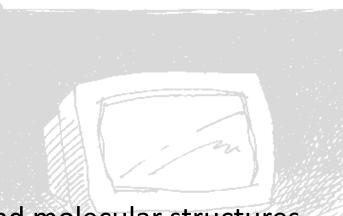


Science & Technology Facilities Council

File Run System

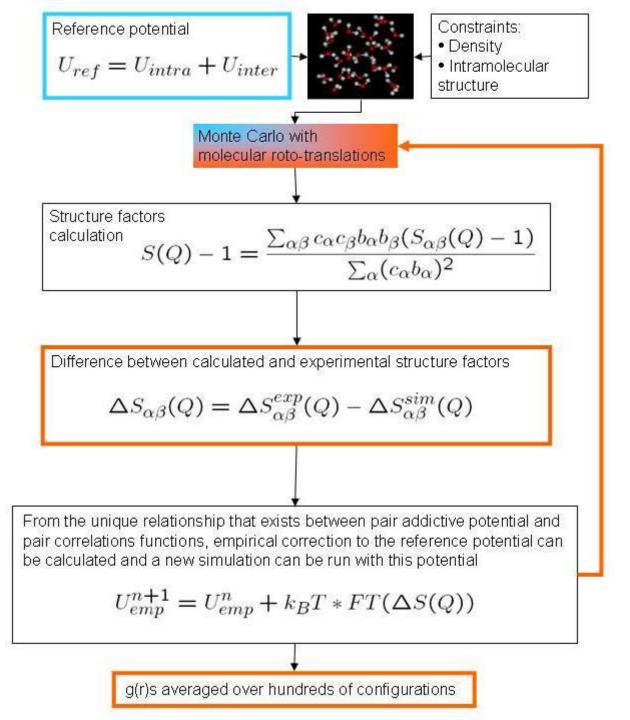
Gudrun Input File: C:\GudrunDT\Run\ace\dcs_sam2_Db_D.dat

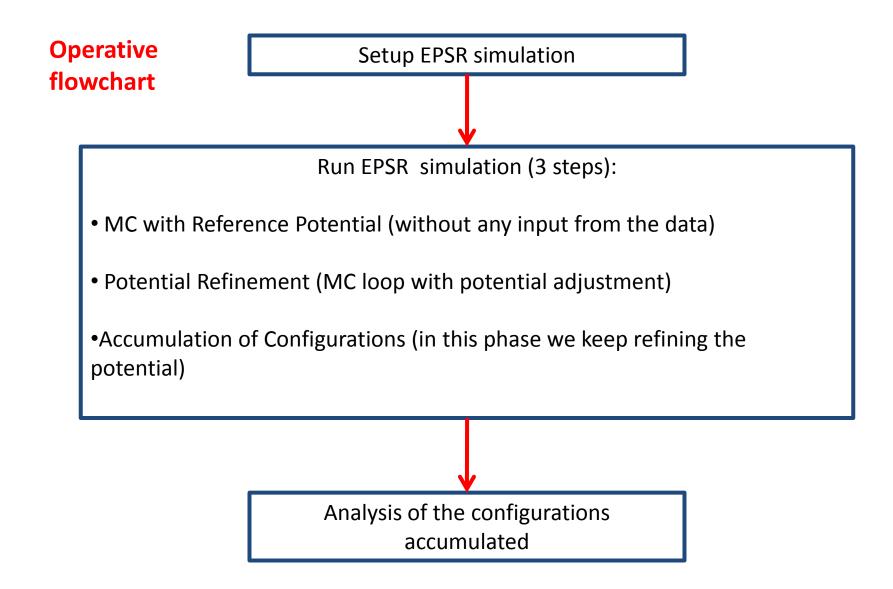
INSTRUMENT BEAM VANADIUM SAMPLE BACKGROUND SAMPLE CONTAINER 1	0 Sample temperature (for Placzek corre
Instrument name SANDALS 💌 Gudrun input file directory CAGudrunDTRunAace Brows	
Raw file directory C:\GudrunDT\Data\SLS\ace Browse Raw file type raw 💌	0.2 Top hat width (1/Å) for cleaning up Fo 0.76 Minimum radius for Fourier Transfo 50.0 Qmax for Lorch window function [1/]
Detector calibration file name SANDALS_065_detector.dat Browse	0 0 0 0 to finish specifying wavele
User table column number for phi values 4 Groups file name groups_18_clean.dat Brows	e 0.0 0.0 1.0 Exponential amplitude, deca
Deadtime constants file name SLSdeadtime.cor	
Spectrum number(s) for incident beam monitor 1	CONTAINER 1 {
Wavelength range [Å] for monitor normalisation 0 0	2 1 Number of can data files and period SLS39534.RAW Container 1 data files
Spectrum number(s) for transmission monitor 2	SLS39542.RAW Container 1 data files Ti 0 7.16 Container 1 atomic compositi
Incident monitor quiet count constant 0.0006 Transmission monitor quiet count constant 0.0006	Zr 0 3.438 Container 1 atomic composi * 0 0 * 0 0 to specify end of composition
Channel numbers for spike analysis 0 0 Spike analysis acceptance factor 5	0.05 0.143 Container 1 inner and outer
Wavelength range to use [Å] and step size 0.05 4.0 0.1	<u> </u>
No. of smooths on monitor and vanadium 100 25 C:\GudrunDT\GudrunGUI>'c:\Pro	gram Files\java\jre1.5.0_10\bin\java" -classpath .\
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her	
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0	RUN works for SANDALS,
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0 Single atom scattering to be subtracted? Statistical weigt	
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0 Single atom scattering to be subtracted? Statistical weigh Incident flight path [m] 11.016 Spectrum number to output diagnostic files 0	, D4c and many others
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0 Single atom scattering to be subtracted? Statistical weigł Incident flight path [m] 11.016 Spectrum number to output diagnostic files 0 Outp	, D4c and many others outs a Differential Cross
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0 Single atom scattering to be subtracted? Statistical weigł Incident flight path [m] 11.016 Spectrum number to output diagnostic files 0 Outp	, D4c and many others
Q-range [1/Å] for final DCS 0.025 50.0 0.05 Press her Groups acceptance factor 0.4 Merge power 0 Single atom scattering to be subtracted? Statistical weigł Incident flight path [m] 11.016 Spectrum number to output diagnostic files 0 Outp	, D4c and many others outs a Differential Cross

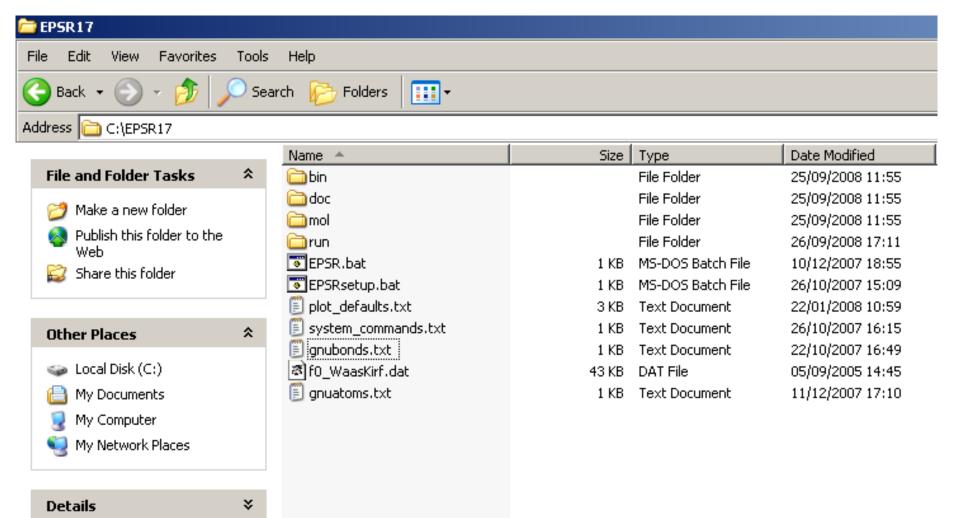

Empirical Potential Structure Refinement

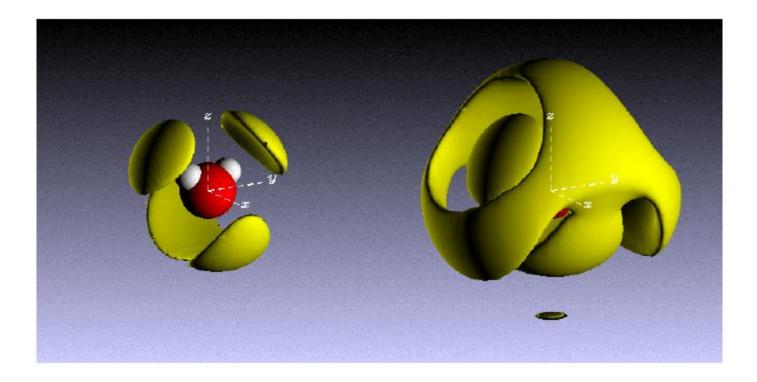
A computational method for building atomic and molecular structural models of disordered materials, such as liquids and glasses, that are consistent with available structural data and known physical/chemical constraints.

Three main ingredients:


- (1) Experimental data
- (2) Monte Carlo computer simulation
- (3) Known constraints such as density and molecular structures


One principal output: A 3-dimensional structural model


Logic flowchart



Getting started...

- 1) Google "EPSR neutron"
- Download program, manual and examples from <u>www.isis.rl.ac.uk\disorderedmaterials</u> in C:\

- EPSRshell

A User's Guide

by

Alan K Soper

Read at least the first 3 chapters...

1. Overview: modelling the structure of a liquid or glass.

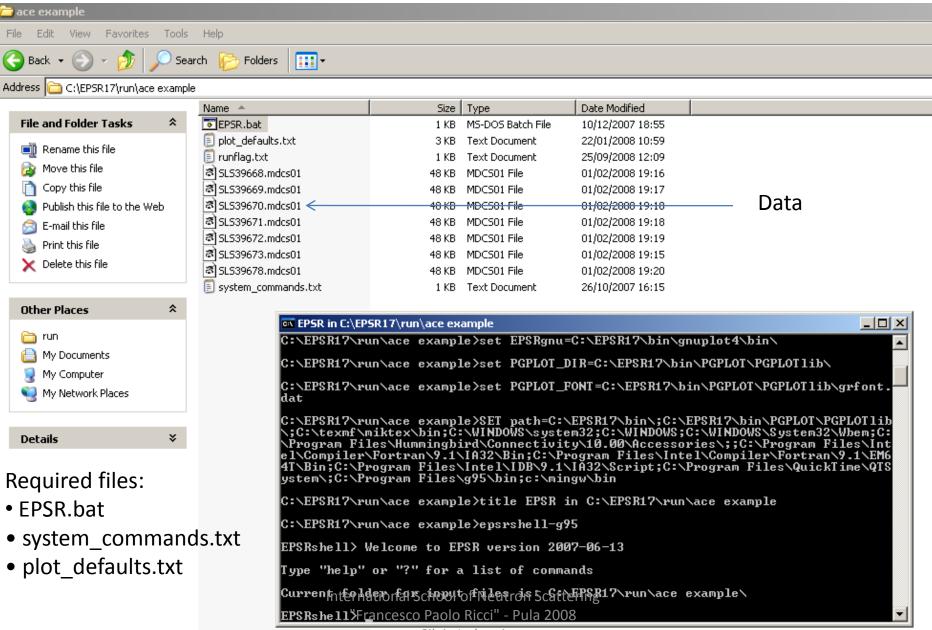
2. Empirical Potential Structure Refinement.

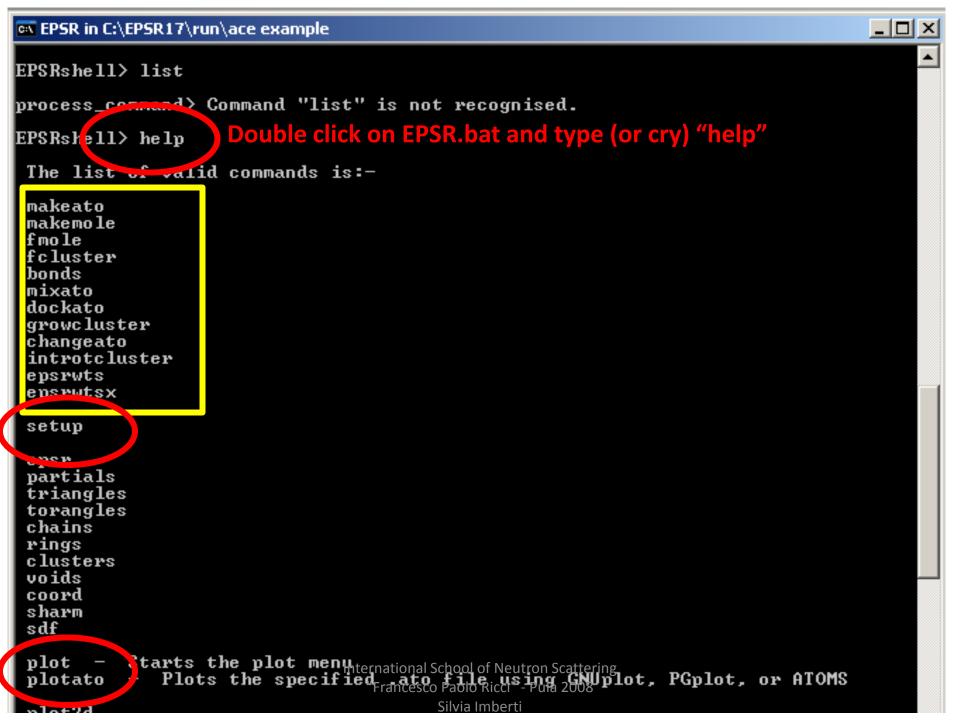
- 2.1. Fundamentals
- 2.2. Defining the reference interatomic potential.
- 2.3. Defining the empirical potential.
- 2.4. The uniform atom distribution.
- 2.5. Running the simulation.
- 2.6. Refining the empirical potential introducing the data.

3. EPSRshell.

- 3.1. Introduction EPSRshell menus.
- 3.2. File naming conventions.
- 3.3. The Main menu.
- 3.4. Script operation.
- 3.5. The setup menus.
- 3.6. The plot menu.
- 3.7. Plotting the box of atoms **splotato**.

Then jump to the exercises or even to your own data...

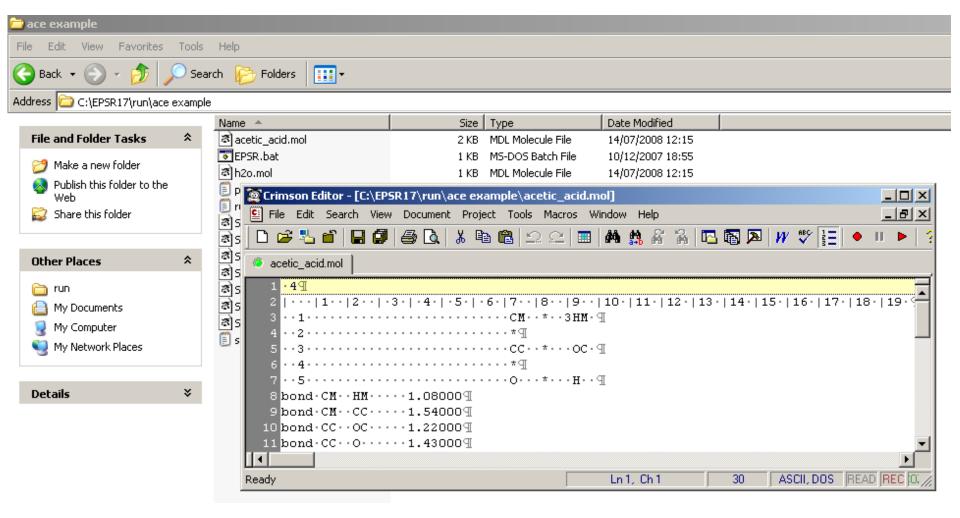

9. Appendices


- 9.1. Files you need to run EPSRshell
- 9.2. Example of system_commands.txt
- 9.3. Setting up EPSR to run under Windows

8. Some examples and exercises

- 8.1. Single component Lennard-Jonesium.
- 8.2. Two component charged Lennard-Jonesium NaCl.
- 8.3. Amorphous silica
- 8.4. Water.
- 8.5. Methanol.
- 8.6. Benzene.
- 8.7. Plot the spatial density function for methanol
- 8.8. Now try it with your own datasets!

Setup a working folder...



Setup a simulation box...

4. Preparing for an EPSR simulation.

- 4.1. Building the .ATO file single atom molecules makeato.
- 4.2. Making a molecule makeato.
- 4.3. Making a molecule, role of the template file makemole.
- 4.4. Running **fmole** to generate molecular coordinates.
- 4.5. Calculating intra-molecular atomic distances bonds.
- 4.6. Modifying, mixing, growing, randomising the .ato file changeato, mixato, growcluster, introtcluster.
- 4.7. Running fcluster to generate an initial configuration of molecules.
- 4.8. Building complex molecules and structures dockato.

	4		2	3	4	I	5	I	6	17	8	9
	1	1 -	- 1	-		1	-	1		СМ	*	3HM
	2 3									* CC	*	OC
	3									*	X	
	5									0	*	Н
/	bond C	M H	M		1.0	800	0					
	bond C	M (CC	-	1.5	400	0					
	bond C	C (C		1.2	200	0				•	fthe
	bond C	C (C		1.4	300	0				d	own
	bond C) I	ł	(0.9	600	0				u	
	angle	ΗM	СМ	ΗM		109	9.2	280	00		ex	kam
	angle	ΗM	СМ	CC		109	9.2	280	00		a	าd d
	angle	СМ	CC	OC		120).C	00	00			
	angle	OC	CC	0		120).C	00	00		•	We
	angle	СМ	CC	0		120).C	00	00		di	irect
	angle	CC	0	Η		104	1.5	500	00	/		
	rot	5	1									
	potent	ial	СМ	0	.39	000)E+	-00		0.37	7000	E+01
	potent	ial	ΗM	0	. 65	000)E-	-01		0.18	3000	E+01
	potent	ial	CC		.39							E+01
	potent	ial	OC	0	.58	500)E+	-00		0.30	830	E+01
	potent	ial	0		.58							E+01
	potent	ial	Η	0	.00	000)E+	-00		0.00	000	E+00
	temper			0.30			3+0)3				
	vibtem	-).65									
	densit	.у (0.10	020)E+	00						

1.00000

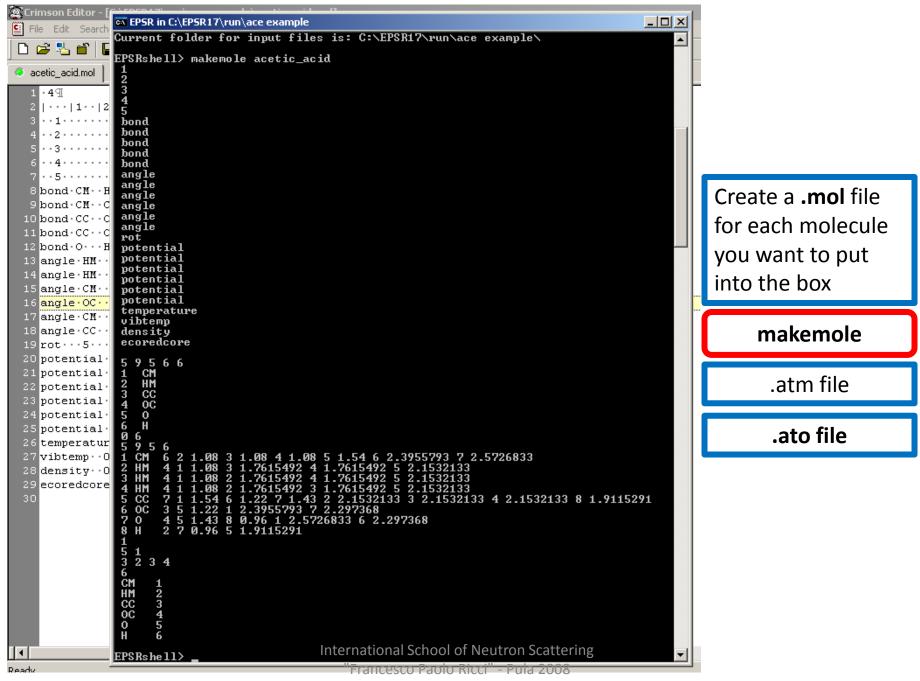
ecoredcore

1	8 *	9 3HM	10
	*	OC	
	*	Н	J

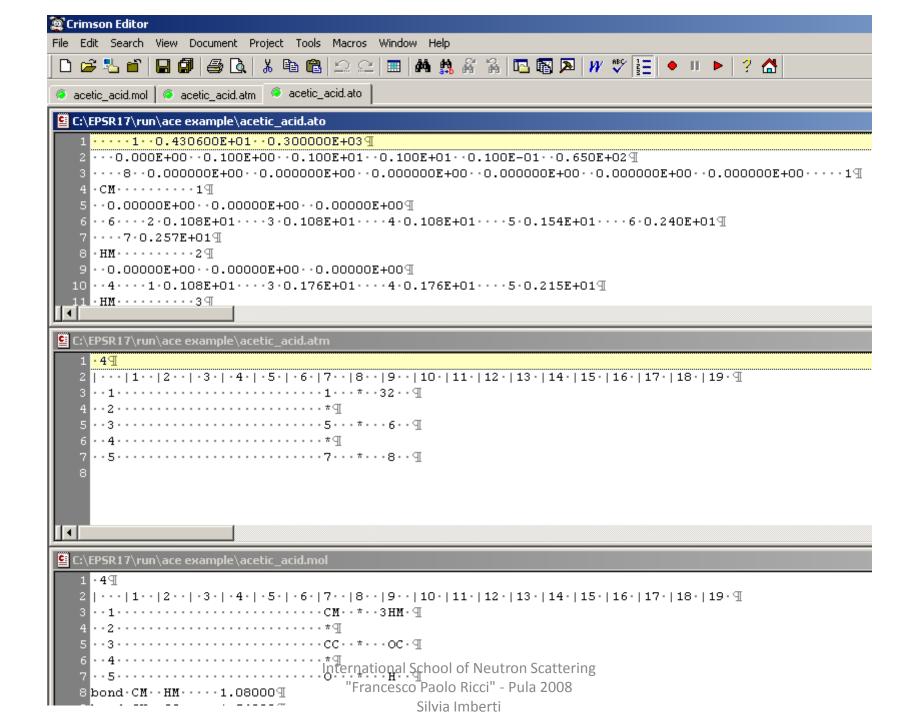
14 |15 |16 |17 |18 |19

e molecule is complicated, I usually nload the .pdb file, read it with (for ple) Jmol and copy bonds, angles dihedral angles

might think of having EPSR to read tly a .pdb file at some point...

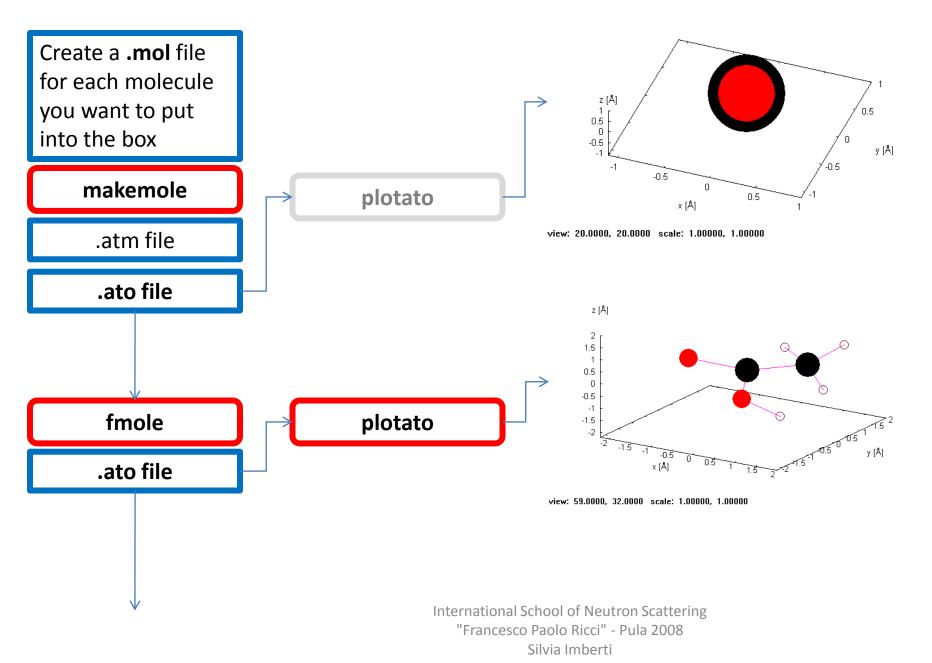

						-
ential	СМ	0.39000E+00	0.37000E+01	0.12000E+02	0.00000E+00	С
ential	НМ	0.65000E-01	0.18000E+01	0.20000E+01	0.00000E+00	Η
ential	СС	0.39000E+00	0.37000E+01	0.12000E+02	0.29700E+00	С
ential	OC	0.58500E+00	0.30830E+01	0.16000E+02	-0.72800E+00	0
ential	0	0.58500E+00	0.30830E+01	0.16000E+02	-0.72800E+00	0
ential	Н	0.00000E+00	0.00000E+00	0.20000E+01	0.43100E+00	Η
peratui	re	0.300000E+03				

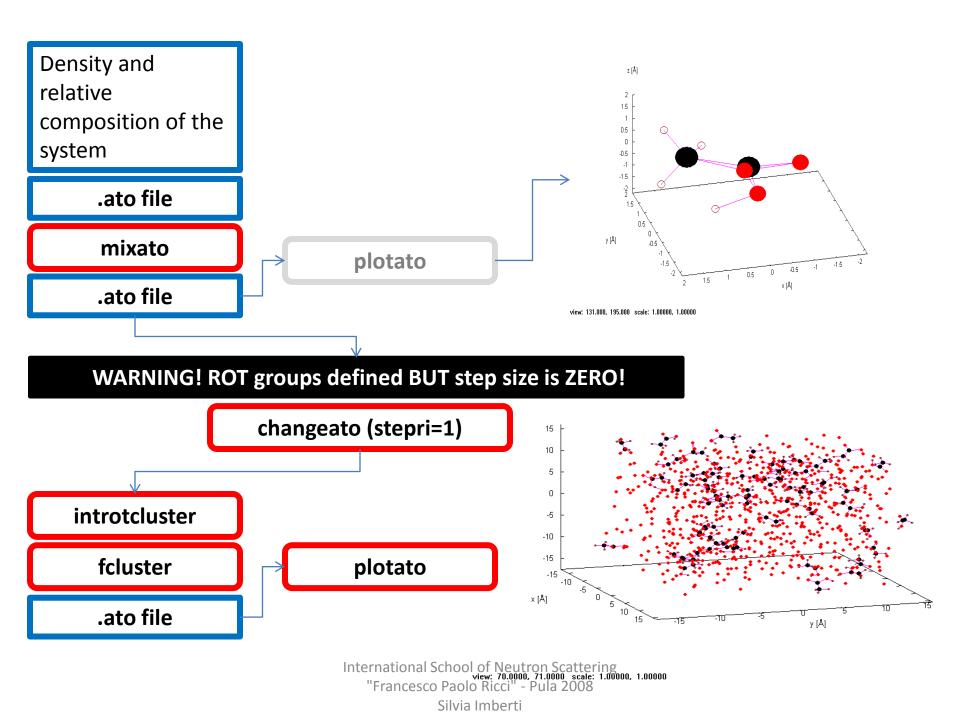
3.00000 International School of Neutron Scattering


"Francesco Paolo Ricci" - Pula 2008

Silvia Imberti

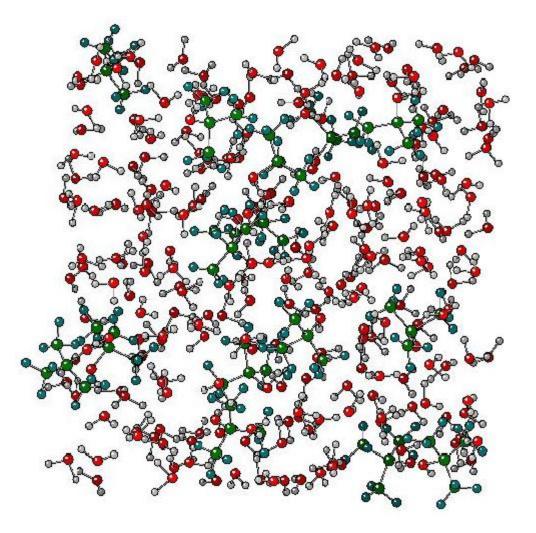

4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 CM * 3HM
2 * 3 CC * OC
4 *
5 O * H
bond CM HM 1.08000
bond CM CC 1.54000
bond CC OC 1.22000 The Lennard Jones potential and charges can
bond CC 0 1.43000 searched in the literature and particularly
angle HM CM HM 109.28000 useful are the following references:
angle HM CM CC 109.28000 angle CM CC OC 120.00000
angle OC CC 0 120.00000 ()
angle CM CC 0 120.00000
angle CC O H 104.50000
rot. 5 1
potential CM 0.39000E+00 0.37000E+01 0.12000E+02 0.00000E+00 C
potential HM 0.65000E-01 0.18000E+01 0.20000E+01 0.00000E+00 H
potential CC 0.39000E+00 0.37000E+01 0.12000E+02 0.29700E+00 C
potential OC 0.58500E+00 0.30830E+01 0.16000E+02 -0.72800E+00 O
potential O 0.58500E+00 0.30830E+01 0.16000E+02 -0.72800E+00 O
potential H 0.00000E+00 0.00000E+00 0.20000E+01 0.43100E+00 H
vibtemp 0.650000E+02
density 0.100200E+00
ecoredcore 1.00000 3.00000 International School of Neutron Scattering
"Francesco Paolo Ricci" - Pula 2008
Silvia Imberti

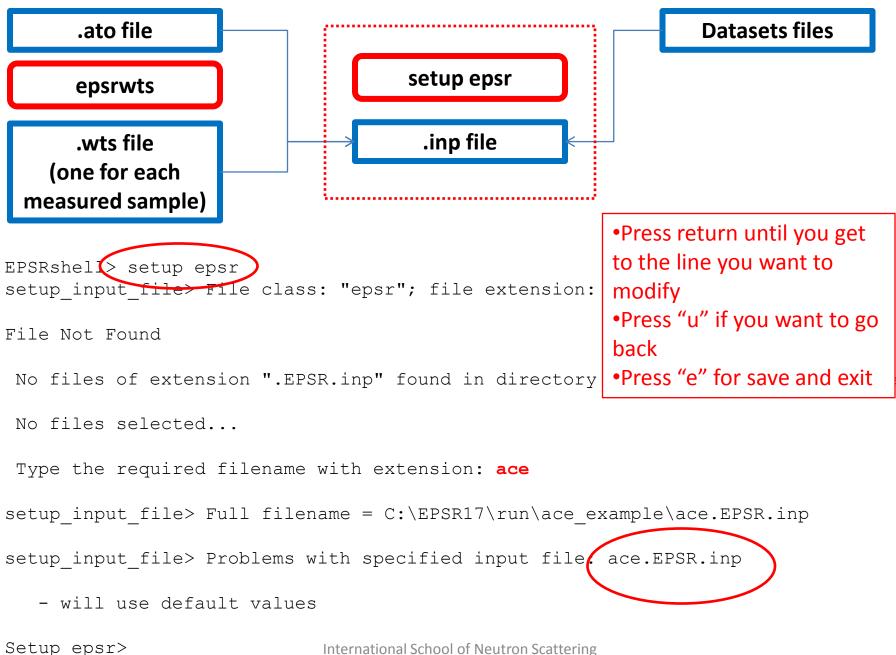

Silvia Imberti



Crimson Editor - [C:\EPSR17\run\ace example\acetic_acid.ato]
😫 File Edit Search View Document Project Tools Macros Window Help
□ 🛎 🐁 🖆 日 🕼 🍜 🔃 👗 ங 🛍 🗠 으 💷 👫 🎎 🐇 🐐 吨 🗟 🔉 🖋 🥻 🗮 ♦ 🗉 ト ? 🛣
🤏 acetic_acid.mol 🛛 🧟 acetic_acid.atm 🛛 🥌 acetic_acid.ato
1 ·····1··0.430600E+01··0.300000E+03¶
$\{\cdots, 8\cdots, 0.000000E+00\cdots, 0.000000E+00\cdots, 0.000000E+00\cdots, 0.000000E+00\cdots, 0.000000E+00\cdots, 0.00000E+00\cdots, 0.0000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.00000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.0000E+00\cdots, 0.000E+00\cdots, 0.000E+000E+00\cdots, 0.000E+000E+000E+0000E+000E+000E+$
4 ·CM······1¶ 5 ··0.00000E+00··0.00000E+00··0.00000E+00¶
<pre></pre>
····7·0.257E+019
8 · HM · · · · · · · 2 · I
9 ··0.00000E+00··0.00000E+00··0.00000E+00¶
$10 \cdot 4 \cdot 1 \cdot 0.108E + 01 \cdot 1 \cdot 3 \cdot 0.176E + 01 \cdot 1 \cdot 4 \cdot 0.176E + 01 \cdot 1 \cdot 5 \cdot 0.215E + 01 $
12 ··0.00000E+00··0.00000E+00··0.00000E+00¶ 13 ··4····1·0.108E+01····2·0.176E+01····4·0.176E+01····5·0.215E+01¶
$14 \cdot HN \cdot \cdots \cdot 4 \blacksquare$
15 · · 0.00000E+00 · · 0.00000E+00 · · 0.00000E+00 ¶
16 ··4····1·0.108E+01····2·0.176E+01····3·0.176E+01····5·0.215E+01¶
17 ·CC······5¶
18 ··O.00000E+00··O.00000E+00··O.00000E+00¶
19 ···7····1·0.154E+01····6·0.122E+01····7·0.143E+01····2·0.215E+01····3·0.215E+01¶
20 ····4·0.215E+01····8·0.191E+01¶ 21 ·OC······6¶
22 · · 0.00000E+00 · · 0.00000E+00 · · 0.00000E+00 ··
23 · · 3 · · · 5 · 0.122E+01 · · · 1 · 0.240E+01 · · · · 7 · 0.230E+01¶
24 • 0• • • • • • • 7 ¶
25 ··0.00000E+00··0.00000E+00··0.00000E+00¶
26 ··4···5·0.143E+01···8·0.960E+00···1·0.257E+01···6·0.230E+01¶
27 · H· · · · · · · · · · 8¶
28 ··0.00000E+00··0.00000E+00··0.00000E+00¶ 29 ··2····7·0.960E+00····5·0.191E+01¶
30 ••••19
31 · ROT I
32 5 1 9
$33 \cdots 3 \cdots 2 \cdots 3 \cdots 4 \P$

Setup a simulation box flowchart:

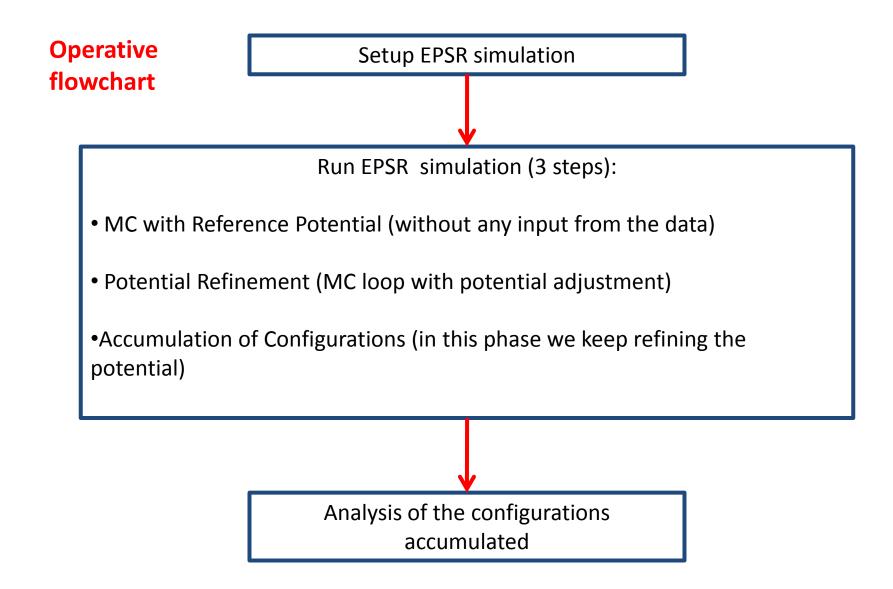




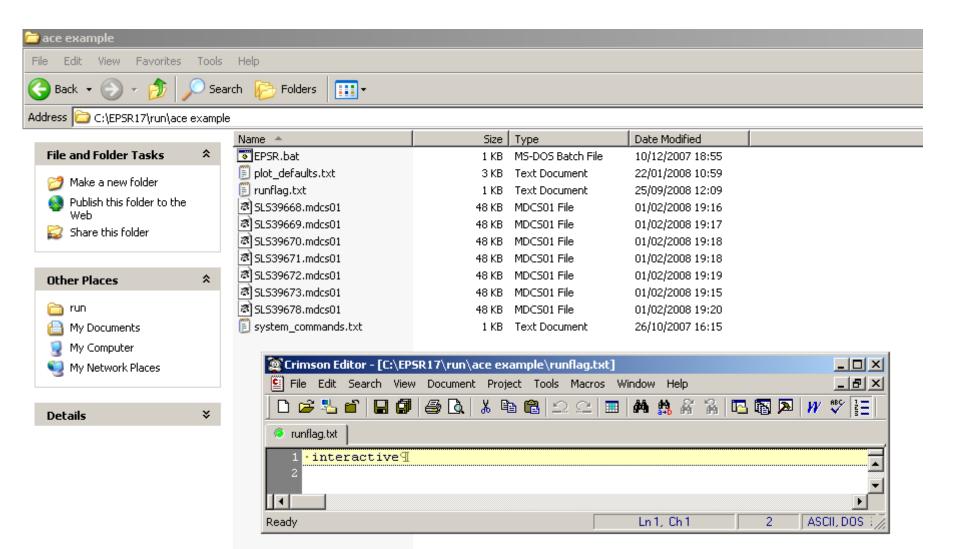
A box of atoms and molecules:

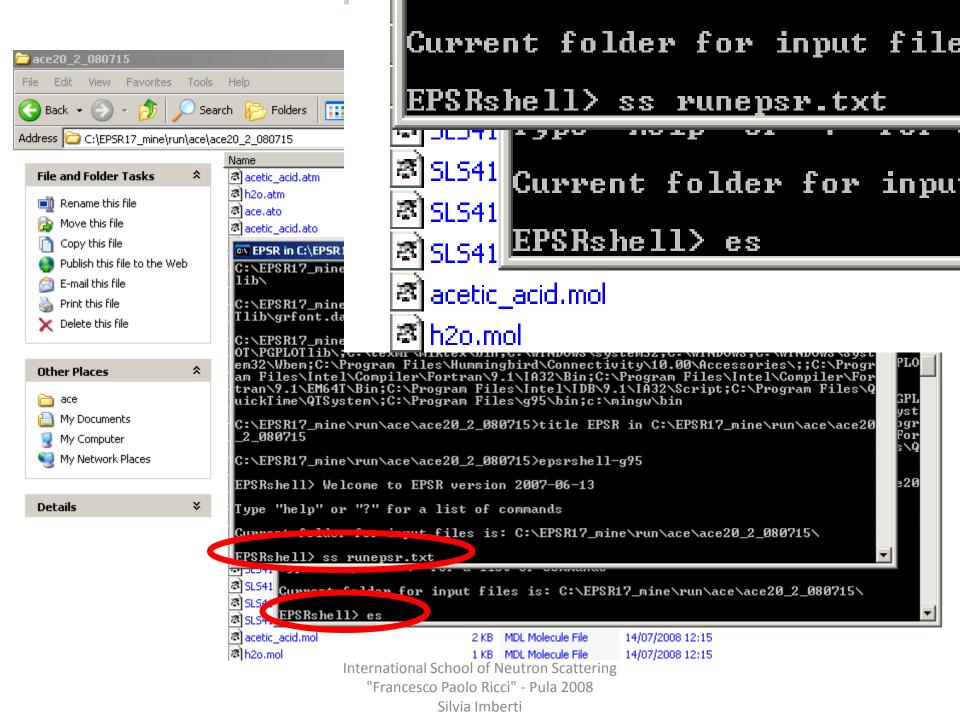
Cubic box of side length L/Å A store of atomic coordinates: Constraints on first and second neighbour distances within specific groups of atoms are one means by which it is possible to define molecules and maintain their shapes.

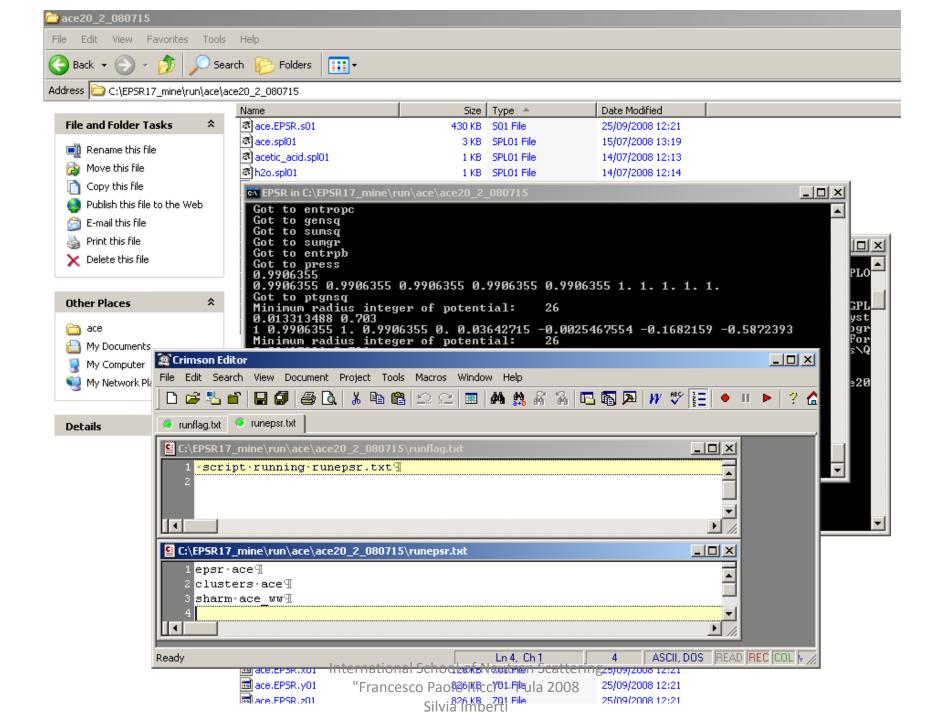
Key parameters for the box are:(1) The density of atoms(2) The total energy, U(3) The total pressure



\ **!!**

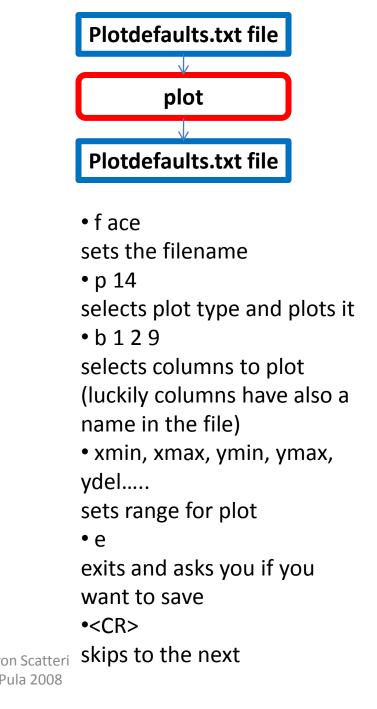

ace.EPSR		Title of this file
feedback	0.9	Confidence factor - should be < 1. $[0.8]$
potfac	1.0	1.0 to enable potential refinement, 0.0 to inhibit
ereq	10.00000	Overall requested energy amplitude - overrules efilereq
sizefactor	1.0	Multiplying factor for box dimension. [1.0]
nq	400	Number of Q values. [400]
qstep	0.05	Size of Q step [1/A]. [0.05]
ireset	0	Sets the Empirical Potential to zero
iinit	0	Sets accumulators to zero. Recalculates r and Q. [1]
ntimes	5	Number of MC cycles between potential refinements. [5]
niter	1	Number of potential refinements before exitting. [1]
nsumt	7487	Number of iterations already accumulated. [-1 with reset]
intra	100	Number of molecule moves between molecule shakes. [100]
inter	5	Number of iterations in running averages. [5]
rho	0.09979964	Atomic number density - will be derived from .ato file
cellst	0.03	Size of r step [A]. [0.03]
fwhm	0.0	Resolution width - Q independent term. [0.0]
fwhmq	0.02	Resolution width - Q dependent term. [0.02 for SLS]
nsmoop	1	1 means background subtraction is ON, 0 means OFF
fnameato	ace.ato	Name of .ato file
fnamepcof	ace.pcof	Name of potential coefficients file.
qmin	0.7	Minimum value of Q used for potential fits. [0.05]
ndata	7	Number of data files to be fit by EPSR


data 1

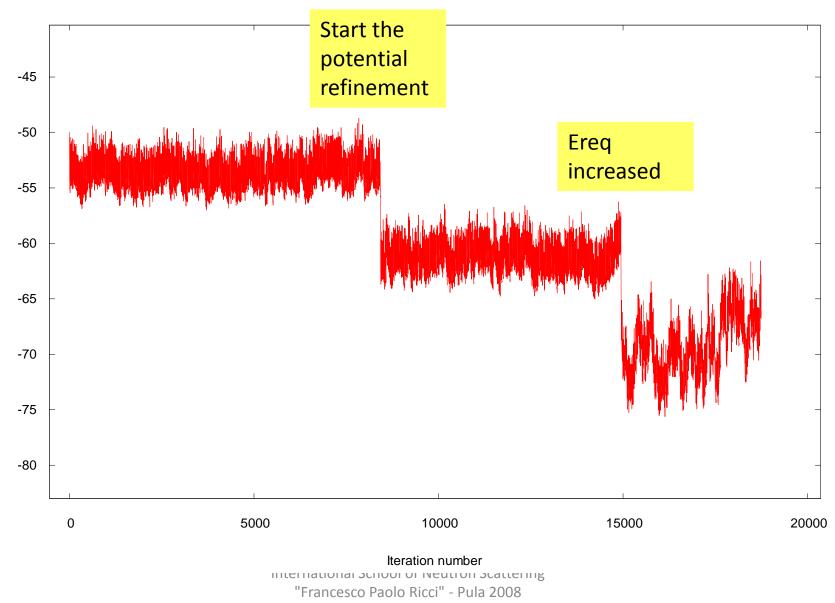

datafile	SLS39668.mdcs01	Name of data file to be fit
wtsfile	ace2dbdtot.wts	Name of weights file for this data set
nrtype	5	Data type – see User Manual for more details
rshmin	0.7	Minimum radius [A] - used for background subtraction
szeros	0.0	Zero limit – 0 means use first data point for Q=0
tweak	1.0	Scaling factor for this data set. [1.0]
efilereq	1.0	Requested energy amplitude for this data set [1.0]
		International School of Neutron Scattering
data 2 et	c etc	"Francesco Paolo Ricci" - Pula 2008
		Silvia Imberti

ace.EPSR feedback	Titl: 0.9	e of this file Confidence factor - should be	
potfac	1.0	1.0 to enable potential refin	
ereq	10.00000		amplitude - overrules efilereq
sizefactor	1.0	Multiplying factor for box di	
nq	400	Number of Q values. [400]	
qstep	0.05	Size of Q step [1/A]. [0.05]	
ireset	0	Sets the Empirical Potential to	zero
iinit 🛛	0	Sets accumulators to zero. Reca	
ntimes	5	Number of MC cycles between pot	ential refinements. [5]
niter	1	Number of potential refinements	before exitting. [1]
nsumt	7487	Number of iterations already	accumulated. [-1 with reset]
intra	100	Number of molecule moves betw	een molecule shakes. [100]
inter	5	Number of iterations in running	-
rho	0.09979964	_	- will be derived from .ato file
cellst	0.03	Size of r step [A]. [0.03]	
fwhm	0.0	Resolution width - Q independ	
fwhmq	0.02	Nouve are ready to run	t term. [0.02 for SLS]
nsmoop	1	Now we are ready to run	s ON, 0 means OFF
fnameato	ace.ato	the simulation, and the	ients file.
fnamepcof qmin	ace.pcof 0.7		tential fits. [0.05]
ndata	7	main commands are	y EPSR
nuaca	1	given from the .inp file	y HIOR
data 1			
datafile	SLS39668.mdcs01	Name of data file	to be fit
wtsfile	ace2dbdtot.wts	Name of weights fi	le for this data set
nrtype	5	Data type - see User Manual for	more details
rshmin	0.7	Minimum radius [A] – used for	background subtraction
szeros	0.0	Zero limit - 0 means use firs	t data point for Q=0
tweak	1.0	Scaling factor for this data	set. [1.0]
efilereq	1.0	Requested energy amplitude fo	r this data set [1.0]
		International School of Neutron Scatter	ring
data 2 et	c etc	"Francesco Paolo Ricci" - Pula 2008	
		Silvia Imberti	

A "push the button" approach to EPSR


ON

OFF


	IRESET	NSMOOP &POTFAC	EREQ	IINIT	NSUMT
Starting point	1	0	0	1	-1
MC with Reference Potential	0	0	0	0	-1
MC with Potential Refinement	0	1	10, 20, 50, 100	0	-1
MC with Accumulation of configurations	0	1		0	0
	Resets the empirical potential	Switches on the potential	Controls the amplitude of the empirical potential	Resets the accumulated distributions	Number of configuratio ns accumulated

How do you decide when to push the button?

plot>	1	
plot>	A٦	vailable plot types are:-
1	-	EPSR S(Q) fit
2	-	EPSR S(Q) fit and difference
3	-	EPSR S(Q) fit and data
4	-	EPSR S_intra(Q)
5	-	EPSR F(Q) fit
6	-	EPSR F(Q) fit and difference
7	-	EPSR F(Q) fit and data
8	-	EPSR site-site g(r)
9	-	EPSR site-site g(r) fit and data
10	-	EPSR g_intra(r) fit
11	-	EPSR f(r) fit
12	-	EPSR f(r) fit and data
13	-	EPSR empirical potentials
		EPSR energy
		EPSR pressure
		SHARM coefficients
17	-	Cluster size distribution
		Torsional angle distribution
		EPSR R-factor
		PARTIALS g(r)
		EPSR g(r) and N(r)
		Triangles
		Coordination No.
		Chains
	-	R-factor v. Abs. Enengymational School of Neutro
()		"Francesco Paolo Ricci" - F Silvia Imberti

C:\EPSR17\run\ace\ace1\ace

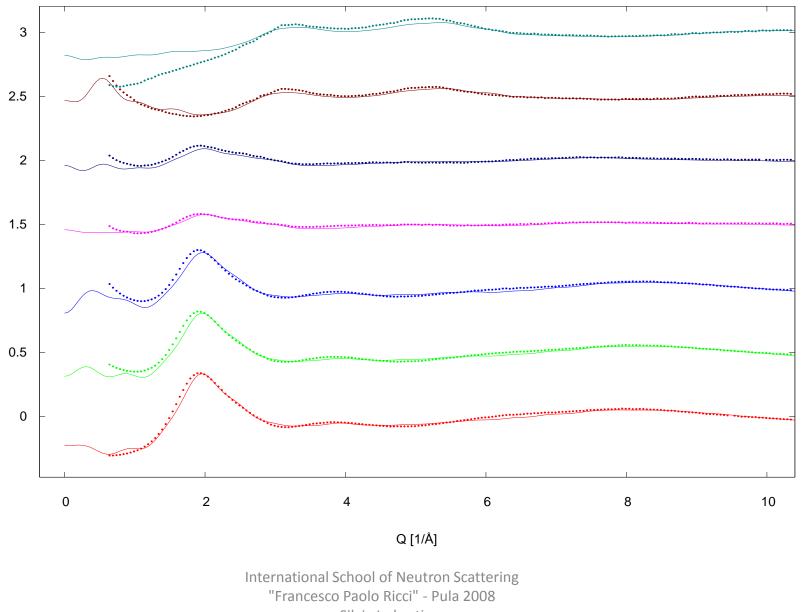
Silvia Imberti

Reviewing the output

plot>	1
plot>	Available plot types are:-
1	- EPSR S(Q) fit
2	- EPSR S(Q) fit and difference
3	- EPSR S(Q) fit and data
4	- EPSR S_intra(Q)
5	- EPSR F(Q) fit
6	- EPSR F(Q) fit and difference
7	- EPSR F(Q) fit and data
8	- EPSR site-site g(r)
9	- EPSR site-site g(r) fit and data
10	- EPSR g intra(r) fit
11	- EPSR f(r) fit
12	- EPSR f(r) fit and data
13	- EPSR empirical potentials
1 /	

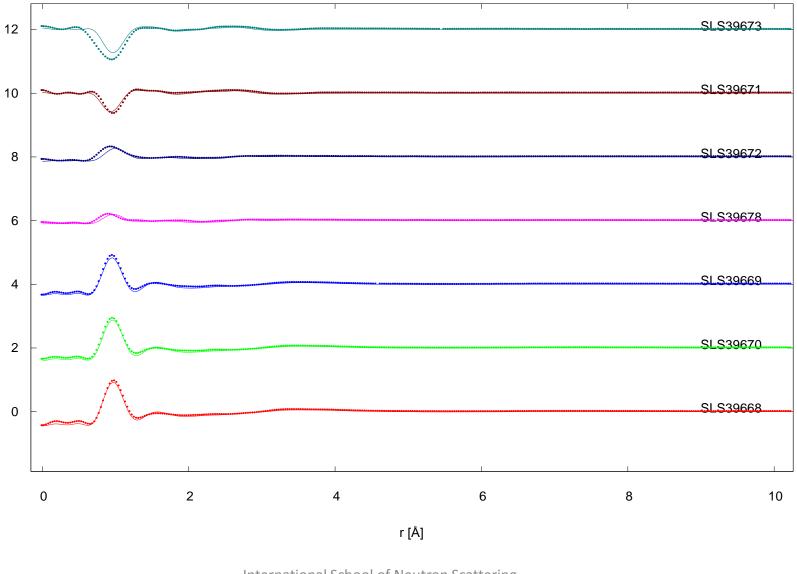
14 - EPSR energy

		Q		r			
	SIM	DATA	DIFF	SIM	DATA	ΡΟΤ	COORD
Totals	5-6-7	7	6	11 – 12	12		
Partials Intramol.	1 - 2 - 3	3	2	8-9-21	9	13	21 -23
Partials Intermol.	4		10				


Silvia Imberti

(Much needed) Table of output file extensions

<filename>.<program>.<filetype>


		Q		r			
	SIM	DATA	DIFF	SIM	DATA	ΡΟΤ	COORD
Totals	.U01	.T01 (mdcs)	.V01	.X01	.W01 (mgor)		
Partials Intramol.	.F01	.Q01	.D01	.G01	.R01	.P01	.Z01
Partials Intermol.	.S01		.Y01				

Ace/Water

Silvia Imberti

C:\EPSR17\run\ace\ace1\ace

When you are happy with the fit it's time to go and have a look at the results...

Put the atoms in the same order as they appear at the end of your .ato file

	OW	HW	CM	HM	СС	OC	0	Н
OW	1	2	3	4	5	6	7	8
НW		9	10	11	12	13	14	15
СМ			16	17	18	19	20	21
НМ				22	23	24	25	26
СС					27	28	29	30
OC						31	32	33
0							34	35
Н								36

It helps you thinking what you want to visualize:

•solvent-solvent, solute-solute and solute-solvent correlations separately

•Hydrophilic-philic, phobic-phobic, philic-phobic

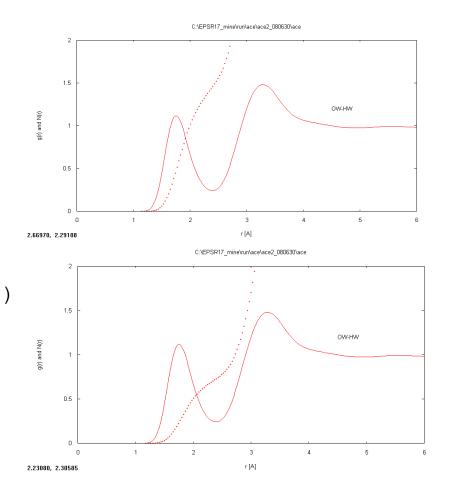
•OO, OH, HH to compare with pure water....

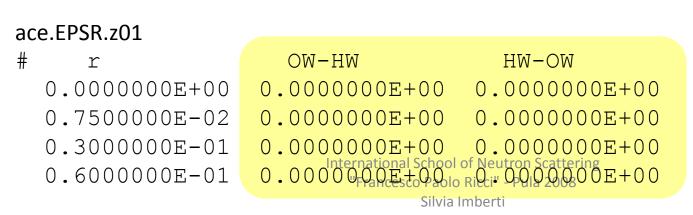
•....

Select EPSR in C:\EPSR17 mine\run\ace\ace2 080630 setup_input_file> Reading input file: "plot_defaults.txt" plot> b find_ncolumn> 1 1 find_ncolumn> 17 3 2 2 2 1 setup_plot_filenames> There are __1 blocks in the file C:\EPSR17_mine\run\ace\ac e2_080630\ace.CLUSTERS.n01 setup_blocknumbers> Number of plotting columns: 1 plot> b - Block numbers to plot (e.g. 1 2 - 5 9 - 6) b: 1 - 7 ? _

ace.EPSR.g01

 #
 r
 OW-OW
 OW-HW
 OW-CM etc etc


 0.000000E+00
 <td


p 21 (partials and coord numbers)

OW-HW

```
b 2 (no. of partial)
boffset 2 2
(second column of ace.EPSR.g01,
second column of ace.EPSR.z01)
```

```
HW-OW (careful because the label
doesn't change in the actual plot)
b 2
boffset 2 3
(second column of ace.EPSR.g01,
third column of ace.EPSR.z01)
```


Useful references

 Computer Simulation of Liquids, M.P.Allen and D.J.Tildesley, (1987) Oxford University Press, Oxford and New York
 Empirical Potential Monte Carlo simulation of fluid structure A.K.Soper, Chemical Physics, 202, (1996) 295-306
 The radial distribution functions of water and ice from 220 to 673K and at pressures up to 400MPa A.K.Soper, Chemical Physics, 258, (2000) 121-137
 Tests of the empirical potential structure refinement method and a new method

of application to neutron diffraction data on water

A.K.Soper, Molecular Physics, 99 (2001) 1503-1516

•Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement

A.K.Soper, Physical Review B, 72, (2005) 104204

www.isis.rl.ac.uk\disorderedmaterials for latest EPSR release, manual, further references and updates

Advertisement:

<u>silvia.imberti@stfc.ac.uk</u> for submitting a proposal on SANDALS or other information Deadline for proposals submission 16th October & 16th April