
Antiferromagnetic phase

h=H given by cos(2 pi H)= - J1/(4J2)
Helical phase with angle 2pi H between neighbours

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

tan(phi)=-1/4

tan(phi)=1/4



Excitations ferromagnetic phase (ordering vector H=0)

Ћω(h)=4S[J1(1-cos(2πh)) +J2(1-cos(4 πh))]
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Excitations antiferromagnetic phase (ordering vector H=1/2)

Ћω(h)=4S { [-2J1+2J2 -2J2 cos(4πh)]2 –[2J1 cos(2 πh)]2}1/2
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Excitations helically ordered phase 
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1 Introduction

The concept of quantum mechanics, developed at the beginning of the last century, is a provo-
cation of the common sense: It principally excludes the simultaneous exact determination of
position and momentum of a particle - or other pairs of conjugate variables. Instead the be-
haviour of a particle is defined by a wave function or probability function which determines
exactly the expectation values of observable properties. Macroscopic quantum phenomena, like
superconductivity or superfluidity, cannot be described in terms of single-particle properties, but
require a wave function of the entire many-particle system. The superfluid as well as the super-
conducting ground state have wave functions related to the so-called Bose-Einstein condensate.
Two other famous phenomena of solid state physics, the integer and fractional quantum Hall
effect, and the high-Tc superconductivity have been connected with new types of many-particle
wave functions.
It is much less known, that a variety of macroscopic quantum ground states is realized in low-
dimensional magnetic materials. The inherent structure of their wave function is closely related
to those of the more famous brothers. Again, common sense is challenged by the fact that not
all quantities have sharp expectation values simultaneously. Materials with well-localized mag-
netic moments may have energy eigenstates which cannot be expressed in terms of individual
spin states. Nevertheless, characteristic properties of the ground state and the low-lying exci-
tations can be visualized in a series of snap shots of individual spin states, in a similar way as
path integrals lead from the classical to the quantum mechanical description of a particle.
Neutron scattering is an indispensable tool in the investigation of macroscopic quantum ground
state magnetism. It allows to determine the microscopic interaction parameters essential for
classifying the type of the ground state, as well as to take fingerprints of the ground state by
measuring the corresponding spin fluctuations, i.e. the wave vector and energy dependent exci-
tation spectrum.

2 Low-dimensional Spin Arrays in Nature

An one-dimensional array of localized interacting spins, a spin chain, is realized by the insulator
KCuF3 (Fig. 1). The electron shell of the transition metal ion Cu2+ is not entirely filled (3d9),
and therefore carries a magnetic moment. The overlap of neighbouring Cu2+ 3d orbitals is so
small that we can consider them as isolated to start with. However, the 3d shell is far away from
the nucleus, and the Stark effect of the electric field of the neighbouring ions is large compared
to the spin-orbit coupling of the electrons. The Cu2+ 3d electron states are therefore to first
approximation eigenstates of the total angular momentum, split by the Stark effect (often called
the crystal field). Spin-orbit coupling only enters in the next approximation. Like for many
transition metal salts, in KCuF3 the orbital electronic ground state in the crystal electric field
is a singlet, i.e. the expectation values of all three components of the electronic total angular
momentum vanish (“orbital quenching”). The electron spin is not influenced by the crystal
electric field, and given by Hund’s rules [1]. Thus KCuF3 displays the behaviour of a pure
localized spin 1

2
system. The small overlap region of the Cu2+ 3d and the F− wave functions

is governed by the Pauli principle and the Coulomb repulsion in competition with the tiny
delocalization of the electrons (insulator !). The energy balance of this so-called superexchange
interaction may favour parallel (ferromagnetic) or antiparallel (antiferromagnetic) alignment of
neighbouring Cu2+ spins, in KCuF3 it is antiferromagnetic. Since the origin of this effective
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Fig. 1: Structure of the one-dimensional S = 1

2
Heisenberg antiferromagnet KCuF3. Only Cu2+

and F− are shown [2].

magnetic superexchange interaction is the Coulomb interaction, it is many orders of magnitude
larger than the magnetic dipole-dipole interaction. Contrary to the latter, the superexchange
does not depend on the orientation of the spins with respect to their distance vector or the
crystallographic axes. The superexchange depends on the volume of the overlap region. Hence
it decreases exponentially fast with increasing distance. It further decreases with increasing
ionic character of the bond, and increasing number of non-magnetic ions along the exchange
path. To zeroth approximation, the superexchange can be described by a Heisenberg interaction,
i.e. an isotropic interaction between neighbouring spins i, j of the form Jij

~Si
~Sj. Here Jij

denotes the exchange integral. In KCuF3 the particular orientation of the Cu2+ orbitals leads to
a 100 times stronger interaction between nearest neighbours along c than between neighbours
along a, b [3]. Thus, with respect to magnetic properties, KCuF3 behaves one-dimensional,
like a collection of independent chains of spins 1

2
which interact only within the chain. This

magnetic one-dimensionality need not be reflected in the crystal shape.

3 Long Range Order and Quantum Ground States

Why does an antiferromagnetic spin chain not simply establish long-range order ? We consider
the Heisenberg Hamiltonian

H = J
∑

<ij>

~Si
~Sj = J

∑

<ij>

Sz
i S

z
j +

1

2
(S+

i S−

j + S−

i S+

j ), (1)
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where J denotes the exchange integral per spin pair. The sum contains each pair of nearest
neighbours < ij > once. All operators in the Hamiltonian commute in the classical limit
~ → 0, S → ∞, ~S constant:

| < [Sα
n , Sβ

n ] > | = | < i~εαβγSγ
n > | ≤ ~

2S

S → ∞

−→
~S = const

0,

while the expectation value of the energy is proportional to (~S)2 and remains finite. In the
classical limit, the spin becomes a vector with infinitely many possible orientations, while in
the quantum limit the expectation values of the projection onto a given axis are discrete. The
ground state of a ferro- or antiferromagnetically coupled chain of vectors is long-range ordered
at T = 0. It can be written as a product of eigenstates of the operators Sz

i with eigenvalues
~Sz

i = ±~S (Fig. 2). We choose z parallel to the ordering direction of the spins. The symmetry
of the Hamiltonian with respect to arbitrary rotations in spin space is spontaneously broken
in the ferromagnetic (FM) as well as the classical antiferromagnetic (AF) ground state, the
translation symmetry with respect to translation by one lattice constant d only in the classical
AF ground state. In the latter the magnetic unit cell is doubled with respect to the nuclear unit
cell. The classical ferromagnetic ground state in Fig. 2 is an eigenstate of H even for small

FM: · · · ↑ ↑ ↑ ↑ ↑ ↑ ↑ · · ·

AF: · · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ · · ·

Fig. 2: Ground states of the classical ferromagnetic (FM) and antiferromagnetic (AF)
Heisenberg-chain. ↑ and ↓ denote localized spin states Sz

i = +S and Sz
i = −S. The or-

der of the AF is described by two “sublattices” with opposite magnetization, or more general,
by the ordering amplitude m0 and wave vector k = π/d in m(r) = m0 cos(kr). d is the distance
between two spins.

spin values S, because it is an eigenstate of all individual operators Sz
i S

z
j (with eigenvalues

(~S)2) as well as of all operators S−

i S+

j and S+

i S−

j (with eigenvalues 0). However, the classical
antiferromagnetic ground state (Néel state) is no eigenstate of H. It changes under the raising
and lowering operators S+

i and S−

i , cf. Fig. 3. In this sense the antiferromagnetic spin chain

i j

· · · S −S S −S S −S S −S · · ·
S+

i S−

j

−→ · · · S −S S (−S +
1)

(S − 1) −S S −S · · ·

Fig. 3: S+

i S−

j operating on the classical antiferromagnetic ground state. The local spin states
are given in the basis of eigenstates/values of Sz

i , Sz
i = S,−S.

behaves more “quantum mechanical” than a ferromagnetic chain [4, 5].
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Obviously the transverse operators S+

i S−

j destroy the long-range order, and the ground state of
the Ising-Hamiltonian,

H = J
∑

<ij>

Sz
i S

z
j ,

is the classical antiferromagnetic ground state of Fig. 2, even for S = 1

2
. Therefore we will

focus on the Heisenberg antiferromagnet (HAF).
To get an idea which role the dimensionality of the spin array (the interaction) plays we consider
domain walls in the Néel ground state (Fig. 4). At these domain walls the sublattice magneti-
zation changes sign. The energy of such a domain wall in a three-, two-, and one-dimensional
(3D, 2D, 1D) spin system with N 3, N2, N spins is proportional to 2JS2N2, 2JS2N , and 2JS2,
respectively. The degeneracy of the Néel state with one domain wall is 3N , 2N , and N for 3D,
2D, and 1D. Hence, at any finite temperature T , the the free energy of the 1D system is domi-
nated by the entropy term −kBT lnN which diverges in the thermodynamic limit, because the
energy of the domain wall in 1D does not depend on the size of the system.

∆F = 2JS2 − kBT ln N → −∞, N → ∞.

Therefore, at any finite temperature, the 1D Néel state is instable with respect to the forma-
tion of domain walls and long-range order is not established [5]. A Heisenberg system can
delocalize the domain wall over its whole extension and reduce the energy of the domain wall
by another factor N . Neighbouring spins then include an angle of π

N
. In the classical limit

(S → ∞) domain walls are introduced into the Néel state by thermal fluctuations, in the quan-
tum limit (for small values of S), the terms S+

i S−

j in the Hamiltonian create domain walls even
at T = 0. These “zero point fluctuations” destroy the long-range order of the Heisenberg an-
tiferromagnetic chain (1D HAF) even at T = 0 [5]. For the 1D HAF with spins 1

2
at each site

we visualize this in Fig. 4 by applying the operators S+

i S−

j successively to the Néel state: We

i j

· · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ · · ·
S−

i S+

i+1

−→ · · · ↑ ↓ ↑ ↓ ↑ ↓
∣

∣

∣

∣

↓ ↑
∣

∣

∣

∣

↑ ↓ ↑ · · ·

S−

i−2S
+

i−1

−→ · · · ↑ ↓ ↑ ↓
∣

∣

∣

∣

↓ ↑ ↓ ↑
∣

∣

∣

∣

↑ ↓ ↑ · · ·

S−

i−4
S+

i−3

−→ · · · ↑ ↓
∣

∣

∣

∣

↓ ↑ ↓ ↑ ↓ ↑
∣

∣

∣

∣

↑ ↓ ↑ · · ·

Fig. 4: Successive application of S−

i S+

j to a long-range ordered Néel state of the 1D S = 1

2

Heisenberg antiferromagnet. The first operation generates two domain walls (marked by |), the
following “move” an individual domain wall, i.e. delocalize it. The delocalization creates a
region with inverted sublattice magnetisations between the two domain walls, compared to the
rest of the spin chain.

realize that successive application of the operators S−

i S+

j to the Néel state generates domain
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wall pairs, but also moves (delocalizes) single domain walls, and separates a pair of walls. In
an Ising system, the Néel state is the correct ground state. If we smoothly introduce an opera-
tor λ

∑

S+

i S−

j + S−

i S+

j by increasing λ from zero, the successive application of S−

i S+

j to the
Néel state simulates the increasing relative strength λ of the term S−

i S+

j . The resulting ground
state can be imagined as a superposition of the Néel state with all the new states created by the
perturbation. With growing λ, it contains more and more domain walls which are better and
better delocalized [5]. The delocalization of the domain walls lowers their energy, and at λ = 1

2

(HAF) the long-range order is completely destroyed at T = 0.
Obviously non-frustrating further-than-nearest neighbour interactions lead to an increase of
the domain wall energy and hence favour longe-range order. In contrast, frustrating interac-
tions lead to a higher degeneracy of the classical ground state, increase the ground state energy
and reduce the domain wall energy. Therefore frustrating interactions support the creation of
domain walls by thermal fluctuations as well as by quantum operators and thus promote macro-
scopic quantum ground states against long-range order.

We return to the pure Heisenberg chain, but now with spins 1 at each site. Here the transverse
operators create another type of domain wall as in the spin 1

2
chain, but again a domain wall pair

is generated by a single application of S+

i S−

j to the classical Néel state, and a second application
moves the domain wall (Fig. 5). Already for S = 3

2
the situation is different: Unique application

i j

· · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ · · ·
S−

i S+

i+1

−→ · · · ↑ ↓ ↑ ↓ ↑ ↓ 0 0 ↑ ↓ ↑ · · ·
S−

i−1
S+

i

−→ · · · ↑ ↓ ↑ ↓ ↑ 0 ↓ 0 ↑ ↓ ↑ · · ·
S−

i−2
S+

i−1

−→ · · · ↑ ↓ ↑ ↓ 0 ↑ ↓ 0 ↑ ↓ ↑ · · ·

Fig. 5: Successive application of operators S−

i S+

j to a long-range ordered state of a 1D S = 1
Heisenberg antiferromagnet. The quantization axis is chosen parallel to z, ↑, 0, ↓ denote local
spin states with Sz

i = +1, 0,−1. The first application of S−

i S+

j creates a domain wall pair in
the center of which we find two sites Sz

i i = 0. The following applications “move” a single
domain wall/Sz

i = 0 state, i.e. delocalize it. These domain walls destroy the long-range order,
but preserve the “hidden” antiferromagnetic order described in the text.

of S+

i S−

j decreases the sublattice magnetization, but does not yet create a domain wall pair.
These simple pictures visualize correctly that the classical limit is reached very fast. Indeed, the
classical ground state is a good starting point to understand antiferromagnetic spin 3

2
Heisenberg

chains (for the experts: higher order spin-wave expansions work well.)
Now we consider the ground states of the spin 1

2
and spin 1 chains in more detail. Both are

described by a macroscopic wave function which is translation invariant, i.e. has the same
period d as the lattice (d is the distance between two spins). It is characterized by the wave
vector k = 0 (identical to 2π

d
) like in the ferromagnetic case, while the wave vector of the Néel

state is kAF = π
d

. The 1D spin 1

2
and spin 1 HAF have no long-range order, neither with period
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2d nor with any other. The Heisenberg Hamiltonian commutes with the total spin operator
S2

tot (~Stot =
∑

i
~Si). The energy eigenstates are therefore eigenstates of the total spin operator.

The ground state of the HAF is an eigenstate with Stot = 0, i.e. a singlet with respect to the
total spin. The classical Néel state is neither an eigenstate of the Heisenberg Hamiltonian nor
of the total spin S2

tot, but only of Sz
tot. Nevertheless a snapshot of the macroscopic quantum

ground state of the spin 1

2
and spin 1 HAF-chains will resemble a the Néel state on short chain

pieces. This short-range order is described by the spin correlation function g(`) =< ~Si
~Si+` >.

In a long-range ordered state, g(`) remains finite for ` → ∞. The spin correlation function
of the spin 1

2
chain decays to zero with 1/`, that of the spin 1 chain even exponentially fast

(∝ exp(−`/ξ)/
√

`) with a correlation length of ξ ≈ 6d. The power law of the spin 1

2
chain

correlation can be interpreted as an infinitely long correlation length. Hence, surprisingly, the
short range order is much better developed in the case of spin 1

2
than that of spin 1. The

finite correlation length ξ of the spin 1 chain translates to an energy gap between ground state
and excited states in the spectrum of magnetic excitations, ∆E = 0.41J , while the excitation
spectrum of the spin 1

2
chain is gapless like that of the classical chain. This surprising difference

between spin 1

2
and spin 1 HAF chains was first postulated as a hypothesis by Haldane [6],

later confirmed by numerous analytical, numerical and experimental studies (for a review see
[4]). The difference between the two ground states originates in the different type of domain
walls: starting from the Ising limit and the Néel state, the spin 1 chain experiences a quantum
phase transition, a Bose-Einstein condensation of domain walls, already before the isotropic
Heisenberg case is reached. The spin 1

2
chain just reaches the critical point at the isotropic limit.

The domain walls in the Heisenberg ground state of the spin 1 chain are free, those in the ground
state of the spin 1

2
chain still form pairs but the distance between the pair spins may be infinite.

An excitation gap in a spin 1

2
chain is generated e.g. by infinitesimally small alternating ex-

change in addition to the Heisenberg exchange

H = J
∑

n

(1 + (−1)nε)~Sn
~Sn+1. (2)

In a real material alternating exchange can be produced by the crystal structure, e.g. alternating
larger and smaller distances between the spins. This alternating exchange breaks translation
symmetry, the ground state is now described by the wave vector k = π

d
but still Stot = 0. The

extreme limit of the alternating chain is ε = 1, the isolated dimer limit. In this limit the ground
state consists of isolated spin pairs, forming Spair = 0 pair states (perfect dimer ground state).
For 0 < ε < 1 the dimerised ground state can be imagined as a dimer ground state, where
quantum fluctuations lead to some singlet formation on the weak bond as well. In a virtual
series of snapshots of this ground state, “from time to time” the antisymmetric pair state is
formed across the weak exchange connection, i.e. the dimer bond “sometimes” flips from the
strong to the weak connection. In the Heisenberg limit ε = 0 the dimer bond flips forth and
back and leads to singlet formation on each connection with equal probability.
A similar picture correctly describes the wave function of the S = 1 HAF chain (Haldane
ground state): The spins 1 at each site are imagined as two spins 1

2
, strongly (ferromagnetically)

bound to a symmetric state at each site, but at the same time, each spin 1

2
forms an antisymmetric

pair state with a spin 1

2
at the neighbouring site. This does not require a flipping forth and back

of the singlet bond, the ground state is a “valence bond solid”, and the translation invariance of
this ground state (period d, wave vector k = 0) is immediately obvious. This Haldane ground
state is characterized by a “hidden” antiferromagnetic order: A local state Sz = −1 is followed
by arbitrarily many states Sz = 0 which then have to be followed by a state Sz = +1 [7, 8].
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T > TsP
u u u u u u u u u u u u

T < TsP
u u u u u uu u u u u up p p p p p p p p p p p p p p p p p p p p p p p p

Fig. 6: Spin-Peierls system, schematic: antiferromagnetic short range order (“formation of
singlets with probability 1

2
on all bonds”) and translation invariant spin distances above TsP ,

structural and magnetic dimerization below TsP . The magnetic dimerisation (formation of
singlet-pairs) is indicated by solid lines. The structural dimerisation is exaggerated. The mag-
netic dimerisation is not fully developed, “every now and then” one should imagine a singlet
on the weak bond, indicated by dotted lines.

Antiferromagnetic next-nearest neighbour (nnn) interaction in the S = 1

2
chain leads to a

dimerised ground state with an excitation gap above a critical strength of the nnn-interaction:

H = J
∑

n

(

~Sn
~Sn+1 + α~Sn

~Sn+2

)

. (3)

Nearest- and next-nearest neighbour antiferromagnetic exchange compete and lead to frustra-
tion. The nnn-interaction connects the spin 1

2
chain to so-called spin ladders (see e.g. [9, 10,

11]). In a spin-ladder, the spins are sitting at the connection point of the rung to the leg, and the
rungs and the leg-pieces symbolize the exchange bonds. Exchange between different ladders
in the crystal is negligible. The nnn-frustrated chain is equivalent to a two-leg spin ladder with
equal antiferromagnetic exchange J on the rungs and one diagonal, and αJ along the legs.
Spin ladders have been regarded as an entirely academic toy, until a series of Sr-cuprates was
found to be described by this model. The isotropic spin ladder with zero exchange on the di-
agonals and equal exchange on rungs and legs has a valence bond solid ground state, as the
Haldane ground state. Furthermore, isotropic spin ladders with an even number of legs have
a valence bond solid ground state with an excitation gap as the Haldane chain while those
with an odd number are gapless and similar to the S = 1

2
HAF chain. Experimental exam-

ples of two- and three-leg ladders are SrCu2O3 and Sr2Cu3O5. Hence spin ladders connect the
macroscopic quantum ground states of one-dimensional antiferromagnets smoothly to those on
two-dimensional lattices.
In contrast to the examples considered so far, where the coupling of the magnetic moments to the
lattice can be neglected or regarded as entirely static (alternating chain), magnetoelastic spin-
phonon coupling is an essential requirement for the spin-Peierls ground state. The spin-Peierls
chain is a Heisenberg antiferromagnetic chain of spins 1

2
on an elastic three-dimensional lattice.

The coupling to the three-dimensional lattice leads to a phase transition at finite temperatures,
into a magnetically and structurally dimerised phase (Fig. 6). The elastic energy required for
the distortion is provided by the spin system. For the magnetic subsystem, the dimerised ground
state with an energy gap to the first excitations is energetically favorable to the uniform ground
state. In the latter, zero point fluctuations increase the ground state energy with respect to a
long-range ordered ground state.
At T = 0 (and zero magnetic field), the spin-Peierls ground state is equivalent to that of an
alternating chain. Under certain conditions, the spin-phonon coupling can act as an effective an-
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tiferromagnetic next-nearest neighbour intrachain exchange. Moreover, above the spin-Peierls
transition temperature, the behaviour is expected to resemble that of a uniform S = 1

2
Heisen-

berg chain, with or without next-nearest neighbour intrachain interaction.
All these macroscopic quantum ground states have in common to be macroscopic singlet states,
Stot = 0, while Stot is not a “good” quantum number, i.e. is not defined or “sharp”, for the
classical long-range ordered Néel state.
Presence or absence of an excitation gap between the ground state and the lowest-lying ex-
citations, however, is not sufficient to characterize a quantum ground state. Excitation gaps
appear as well in “classical” antiferromagnets, due to anisotropic interactions or crystal-field
anisotropies. The anisotropy of the underlying lattice is transferred to the magnetic moment by
the spin-orbit coupling and makes the spins prefer a specific direction or plane with respect to
the crystallographic axes. Next, the determination of the relevant superexchange couplings in
a real material is highly non-trivial. Although calculations of the nearest neighbour exchange
appear to become more reliable, they are still extremely expensive and only performed in spe-
cial cases. Even then one is far away from a prediction of next-nearest neighbour couplings
or weaker disturbances which nevertheless may be essential for the character of the ground
state. The experimental determination is not less trivial. It requires the consideration of differ-
ent physical quantities, the comparison with different calculations, and is usually achieved in a
kind of consistency check. Before theories can be tested, interactions and anisotropies must be
known.
The requirement of good one-dimensionality and low anisotropy is met by very few materials.
This is the main reason why there is not a flood of good and established model systems, but
usually only very few for each class of macroscopic ground state and why a detailed character-
ization of these model systems is indispensable.

4 Spin Fluctuations

The excitation gap is a characteristic feature of some quantum ground states, but not of all.
Moreover, there are also classical ground states with an excitation gap due to anisotropies.
Which aspects distinguish macroscopic quantum ground states from classical ground states ?
An essential feature, comparable to a fingerprint, is the wave vector dependent entire spectrum
of the magnetic excitations of the respective ground state, and its dependence on the magnetic
field. The entire energy-momentum relation of the magnetic excitation spectrum can (only) be
investigated by inelastic neutron scattering. At special wave vectors (k = 0), ESR and light
scattering are possible, eventually one can derive a density of states using light scattering.
In a classical antiferromagnet, the excitations can be imagined as precessions of the magnetic
moments (which now can be regarded as vectors) about their ordering direction. Acoustic spin
waves at the antiferromagnetic Bragg peak kAF = π

d
correspond to precessions of both sublat-

tices in such a way, that the 180◦ angle between neighbouring magnetic moments is unchanged.
In a classical Heisenberg antiferromagnet, this does not cost any energy, and the excitation is
gapless. The acoustic spin waves with wave vectors k 6= kAF imply a phase difference be-
tween neighbouring spins, and consequently an angle different from 180◦. The energy ~ω(k)
of the spin wave increases with the phase difference kd, ~ω(k) = 2JS| sin(kd)|. There are two
degenerate branches, corresponding to the two precession directions. With the wave vector k
changing from the antiferromagnetic zone center π

d
to the zone boundary π

2d
, the ratio of the

transverse amplitudes of the two sublattices changes as well (the transverse amplitude defines
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Fig. 7: Excitation spectrum E(k) of the S = 1

2
HAF chain. The lines indicate the lower

and upper boundary of the continuum of magnetic excitations, which are pairs of free solitons
with respect to an antiferromagnetic arrangement. The pair has Stot = 0, 1. J denotes the
intrachain exchange, d the spin distance. A classical HAF chain has two degenerate branches
with E(k) = 2J | sin(kd)|, polarized transverse to the ordering direction. Hence the lower
boundary of the excitation spectrum of the spin 1

2
HAF chain appears “classical”, apart from a

different maximum value at k = π
2d

, 3π
2d

.

the cone angle of the precession in the respective sublattice). At the antiferromagnetic zone cen-
ter the ratio of the transverse amplitudes is −1, at the zone boundary 0 [1]. Classical spin-waves
in antiferromagnets are treated in [12, 13, 14].

In a quantum antiferromagnetic chain, i.e. in a one-dimensional antiferromagnet with small
spins, S = 1

2
(S = 1), such a precession is not possible because there are only two (three)

possible states Sz with respect to the ordering direction z which defines the quantization axis.
Quantum excitations therefore are of an entirely different nature. The elementary excitation in
the uniform S = 1

2
HAF chain is a delocalized antiferromagnetic domain wall (soliton), which

creates a 180◦ phase change of the ground state wave function between left and right half of
the chain, i.e. corresponds to breaking one “bond”. The dispersion relation of the soliton is
~ω = π

2
J | sin(kd)|. The excitation spectrum consists of pairs of free (non-interacting) solitons.

Two solitons with arbitrary momenta k1, k2 can be combined (k = k1 + k2, E(k) = E1(k1) +
E2(k2)), hence the spectrum is a continuum reaching from E(k) = π

2
J | sin(kd)| to E(k) =

πJ | sin(kd
2

)| (Fig.7) [15]. The domain wall pairs carry spin 0 or 1. The lower edge of the
excitation spectrum corresponds to the classical spin wave dispersion relation, multiplied by
the renormalisation factor π

2
. Indeed there is a certain similarity between domain wall pairs and

classical spin waves, both are only weak perturbations of the antiferromagnetic order. Sloppy
speaking, the excitation of a domain wall pair corresponds to breaking a singlet bond which is
“already flipping back and forth between two positions” in the ground state. Therefore there
is no threshold energy for the excitations, the spectrum begins at zero energy. The domain
wall continuum was found experimentally by inelastic neutron scattering on KCuF3 [3]. The
left side of Fig. 8 displays the dispersion of the ideal one-dimensional S = 1

2
Heisenberg

antiferromagnet together with a curve in the energy-momentum space. The right hand side
shows the number of scattered neutrons measured by the time-of-flight technique, which have
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Fig. 8: Excitation spectrum of the antiferromagnetic S = 1

2
Heisenberg chain KCuF3 [3], cf.

text.

experienced an energy and momentum transfer along this curve. The solid line is the expected
intensity of an ideal one-dimensional S = 1

2
-Heisenberg antiferromagnet. The intensity of the

continuum is clearly visible and proves the quantum character of the excitations.
The excitations of the strongly nnn-frustrated chain are pairs of free domain walls with respect
to the dimer order. A domain wall pair corresponds to breaking one singlet (dimer) bond into
a triplet state Stot = 1. There is no flipping of dimer bonds in the ground state, and breaking
the singlet costs energy. Therefore the continuous excitation spectrum is gapped. Otherwise it
looks very similar to that of the pure S = 1

2
Heisenberg antiferromagnet.

The excitations of the alternating chain are bound pairs of mutually attractive domain walls: If
the domain walls move apart, the singlet bonds in between are formed on the weak exchange
bond instead of the strong one. This increases the energy of the excited pair state, hence cor-
responds to a binding energy of the two domain walls. The excitation continuum is formed of
pairs of such bound domain wall pairs. It is separated from the elementary bound domain wall
pair by a second energy gap, Fig. 9.
In the spin 1 Heisenberg antiferromagnetic chain the elementary excitation again corresponds
to breaking one of the “valence bonds”. This creates one soliton with respect to the “hidden”
antiferromagnetic order. The dispersion has the period 2π

d
, corresponding to the wave vector

of the ground state wave function (cf. the alternating spin 1

2
chain with the period π

d
of the

dispersion and ground state wave function). The continuum is formed by states formed of two,
three etc. of the elementary solitons, leading to a spectrum as schematically shown in Fig. 10.
Close to kAF = π

d
, the elementary excitation is isolated from the continua, and the three-soliton

excitation has a lower energy than two-soliton excitations. Fig. 11 displays the dispersion of the
elementary soliton of the spin 1 Heisenberg antiferromagnet NENP (Ni(C2D8N2)2NO2(ClO4)),
measured by inelastic neutron scattering on a triple axis spectrometer [16]. So far, none of the
continua has been found experimentally.
Like in the alternating spin 1

2
chain, a magnetic excitation of the spin-Peierls chain breaks a

dimer bond. This threshold energy needs to be overcome, thus the excitation spectrum displays
a gap. Breaking a dimer bond creates two domain walls which attract each other. In the spin-
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Fig. 9: Excitation spectrum E(k) of the alternating and the spin-Peierls chain. The green
lines indicate the lower and upper boundary of the continuum. The elementary triplet branch
is shown as a red line. J denotes the average intrachain exchange, d the spin distance. The
size of the excitation gap depends on the alternation parameter (alternating chain) and the
spin-phonon coupling (spin-Peierls systems), respectively.

Fig. 10: Scheme of the magnetic excitation spectrum of the S = 1 Heisenberg antiferromagnetic
chain. The red line indicates the isolated elementary triplet excitations, which are domain walls
(solitons) with respect to the hidden antiferromagnetic order. The green lines display the lower
and upper edge of the continuum of pair excitations of the elementary soliton. The blue line
shows the lower edge of the three-soliton excitation continuum. The energies are given in units
of the superexchange J . kAF = π

d
denotes the antiferromagnetic zone center. The elementary

soliton branch has vanishing spectral weight for k < π
2d

.

Peierls chain, the attractive potential is created by the three-dimensional elastic energy and the
alternating exchange on the dimerised lattice: The separation of two domain walls belonging to
one pair leads to a mismatch of the dimerisation with respect to the neighbouring chains. Keep-
ing the separation distance short limits the mismatch and lowers the energy of the excitation.
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Fig. 11: Dispersion of the elementary soliton triplet of the S = 1 Heisenberg antiferromagnetic
chain NENP. The picture displays the number of scattered neutrons in dependence of energy at
different momentum transfers along the chain direction [16].

The elementary excitation of the spin-Peierls chain is therefore a bound domain wall pair with
(Stot = 1) which corresponds to a bound soliton–anti-soliton pair. The continuum is formed by
pairs of the elementary triplet (fig.9), i.e. by free pairs of bound domain wall pairs.

The left hand side of Fig. 12 displays the triplet dispersion and the lower boundary of the
continuum of the spin-Peierls system CuGeO3, measured by inelastic neutron scattering on
a triple axis spectrometer [17]. The triplet has a considerably lower energy than the lower
continuum boundary. The right hand side of Fig. 12 displays the entire excitation spectrum
of CuGeO3, measured by neutron time-of-flight spectroscopy [18]. The triplet branch and the
lower boundary of the continuum are not resolved in this measurement.

A common feature of all quantum excitation spectra is the existence of a continuum and the
isotropic polarization of the excitations, arising from the three components of the Stot = 1
state. Classical spin waves are only twofold degenerate, with a polarization transverse to the
ordering direction. These properties can be used to distinguish quantum gaps from anisotropy
gaps: In a magnetic field, a quantum gap state with Stot = 1 will display the threefold splitting
according to gµBHSz

tot and independent of J , while the energy of a classical spin-wave is
barely influenced by magnetic fields gµBH << J . Fig. 13 displays the field dependent triplet
splitting at k = kAF of the spin-Peierls system CuGeO3 (left) [19] and the spin 1 Heisenberg
antiferromagnetic chain NENP (right) [20, 21], measured by inelastic neutron scattering with
triple axis spectrometers. In the right panel the open circles denote the data obtained by neutron
scattering (S(k, ω)), the other symbols indicate gap-energies that were derived from different
physical quantities. The triplet of NENP is already split at H = 0 by a crystal field anisotropy.
The observation of three and not just two excited states, and the strong field dependence of the
excited states, which correspond to an anisotropy-split triplet, evidence the quantum character
of the excitations.
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Fig. 12: Dispersion of the triplet and continuum of the magnetic excitations of the spin-Peierls
systems CuGeO3 in its dimerised phase. Left: separation of the triplet (intense excitation at 2-
4meV) and the continuum (weak hill above 5meV), measured by neutron scattering with a triple
axis spectrometer, in energy scans with fixed momentum transfer [17]. Right panel: entire
excitation spectrum, measured by neutron time-of-flight spectroscopy (here the triplet is not
resolved from the lower boundary of the continuum). The neutron intensity is color coded over
energy (ordinate) and momentum (abscissa) [18].

Fig. 13: Field dependent splitting of the excited triplets at kAF . Left panel: spin-Peierls system
CuGeO3 [19], right panel: S = 1 Heisenberg antiferromagnetic chain NENP [20, 21].

5 Spin Fluctuations in a Magnetic Field

The threefold splitting of the excitation gap of a quantum spin chain imposes the question what
happens at the field strength where the lowest excitation branch hits the ground state. Above
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Fig. 14: Magnetization of the classical and the quantum S = 1

2
Heisenberg antiferromagnetic

chain. The S = 1

2
-case is shown as a “caricature” with infinitely sharp domain walls (dotted).

this critical field the ground state is magnetized, but how does the magnetized ground state look
like and how its excitation spectrum ? We start again with the classical antiferromagnetic chain
in comparison with the uniform S = 1

2
Heisenberg antiferromagnetic chain (Fig. 14).

Magnetization in a classical Heisenberg antiferromagnetic chain is generated in the following
way [22]: At infinitesimally small magnetic field, all magnetic moments flop into the plane
perpendicular to the magnetic field and then are continuously tilted towards the field. This
allows the moments to keep an almost antiparallel arrangement as long as possible. The wave
vector k = π

d
which describes the periodicity of the ground state does not change until the

saturation field is reached, where it drops to k = 0 discontinuously. The saturated k = 0 state
has all moments parallel to the field.

Such a continuous tilting is not possible in an antiferromagnetic spin chain of small spin values.
Once more the domain walls or solitons are the essential elements which help to understand
the magnetization process. In the spin 1

2
HAF chain, a soliton constitutes a delocalized “broken

bond” between two adjacent spins. For a moment we picture the soliton in the localized carica-
ture, where it leads to two parallel spins to the left and right of the center of the domain wall.
If these spins are parallel to the magnetic field, the magnetization of the entire spin chain is
increased from gµBSz

tot = 0 to 1

2
gµB. This holds also for a delocalised domain wall. Creating

more and more of these solitons with favourable orientation with respect to the magnetic field
increases the magnetization, until all spins are in the same Sz-state (saturation). Our domain
wall picture explains why the antiferromagnetic polarisation (the staggered magnetization) of
a quantum antiferromagnet in a magnetic field is parallel to the field direction and not per-
pendicular as in the classical case. Next we must take into account that the soliton is not an
infinitely sharp domain wall but delocalized. The delocalization is produced by the transverse
parts S+

n S−

n+1 of the Hamiltonian (z is chosen along the field direction). The Sz
nSz

n+1 parts
then lead to a repulsion of the domain wall centers and the final arrangement displays equal
spaces between the soliton centers. This arrangement is not static, but must be imagined as a
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Fig. 15: Excitation spectrum of the S = 1

2
HAF chain in a magnetic field in comparison to

that of a classical spin chain [23]. q = 0 corresponds to the antiferromagnetic zone center
k = π

d
, q = π to the lattice Brillouin zone center k = 0. The curves in the right hand panel

correspond to excitations polarized parallel to the magnetic field if q = (π) is identified with the
antiferromagnetic zone center k = π

d
, and to polarization perpendicular to the field if q = (π)

is identified with k = 0. Only the lower boundary of the continuum is shown in the S = 1

2
case.

h denotes the magnetic field in reduced units, h = 2 is the saturation field. The energies are
normalized to the intrachain interaction J per bond.

floating pattern, with fixed distance between the soliton centers. The distance depends on the
magnetization and vice versa, and in general is incommensurate. This incommensurate float-
ing superstructure corresponds to gapless excitations at field dependent incommensurate wave
vectors k ∝ m [23]. There are no Bragg peaks, because the arrangement is not static. But at
those wave vectors where the Bragg peaks would appear, if the arrangement were static, the
excitation spectrum becomes gapless. Figure 15 illustrates the magnetic field dependence of
the classical Heisenberg antiferromagnetic chain and the S = 1

2
chain. Details concerning the

excitation spectrum of the uniform S = 1

2
Heisenberg antiferromagnetic chain in a magnetic

field can be found in [15, 24, 23, 25]. These incommensurate soft modes are a characteristic
quantum feature of the S = 1

2
HAF chain. Another characteristic difference can be observed

at the antiferromagnetic zone boundary (q = π
2

in figure 15): At this wave vector the classical
spin wave energy does not change at all, while in the quantum case, the lower boundary of the
continuum splits. One of the two branches is shown in Figure 15, the second branch is given by
the mirror image of the displayed dispersion at the axis q = π

2
.

Figure 16 displays energy scans at the antiferromagnetic zone center k = π
2d

(q = π
2
) of

Cs2CuCl4, measured by inelastic neutron scattering on a triple axis spectrometer [26]. Cs2CuCl4
is a S = 1

2
Heisenberg antiferromagnet with considerably smaller superexchange than KCuF3.

The magnetic fields available in combination with neutron scattering allow to create a signifi-
cant magnetization and a measurable splitting of the lower continuum boundary. The splitting
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Fig. 16: Energy scans at the antiferromagnetic zone boundary of Cs2CuCl4, at different mag-
netic fields. The data were taken using inelastic neutron scattering with a triple axis spectrom-
eter. A classical spin chain would show no visible change below the saturation field [26].

of the lower continuum boundary is clearly visible in the figure. A classical spin chain would
show no change below the saturation field.
Figure 17 shows field dependent incommensurate soft-modes of the S = 1

2
-Heisenberg antifer-

romagnetic chain Cu-benzoate, measured by inelastic neutron scattering on a triple axis spec-
trometer [27]. The figure displays k-scans along the chain direction at fixed energy transfer.
The left panel indicates the scan in the energy-momentum space (dotted line close to q̃/π = 1),
the right panel shows the number of scattered neutrons for this scan versus wave vector. Ideally
one should see two maxima which shift away from q̃/π = 1 with increasing magnetic field,
plus a central peak at all fields. The additional splitting observed at intermediate fields is due
to an anisotropy of the g-tensor which changes orientation from one site to the next within the
spin chain. However, a classical chain would not show visible changes at these small magnetic
fields.
One might expect that a similar soliton picture will lead to incommensurate gapless excitations
in the high-field phases of the spin-Peierls system, the Haldane chain and other gapped quan-
tum ground states. However, it is still under discussion, which ground states evolve gapless
incommensurate excitations in the high-field phase, and whether there will be at least excita-
tion minima at incommensurate wave vectors if the excitation spectrum remains gapped. As
an example we consider the spin-Peierls system CuGeO3 in its high-field phase. The coupling
to the three-dimensional lattice and a sizable magnetic interchain interaction (CuGeO3 is not
very one-dimensional but has superexchange interactions with a ratio of 1:10:100 along the
crystallographic directions a, b, c [28]) lead to static long-range order of the magnetic domain
wall pattern. Since the magnetic domain walls are simultaneously structural domain walls in
the spin-Peierls system, both magnetic and structural superlattice peaks can be observed, and
have been detected by neutron and synchrotron diffraction [29, 30, 31]. Figure 18 displays a
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Fig. 17: Field dependent incommensurate magnetic excitations of the S = 1

2
-Heisenberg anti-

ferromagnetic chain Cu-benzoate. k-scans at small fixed energy transfer and different magnetic
fields measured with a triple axis neutron spectrometer [27].

sketch of the magnetic and structural modulation of an individual spin chain in the high-field
phase.
Next we consider magnetic excitations in the high-field phase of a spin-Peierls system. Cre-

Fig. 18: Sketch of the magnetic and structural domain wall pattern in the high-field phase of
spin-Peierls systems. The structural dimerisation is largely exaggerated.

ation and annihilation of a favourably oriented domain wall pair increases and lowers the mag-
netization by ∆Stot = 1, respectively. In the infinitely long chain, the magnetization change is
infinitely small, and changes the distance of the domain walls by an infinitesimal amount, thus
∆k ∝ m = ∆Stot/N . Such an excited domain wall pair resembles a transverse spin wave. If
this excitation happened on a immobile lattice (as eg. in case of the alternating chain), we would
expect a dispersion with vanishing energy at the field dependent incommensurate k ∝ m: At the
critical field one branch of the excited triplet Stot = 1 really crosses the ground state level, and
at each higher field a dispersion branch with higher Stot crosses the ground state. In CuGeO3

the spins couple to hard (i.e. fast) phonons. The lattice “immediately” reacts to a magnetic exci-
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tation and adapts to the new domain wall number [32, 33]. This “giving in” of the elastic lattice
corresponds to matrix elements between ground and excited state which lead to a repulsion of
the levels, an “anti-crossing”. Therefore the energy gap never closes, neither at the critical field
nor above.
Figure 19 displays the magnetic field dependence of the lowest magnetic excitation with wave
vector kAF [21]. The two branches at H > Hc ≈ 12.5T correspond to excitations with ∆S =
±1. The number of scattered neutrons is represented by a colour scale.

Fig. 19: Lowest magnetic excitations at kAF of the spin-Peierls system CuGeO3 in dependence
of the magnetic field, measured with a triple axis neutron spectrometer. The colour indicates the
number of scattered neutrons in dependence of the magnetic field (abscissa) and energy transfer
(ordinate) [21].

Fig. 20: Magnetic excitations at B = 14.5 T in the high-field phase of CuGeO3, close to the
incommensurate magnetic superlattice peaks. The dispersion is measured along (1 1

2
`) with a

triple axis neutron spectrometer. ∆± indicate the transverse, ∆IC the phason excitation. The
solid and broken lines indicate a dispersion with adapted spin wave velocities and B = 0 spin
wave velocities, respectively [34].

In addition to the transverse excitations above (sometimes called “amplitudons”), the phase
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of the incommensurate magneto-elastic superlattice can oscillate, i.e. the domain wall cen-
ters oscillate collectively around their equilibrium position [35, 36, 37, 38]. This excitation
is called phason. It involves a longitudinal amplitude of the sublattice magnetization near the
domain wall center. The theory expects a dispersive phason, with zero energy at the incom-
mensurate wave vector (for the experts: the phason energy is expected to vanish for non-elastic
lattices, for elastic lattices with spin-phonon coupling to slow phonons and for elastic lattices
with frequency-independent spin-phonon coupling to Einstein-phonons). Experimentally, the
phason energy is known to be finite [34]. The finite energy may be related to a dispersive spin-
phonon coupling, and/or pinning of the soliton lattice to crystal imperfections. Figure 20 shows
the dispersion of all three high-field excitations of CuGeO3 close to the incommensurate mag-
netic superlattice peaks, (1 1

2

1

2
± δ) (δ ≈ 0.015 at 14.5 T).

The spin 1 Heisenberg antiferromagnetic chain NENP undergoes a phase transition into a high-
field phase as well. Although theory expects incommensurate minima of the dispersion or
incommensurate soft modes in the high-field phase, no signs of incommensurability were found
[21], neither in NENP, nor in any other spin 1 chain. Regarding the materials investigated so
far, it is not clear, whether the incommensurability is suppressed by crystal field anisotropies
or alternating orientation of the g-tensor, or whether the lack of incommensurate modes is a
fundamental property of spin 1 Heisenberg antiferromagnetic chains in the field region directly
above the critical field.
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